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Abstract—This paper presents a new system that solves the 

problem of finding suitable class schedule using strongly-typed 

heuristic search technique. The system is called Automated 

Timetabling Solver (ATTSolver). The system uses Stochastic 

Context-Free Grammar rules to build schedule and make use of 

influence maps to assign the fittest slot (place & time) for each 

lecture in the timetable. This system is very useful in cases of the 

need to find valid, diverse, suitable and on-the-fly timetable 

which takes into account the soft constraints that has been 

imposed by the user of the system. The performance of the 

proposed system is compared with the aSc system for the number 

of tested schedules and the execution time. The results show that 

the number of tested schedules in the proposed system is always 

less than that in aSc system. Moreover, the execution time of the 

proposed system is much better than aSc system in all cases of the 
sequential runs.  

Keywords—Heuristic Search; Automated Timetabling; 

Stochastic Context-Free Grammar; Influence Map 

I. INTRODUCTION  

The timetabling problem is a famous problem, consists in 
scheduling a sequence of lectures among teachers and students 
in a pre-fixed period of time satisfying a set of constraints of 
various types [1][2][3][4]. The manual solution of the 
timetabling problem usually requires many person-days of 
work. In addition, the solution obtained may be unsatisfactory 
in some respect; for example a student may not be able to take 
the courses he/she wants because they are scheduled at the 
same time. For the above reason, a considerable attention has 
been devoted to automated timetabling.  

The two most common forms of this problem are exam-
timetabling problems and course timetabling problems, and in 
reality, the constraints imposed upon these can often be quite 
similar. However, the crucial difference between them is 
usually considered to be that in exam timetables, multiple 
events can take place in the same room at the same time, 
whilst in course-timetabling problems; we are generally only 
allowed one event in a room per timeslot. In automated 
timetabling, the constraints for both types of timetabling 
problem generally tend to be separated into two groups: the 
hard constraints and the soft constraints. Hard constraints have 
a higher priority than soft, and will usually be mandatory in 
their satisfaction. Indeed, timetables will usually only be 
considered feasible if and only if all of the hard constraints of 
the problem have been satisfied [5]. The Hard constraints and 
soft constraints are illustrated as follows: 

1) Hard Constraints cannot be violated under any 

circumstances (mainly due to physical restrictions). For 

example, conflicting lectures (i.e. those which involve common 

resources such as students) cannot be scheduled 

simultaneously. Another example is that the number of 

students taking a lecture cannot exceed the total seating 

capacity of the rooms. 
Soft Constraints are desirable but are not absolutely 

critical. In practice, it is usually impossible to find feasible 
solutions that satisfy all of the soft constraints. Soft constraints 
vary (and sometimes conflict with each other) from one 
institution to another in terms of both the types and their 
importance. The most common soft constraint in the 
timetabling literature is to spread conflicting lectures as much 
as possible so that students can have enough revision time 
between exams. An example of another soft constraint which 
may conflict with this is to schedule all the large exams as 
early as possible to allow enough time for marking. The 
quality of timetables is usually measured by checking to what 
extend the soft constraints are violated in the solutions 
generated. 

One of timetabling problem form is consists of a set of 
lectures or classes E to be scheduled in N timeslots (d days of 
h hours), a set of rooms R in which lectures can take place, a 
set of students S who attend the lectures, and a set of 
constraints C satisfied by rooms and required by lectures [6]. 
Each student attends a number of lectures and each room has a 
size. A feasible timetable is one in which all lectures have 
been assigned a timeslot and a room so that the following hard 
constraints are satisfied: 

1) No student attends more than one lecture at the same 

time; 

2) The room is big enough for all the attending students 

and satisfies all the constraints required by the lecture; 

3) Only one lecture is in each room at any timeslot. 

4) In addition, a candidate timetable is penalized equally 

for each occurrence of the following soft-constraint violations: 

5) A student has a class in the last slot of a day; 

6) A student has more than two classes in a row; 

7) A student has a single class on a day. 
Note that the soft constraints have been chosen to be 

representative of three different classes: the first one can be 
checked with no knowledge of the rest of the timetable; the 
second one can be checked while building a solution, taking 
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into account the lectures assigned to nearby timeslots; and 
finally the last one can be checked only when the timetable is 
complete, and all lectures have been assigned a timeslot. The 
objective of the problem is to minimize the number of soft 
constraint violations in a feasible solution. All infeasible 
solutions are considered worthless. In this paper, we introduce 
a novel technique to solve timetabling problem by making use 
of Stochastic Context-Free Grammar in conjunction with 
Influence Map for satisfying soft and hard constraints of the 
timetabling problem. Furthermore the performance of the 
approach is compared with the existing one Timetables system 
like aSc Timetables software. 

The rest of this paper is organized as follows: Section II 
presents the review of literature. Section III presents the 
proposed approach. Experimental results are presented in 
section IV. Section V provides conclusion and future work.  

II. REVIEW OF LITERATURE  

In timetabling literature there are many approaches that 
have been appeared to solve this problem; such as Graph 
Coloring, Tabu Search, Genetic Algorithm, Artificial Immune 
Systems and Simulated Annealing Algorithms. Welsh and 
Powell (1967) represented a very important contribution to the 
timetabling literature by building the bridge between graph 
coloring and timetabling, which led to a significant amount of 
later research on graph heuristics in timetabling [7].  

Brailsford, Potts and Smith (1999) introduced various 
searching methods on constraint satisfaction problems and 
demonstrated that this technique could be applied to 
optimization problems [8]. Di Gaspero and Schaerf (2001) 
carried out a valuable investigation on a family of Tabu Search 
based techniques whose neighborhoods concerned those which 
contributed to the violations of hard or soft constraints [9]. 
Also, White and Xie (2001) developed a four-stage Tabu 
Search called OTTABU, where solutions were gradually 
improved by considering more constraints at each stage, for 
the exam timetabling problem at the University of Ottawa [9]. 
Abramson (1991) applies simulated annealing to school 
timetabling [11].  Duong and Lam (2004) employed Simulated 
Annealing on the initial solutions generated by constraint 
programming for the exam timetabling problem at HMCM 
University of Technology [12]. S. Abdullah in (2007) 
developed a large neighborhood search based on the 
methodology of improvement graph construction originally 
developed by Ahuja and Orlin for different optimization 
problems [13]. Genetic algorithms have been the most studied 
Evolutionary Algorithms in terms of timetabling research [14]. 

In particular, hybridizations of genetic algorithms with 
local search methods (sometimes called memetic algorithms) 
have led to some success in the field [15]. Also Ulker, Ozcan 
and Korkmaz (2007) developed a Genetic Algorithm where 
Linear Linkage Encoding was used as the representation 
method, different crossover operators were investigated in 
conjunction with this representation on benchmark graph 
coloring and exam timetabling problems with hard constraints 
[16].  

Malim, Khader and Mustafa (2006) studied three variants 
of Artificial Immune systems (a Clonal Selection Algorithm, 
an Immune Network Algorithms and a Negative Selection 
Algorithm) and showed that the algorithms can be tailored for 
both course and exam timetabling problems [17]. Recently, R. 
Sutar and S. Bichkar (2012) proposed a system uses Genetic 
Algorithm to design a model for scheduling with challenging 
constraints considerations [18].  

III. THE PROPOSED APPROACH   

In order to make feasible timetable, the aforementioned 
constraints should be applied by the system which is a 
heuristic searching technique that use Stochastic Context-Free 
Grammar (SCFG) parser that produces the entire schedule and 
selects the correct time and place slot by probabilistic 
influence mapping. In order to delve in the details we should 
take the description of the two components of our proposed 
approach that are the Stochastic Context-Free Grammar and 
the Influence Mapping.  

A. Stochastic Context-Free Grammar (SCFG)  

 The first component of the system is constructing the 
schedule using SCFG rules. In order to understand the concept 
Stochastic Context-Free Grammar, let’s describe the concept 
of Context-Free Grammar. Context-free grammar (CFG) is a 
collection of context-free phrase structure rules. Each such 
rule names a constituent type and specifies a possible 
expansion thereof [19]. These languages are described 
recursively in terms of each other and primitive Symbols 
called terminals. The rules relating the variables are called 
productions. The term context-free comes from the feature that 
all productions must have a single symbol on its left-hand 
side, which means that the symbol could always be replaced 
by the right-hand side of the rule, no matter in what context it 
occurs. 

In general the CFG consists of the following components G 
= (S, N, T, R): 

1) A start symbol (S), which is a special non-terminal 

symbol that appears in the initial sequence generated by the 

grammar. 

2) A set of non-terminal symbols (N), which are 

placeholders for patterns of terminal symbols that can be 

generated by the non-terminal symbols. 

3) A set of terminal symbols (T), which are the set of 

rooms, course and time slots generated by the grammar. 

4) A set of productions (R), which are rules for replacing 

(or rewriting) non-terminal symbols (on the left side of the 

production) in a sequence with other non-terminal or terminal 

symbols (on the right side of the production). 

 A Stochastic context-free grammar (SCFG) is a CFG plus 
a probability distribution on productions: G = (S, N, T, R, P). 
The probability of each rule is a conditional probability of 
choosing a particular right-hand-side to rewrite a given left-
hand-side. The Stochastic Context-Free Grammar Parser used 
here consists of two steps; the first step is to prepare the input 
structure for the actual parser as shown in Fig. 1. 
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S <SHEDULE> 

N { <SHEDULE>,  <SLOT>, < LECTURE> ,  

<ROOM, <TIMESLOT >} 

T { room1-roomn,  group1- groupn, professor1- 

professorn , course1 – coursen ,timeslot1-

timeslotn} 

Rsch1 < SCHEDULE > → < SLOT>  

Rsch2 < SCHEDULE > → < SLOT> < SCHEDULE 

> 

Rslot < SLOT> → 

{<LECTURE><ROOM><TIMESLOT>} 

Rlec <LECTURE> → 

{<COURSE><PROFESSOR><GROUP>} 

Rc1 < COURSE > →  course1 

Rcn < COURSE > →   coursen 

Rp1 < PROFESSOR > →  professor1 

Rpn < PROFESSOR > →  professorn 

Rg1 <GROUP> →  group1   

Rgn <GROUP> →  groupn 

Rr1 <ROOM> →        room1  

Rrn <ROOM> →      roomn 

Rt1 <TIMESLOT> → timeslot1  

Rtn <TIMESLOT> →  timeslotn 

Fig. 1. The input structure for the Stochastic Context-Free Grammar Parser. 

The structure is composed of terminals, nonterminals and rules for a timetable. 

As Fig. 1 shows, the input structure for the main algorithm 

composed of a set of terminals and non-terminals. 

 The non-terminal <schedule> is taken as the start 
symbol of parsing.  

 The rest of non-terminals are {<SLOT>, < 
LECTURE>, <ROOM, <TIMESLOT >}. Where the 
non-terminal < SLOT> represents the lecture in 
addition to the place and the time, the non-terminal 
<LECTURE> represents the elements of the lecture 
which are the course, the groups that take the course, 
the professor teaching that course. And finally 
<ROOM> <TIMESLOT > are self-descriptive. 

After the previous structure is built, it is used as input for 
the next stage of the approach. The second step is the design 
of the Context-Free Grammar algorithm as shown in Fig. 2.  

 In general, the algorithm applies one of the productions 
with the start symbol on the left hand size, replacing 
the start symbol with the right hand side of the 
production. 

 The non-terminal < SHEDULE> is replaced by the rule 
(Rsch1) to < SLOT> or to < SLOT>and another < 
SHEDULE > by the rule (Rsch2). 

 The non-terminal < SLOT> which represents the time 
slot for a lecture in the schedule is replaced by the rule 

(Rslot) into the sequence of non-terminals 
<LECTURE> <ROOM><TIMESLOT> 

 Algorithm: Context-Free Grammar  

 ---------------------------------------- 

 1:   let S := the start symbol. 

 2:   let N := a set of non-terminals. 

 3:   let T := a set of terminals. 

 5:   let Schedule[ ] := {}empty array of all lectures  

 6:   let Lecture[ ]={} empty slot 

 7:   Input: P: productionType 

 8:   Output: Schedule 

 9:   let Rules:: = a set of rules that contain P. 

 10: If TypeOf (P) is Course 

 11:           let Rules [ ] ← InfluenceMap( ) 

 12: If TypeOf (P) is Professor|| Group|| Room || TimeSlot  

 13:   let rand:= RandomNumber()%SizeOf(Rules) 

 14:           let Rules [ ] ← Rules [rand] 

 15:  For each rule in Rules  

 16:    If rule is nonTerminal 

 17:           For Each productionType in rule 

 18: CFG(productionType) 

 19:           End for 

 20:    Else  

 21:           let Schedule [ ] ←rule.productionType  

 22: End for 

 23: Return Schedule 

Fig. 2. The recursive SCFG parsing algorithm 

 The non-terminal <LECTURE> is re-written with the 
sequence {<COURSE> <PROFESSOR> <GROUP>}; 
each one of the non-terminals, in the sequence, is re-
written to its terminal by selecting its production rule 
with the higher probability given to that rule to be 
chosen.  

 Lines [1:6] define the storage for the start symbol from 
which the beginning of the sequence, array of non-
terminals , another one for terminals and two empty 
arrays on for the output schedule and another one for 
temporary storage for lecture components. 

 Line [7] the input for the parser is a productionType 
which can be any elements of the problem (e.g. 
professor, group, room, timeslot or even a rule that 
maps non-terminal with another non-terminal or with 
another terminal).  

 Line [8] the output schedule. 
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 Line [9] define a variable the holds the rules that the 
input productionType contains. 

 The first non-terminal is <COURSE>, which has many 
rules as the total number of courses in the schedule; the 
algorithm selects the rule that contains the course 
returned from the Influence Map algorithm which 
returns the course with the higher priority this 
algorithm will be introduced later. the second non-
terminal is  <PROFESSOR>  which has many rules as 
the total number of professors who gives the course, 
selected previously, then the professor rule is selected 
randomly .the last non-terminal is <GROUP> which 
has the rule that re-write this non-terminal to the group 
that takes the selected course. this is implemented as 
following: 

 Lines [10:11] the if-condition checks if productionType 
is the ‘Course’ element ,if so, then invoke the 
InfluenceMap procedure to get the course with the 
highest probability in the form of course-to-
availableSlot rule(s).  

 Lines [12:14] the if-condition checks if the input 
productionType is the ‘Professor’ element (contains the 
available professors), if so, then selects one of the 
available professors randomly; this is applied the same 
for the group, room or timeslot elements.  

 Lines [15:22] this is a loop where we iterates over the 
rules; if the rules of the current productionType are 
non-terminal (set of professors, set of groups, set of 
rooms or set of timeslot) then call the algorithm 
recursively against each productionType in that non-
terminal; else if the rules are terminal (professor, 
group, room or timeslot) then add it to the output array. 

 Finally, we end up with a sequence of group, professor, 
course which is the element of the lecture. 

 Repeating the process of selecting non-terminal 
symbols in the sequence, and replacing them with the 
right hand side of some corresponding production. 

B. Influence Maps  

In the previous section we constructed the schedule from 
its elements (professors, groups, course and random slot) using 
stochastic context free grammar. But, how each production 
rule determines the probability by which it selects the correct 
course, professor, etc. in other words how each individual 
(lecture) is placed in its fittest time and place? For answering 
this question let’s understand and make use of a great concept 
in the field of artificial intelligence in games, the Influence 
mapping. Influence mapping is an invaluable and proven game 
artificial intelligence technique for performing tactical 
assessment. Influence maps have been used most often in 
strategy games, but are also useful for many other types of 
games that require an aspect of tactical analysis [20].  

As there is no standard implementation of Influence Map 
we use simple implementation consists of a grid which has 
values assigned to each cell based on some function which 
represents a spatial feature or concept. The Stochastic 

Influence Mapping Algorithm used in this work is a 2D grid 
contains the time slots in its column headers and the available 
days in the headers of the rows representing the time table. In 
general, every time the algorithm is invoked we fill the grid 
with zeros the lecture gets its slot (place/time) based on its 
probability. This means that the lecturer with the higher 
probability, the higher priority it takes to proceed reserving his 
slot. The probability value for each lecturer is assigned based 
on the space available for him, and the less space available to 
a lecturer increases its probability/priority, and vice versa.  
Every time the map is constructed we reserve a slot 
(place/time) for the lecture with the highest probability. The 
Influence-Mapping algorithm is shown in Fig. 3. 

 

Algorithm: Influence Map  

------------------------------------------------------------------ 

1: let Courses[] := Array of all courses. 

2: let ReservedCourses[] := an global array of reserved lectures. 

3: let tempMaxProb := 0 

4: let crsWithMaxProb := empty 

5: Input: Courses  

6: Output: Lecture with valid room, day and time. 

7:   for each course in Courses 

8:     if course is not in ReservedCourses 

9:      let nRooms := number of rooms available for the                     

group which the current course belongs to. 

10:     let nDays := number of days available for the  professor who 

gives the course.  

11:     let nTimeSlots := number of time slots per day available for 

the professor(s) who give(s) the course. 

12:     let nRequiredSlots := number of required time slots for all 

courses. 

13:      let probabiliy:= nRequiredSlots  / (nRooms * nDays * 

nTimeSlots). 

14:      if probability > tempMaxProb 

15:          let tempMaxProb:= probability 

16:          let crsWithMaxProb:= course 

17:  end for  

18:  let ReservedLecs[] ← crsWithMaxProb 

19:  Return crsWithMaxProb. 

Fig. 3. The Influence Mapping Algorithm 

We can illustrate the work of the Influence Map algorithm 
as follows: 

 Lines [1:4] the array “Courses” represents the array 
that holds all courses in the problem, the global array 
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“ReservedCourses” which keeps track of the lectures 
that has been already selected before, the 
tempMaxProb and crsWithMaxProb are variables to 
hold the temporary maximum probability and the 
course with this maximum.  

 Line [5] the input array of all courses. 

 Line [6] the output course with highest probability. 

 Lines [7:17] the loop iterates over all the courses and 
checks if the course is not selected before then make 
simple computation to calculate priority of this course 
this priority equals the division of the required 
resources (timeslot and  room) by the available 
resources (timeslot of the available professor and 
available room) 

 Lines [18:19] add the result course to list of the 
reserved courses and returns. 

 Note: The returned type is a productionType this is an 
abstract type of all the elements in our implementation 
of the context-free grammar parser. 

Usually if we design an algorithm, the best way to present 
its efficiency is to compute its time complexity. Time 
complexity is commonly estimated by counting the number of 
elementary operations performed by the algorithm, where an 
elementary operation takes a fixed amount of time to perform. 
Where each time the algorithm is invoked on the same set of 
courses will iterate over the courses, subtracting the courses 
that have been already parsed before, that is given by the 
formula n*(n+1)/2; Thus, the time complexity of the 
Stochastic Influence Mapping  algorithm presented here is 
O(n2). 

C. The Proposed Approach and its Advantages 

The solution proposed here to the timetabling problem is a 
heuristic search method that might not always find the best 
solution but it is guaranteed to find a good solution in 
reasonable time. The Stochastic Context Free Grammar Parser 
takes the structure of the timetable in a suitable format and 
generates a formal representation of one lecture; each lecture 
contains professor, course, group, time and room with the 
constraints imposed by the user. The parser runs as many 
times as the number of courses in the schedule producing a set 
of lectures, and each production rules are rewritten based on a 
specific probability produced by probabilistic Influence Map . 

The algorithm should use influence map for lecturers to 
prioritize the lectures to take the precedence in the assigning 
slots operation. Sometimes the conflicts occur when all the 
appropriate slots for a low-probability lecture are reserved for 
high-probability lecture, to handle such cases; another 
influence map for slots is constructed. After the parser invokes 
the influence map for the lecturer to get the lecturer with the 
highest probability in order to bind his lectures to appropriate 
and available slots and here comes the role of the influence 
map for the slots but on the contrary of the lecturer influence 
map, the slot influence map returned the slot with low-
probability. In order to make things simpler we use influence 

map only for lecturers and whenever the conflicts occur the 
algorithm re-assign different slot. 

One of the advantages of this approach lies in the using of 
the Context-Free Grammar to construct the time table; using 
this implies strongly-typed contents to the behavior of the 
algorithm. Strongly-Typed behavior means specifying one or 
more restrictions on how operations involving values of 
different data types can be intermixed. Also, the algorithm 
gives various, on the fly and feasible schedule each time the 
algorithm runs. As each time the influence map picks a free 
slot from the available slots for underlying lecture it does so 
randomly; thus, every time it assigns different available slot to 
the lecture. 

D. Case Study 

This case study illustrates the work of the new approach. 

Suppose there is a schedule that is composed of four courses 

as shown in Fig. 4.  

SCHEDULE →   SLOT 

SLOT   →   { LECTURE, ROOM, TIMESLOT } 

LECTURE   →   { GROUP,PROFESSOR,COURSE } 

GROUP →   Diploma 

PROFESSOR →   David | John 

COURSE →   Math | Physics | Calculus | C.Science 

ROOM   →   R19 

TIMESLOT →   Sun (8:11)………..Thu(17:20) 

Fig. 4. Example of a schedule composed of four courses. 

We can apply the re-writing rules of the SCFG timetabling 

as shown in Fig. 5, where the output is four lectures. 

S1 {{ Diploma, Alan, Calculus}, {R19}, Wed (15:18)}                                             

S2 {{ Diploma, John, Physics }, { R19}, Wed (15:18)} 

S3 {{ Diploma, David, Eng. Fund. }, { R19}, Sat (8:11)} 

S4 {{ Diploma, Alan, Math }, {R19}, Mon (11:14)} 

Fig. 5. The output of the re-writing rules is four lectures. 

To determine which lecture is chosen the Influence 
mapping algorithm is applied. The Influence mapping 
algorithm is giving the precedence to the lecture S2 to reserve 
the slot R19-Wed (15:18), based on its superior probabilistic 
value which is indicated by red circle as shown in Fig. 6. 

Fig. 6. The Influence mapping algorithm is giving the precedence to the 

lecture S2 based on its superior probabilistic value. 

S2 8:11 11:14 15:18 

Sun. 0.05555 0 0 

Mon. 0 0.05555 0 

Wed. 0 0  0.166
6 

http://en.wikipedia.org/wiki/Data_type
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IV. EXPERIMENTAL RESULTS  

The performance results for the proposed system are 
presented by designing and implementing a desktop 
application program using Java programming language. We 
called the program “Automated Timetabling Solver 
(ATTSolver)” and the output is produced in PDF file format.  

The implementation of the system is tested with the 
following specifications: 

 Operating system windows 7 ultimate with system type 
32-bit 

  Hardware specification processor 2 GHz and memory 
1.5 GB. 

 To evaluate the results and the performance of the 
ATTSolver system, we compare it with the aSc 
Timetables software system. aSc timetable generator 
uses novel in-house developed algorithm. It is loosely 
based on backtracking with plenty of heuristics and 
special data structure optimized for maximum 
performance [21]. 

 The experiment that is used in the comparison is a 
timetable consists of one class group with 67 courses 
and 63 professors and one or more time-constraints on 
each professor. Fig. 7, 8, and 9 show some of the 
snapshots screen of the graphical user interface of the 
ATTSolver system.  

 
Fig. 7. The form used in the data entry for the information about the courses. 

 

Fig. 8. The form used in the data entry for the information about the 
professors and their constraints. 

 

Fig. 9. The dialogs which are responsible for setting constraint for both time 
and courses assigned for specific professor. 

The output of the ATTSolver system is exported in PDF 
file format as shown in Fig. 10. 
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Fig. 10. The output table of the ATTSolver system in pdf file format 

The experiments are performed to compare the 
performance of both aSc software system and ATTSolver 
system for the number of tested schedules, until the fittest 
solution in each run is satisfied, and the execution time 
through five sequential runs. The ATTSolver gives best results 
where the number of tested schedules of the ATTSolver is 
fewer in compared to the number of tested schedules of the 
aSc software as shown in Fig. 11. In addition, the execution 
time of the ATTSolver system is much better than that of the 
aSc in all cases of the sequential runs. The reason of these 
results returns to the using of Stochastic Context-Free 
Grammar rules to build schedule and make use of influence 
maps to assign the fittest slot (place & time) for each lecture in 
the timetable. 

 

Fig. 11. The number of tested schedules of aSc and ATTSolver 

 

Fig. 12. Execution time of aSc and ATTSolver systems 

V. CONCLUSION AND FUTURE WORK 

This paper presented a solution of the problem of finding 
suitable class schedule by using strongly-typed heuristic 
search technique. The system uses Stochastic Context-Free 
Grammar rules to build schedule and make use of influence 
maps to assign the fittest slot (place and time) for each lecture 
in the timetable. The system is taking the soft constraints as 
well as the hard constraint into the consideration based on its 
priority making various, instant, and suitable timetable. The 
results of comparing ATTSolver and aSc systems reveal that 
the number of tested schedules in ATTSolver system is always 
less than that in aSc system. Moreover, the execution time for 
ATTSolver system is much better than that of aSc system in 
all cases of the sequential runs. In future work we intend to 
apply the ATTSolver system in the field of software 
engineering as an approach of refactoring the code and apply 
the fittest design pattern. 
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