
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

107 | P a g e
www.ijacsa.thesai.org

Automated Timetabling Using Stochastic Free-

Context Grammar Based on Influence-Mapping

Hany Mahgoub

Department of Computer Science

Faculty of Computers and Information

Menoufia University, Shebin El-Kom, EGYPT

Mohamed Altaher

Department of Information Systems

Faculty of Computer and Information Sciences

Ain Shams University, Cairo, EGYPT

Abstract—This paper presents a new system that solves the

problem of finding suitable class schedule using strongly-typed

heuristic search technique. The system is called Automated

Timetabling Solver (ATTSolver). The system uses Stochastic

Context-Free Grammar rules to build schedule and make use of

influence maps to assign the fittest slot (place & time) for each

lecture in the timetable. This system is very useful in cases of the

need to find valid, diverse, suitable and on-the-fly timetable

which takes into account the soft constraints that has been

imposed by the user of the system. The performance of the

proposed system is compared with the aSc system for the number

of tested schedules and the execution time. The results show that

the number of tested schedules in the proposed system is always

less than that in aSc system. Moreover, the execution time of the

proposed system is much better than aSc system in all cases of the
sequential runs.

Keywords—Heuristic Search; Automated Timetabling;

Stochastic Context-Free Grammar; Influence Map

I. INTRODUCTION

The timetabling problem is a famous problem, consists in
scheduling a sequence of lectures among teachers and students
in a pre-fixed period of time satisfying a set of constraints of
various types [1][2][3][4]. The manual solution of the
timetabling problem usually requires many person-days of
work. In addition, the solution obtained may be unsatisfactory
in some respect; for example a student may not be able to take
the courses he/she wants because they are scheduled at the
same time. For the above reason, a considerable attention has
been devoted to automated timetabling.

The two most common forms of this problem are exam-
timetabling problems and course timetabling problems, and in
reality, the constraints imposed upon these can often be quite
similar. However, the crucial difference between them is
usually considered to be that in exam timetables, multiple
events can take place in the same room at the same time,
whilst in course-timetabling problems; we are generally only
allowed one event in a room per timeslot. In automated
timetabling, the constraints for both types of timetabling
problem generally tend to be separated into two groups: the
hard constraints and the soft constraints. Hard constraints have
a higher priority than soft, and will usually be mandatory in
their satisfaction. Indeed, timetables will usually only be
considered feasible if and only if all of the hard constraints of
the problem have been satisfied [5]. The Hard constraints and
soft constraints are illustrated as follows:

1) Hard Constraints cannot be violated under any

circumstances (mainly due to physical restrictions). For

example, conflicting lectures (i.e. those which involve common

resources such as students) cannot be scheduled

simultaneously. Another example is that the number of

students taking a lecture cannot exceed the total seating

capacity of the rooms.
Soft Constraints are desirable but are not absolutely

critical. In practice, it is usually impossible to find feasible
solutions that satisfy all of the soft constraints. Soft constraints
vary (and sometimes conflict with each other) from one
institution to another in terms of both the types and their
importance. The most common soft constraint in the
timetabling literature is to spread conflicting lectures as much
as possible so that students can have enough revision time
between exams. An example of another soft constraint which
may conflict with this is to schedule all the large exams as
early as possible to allow enough time for marking. The
quality of timetables is usually measured by checking to what
extend the soft constraints are violated in the solutions
generated.

One of timetabling problem form is consists of a set of
lectures or classes E to be scheduled in N timeslots (d days of
h hours), a set of rooms R in which lectures can take place, a
set of students S who attend the lectures, and a set of
constraints C satisfied by rooms and required by lectures [6].
Each student attends a number of lectures and each room has a
size. A feasible timetable is one in which all lectures have
been assigned a timeslot and a room so that the following hard
constraints are satisfied:

1) No student attends more than one lecture at the same

time;

2) The room is big enough for all the attending students

and satisfies all the constraints required by the lecture;

3) Only one lecture is in each room at any timeslot.

4) In addition, a candidate timetable is penalized equally

for each occurrence of the following soft-constraint violations:

5) A student has a class in the last slot of a day;

6) A student has more than two classes in a row;

7) A student has a single class on a day.
Note that the soft constraints have been chosen to be

representative of three different classes: the first one can be
checked with no knowledge of the rest of the timetable; the
second one can be checked while building a solution, taking

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

108 | P a g e
www.ijacsa.thesai.org

into account the lectures assigned to nearby timeslots; and
finally the last one can be checked only when the timetable is
complete, and all lectures have been assigned a timeslot. The
objective of the problem is to minimize the number of soft
constraint violations in a feasible solution. All infeasible
solutions are considered worthless. In this paper, we introduce
a novel technique to solve timetabling problem by making use
of Stochastic Context-Free Grammar in conjunction with
Influence Map for satisfying soft and hard constraints of the
timetabling problem. Furthermore the performance of the
approach is compared with the existing one Timetables system
like aSc Timetables software.

The rest of this paper is organized as follows: Section II
presents the review of literature. Section III presents the
proposed approach. Experimental results are presented in
section IV. Section V provides conclusion and future work.

II. REVIEW OF LITERATURE

In timetabling literature there are many approaches that
have been appeared to solve this problem; such as Graph
Coloring, Tabu Search, Genetic Algorithm, Artificial Immune
Systems and Simulated Annealing Algorithms. Welsh and
Powell (1967) represented a very important contribution to the
timetabling literature by building the bridge between graph
coloring and timetabling, which led to a significant amount of
later research on graph heuristics in timetabling [7].

Brailsford, Potts and Smith (1999) introduced various
searching methods on constraint satisfaction problems and
demonstrated that this technique could be applied to
optimization problems [8]. Di Gaspero and Schaerf (2001)
carried out a valuable investigation on a family of Tabu Search
based techniques whose neighborhoods concerned those which
contributed to the violations of hard or soft constraints [9].
Also, White and Xie (2001) developed a four-stage Tabu
Search called OTTABU, where solutions were gradually
improved by considering more constraints at each stage, for
the exam timetabling problem at the University of Ottawa [9].
Abramson (1991) applies simulated annealing to school
timetabling [11]. Duong and Lam (2004) employed Simulated
Annealing on the initial solutions generated by constraint
programming for the exam timetabling problem at HMCM
University of Technology [12]. S. Abdullah in (2007)
developed a large neighborhood search based on the
methodology of improvement graph construction originally
developed by Ahuja and Orlin for different optimization
problems [13]. Genetic algorithms have been the most studied
Evolutionary Algorithms in terms of timetabling research [14].

In particular, hybridizations of genetic algorithms with
local search methods (sometimes called memetic algorithms)
have led to some success in the field [15]. Also Ulker, Ozcan
and Korkmaz (2007) developed a Genetic Algorithm where
Linear Linkage Encoding was used as the representation
method, different crossover operators were investigated in
conjunction with this representation on benchmark graph
coloring and exam timetabling problems with hard constraints
[16].

Malim, Khader and Mustafa (2006) studied three variants
of Artificial Immune systems (a Clonal Selection Algorithm,
an Immune Network Algorithms and a Negative Selection
Algorithm) and showed that the algorithms can be tailored for
both course and exam timetabling problems [17]. Recently, R.
Sutar and S. Bichkar (2012) proposed a system uses Genetic
Algorithm to design a model for scheduling with challenging
constraints considerations [18].

III. THE PROPOSED APPROACH

In order to make feasible timetable, the aforementioned
constraints should be applied by the system which is a
heuristic searching technique that use Stochastic Context-Free
Grammar (SCFG) parser that produces the entire schedule and
selects the correct time and place slot by probabilistic
influence mapping. In order to delve in the details we should
take the description of the two components of our proposed
approach that are the Stochastic Context-Free Grammar and
the Influence Mapping.

A. Stochastic Context-Free Grammar (SCFG)

 The first component of the system is constructing the
schedule using SCFG rules. In order to understand the concept
Stochastic Context-Free Grammar, let’s describe the concept
of Context-Free Grammar. Context-free grammar (CFG) is a
collection of context-free phrase structure rules. Each such
rule names a constituent type and specifies a possible
expansion thereof [19]. These languages are described
recursively in terms of each other and primitive Symbols
called terminals. The rules relating the variables are called
productions. The term context-free comes from the feature that
all productions must have a single symbol on its left-hand
side, which means that the symbol could always be replaced
by the right-hand side of the rule, no matter in what context it
occurs.

In general the CFG consists of the following components G
= (S, N, T, R):

1) A start symbol (S), which is a special non-terminal

symbol that appears in the initial sequence generated by the

grammar.

2) A set of non-terminal symbols (N), which are

placeholders for patterns of terminal symbols that can be

generated by the non-terminal symbols.

3) A set of terminal symbols (T), which are the set of

rooms, course and time slots generated by the grammar.

4) A set of productions (R), which are rules for replacing

(or rewriting) non-terminal symbols (on the left side of the

production) in a sequence with other non-terminal or terminal

symbols (on the right side of the production).

 A Stochastic context-free grammar (SCFG) is a CFG plus
a probability distribution on productions: G = (S, N, T, R, P).
The probability of each rule is a conditional probability of
choosing a particular right-hand-side to rewrite a given left-
hand-side. The Stochastic Context-Free Grammar Parser used
here consists of two steps; the first step is to prepare the input
structure for the actual parser as shown in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

109 | P a g e
www.ijacsa.thesai.org

S <SHEDULE>

N { <SHEDULE>, <SLOT>, < LECTURE> ,

<ROOM, <TIMESLOT >}

T { room1-roomn, group1- groupn, professor1-

professorn , course1 – coursen ,timeslot1-

timeslotn}

Rsch1 < SCHEDULE > → < SLOT>

Rsch2 < SCHEDULE > → < SLOT> < SCHEDULE

>

Rslot < SLOT> →

{<LECTURE><ROOM><TIMESLOT>}

Rlec <LECTURE> →

{<COURSE><PROFESSOR><GROUP>}

Rc1 < COURSE > → course1

Rcn < COURSE > → coursen

Rp1 < PROFESSOR > → professor1

Rpn < PROFESSOR > → professorn

Rg1 <GROUP> → group1

Rgn <GROUP> → groupn

Rr1 <ROOM> → room1

Rrn <ROOM> → roomn

Rt1 <TIMESLOT> → timeslot1

Rtn <TIMESLOT> → timeslotn

Fig. 1. The input structure for the Stochastic Context-Free Grammar Parser.

The structure is composed of terminals, nonterminals and rules for a timetable.

As Fig. 1 shows, the input structure for the main algorithm

composed of a set of terminals and non-terminals.

 The non-terminal <schedule> is taken as the start
symbol of parsing.

 The rest of non-terminals are {<SLOT>, <
LECTURE>, <ROOM, <TIMESLOT >}. Where the
non-terminal < SLOT> represents the lecture in
addition to the place and the time, the non-terminal
<LECTURE> represents the elements of the lecture
which are the course, the groups that take the course,
the professor teaching that course. And finally
<ROOM> <TIMESLOT > are self-descriptive.

After the previous structure is built, it is used as input for
the next stage of the approach. The second step is the design
of the Context-Free Grammar algorithm as shown in Fig. 2.

 In general, the algorithm applies one of the productions
with the start symbol on the left hand size, replacing
the start symbol with the right hand side of the
production.

 The non-terminal < SHEDULE> is replaced by the rule
(Rsch1) to < SLOT> or to < SLOT>and another <
SHEDULE > by the rule (Rsch2).

 The non-terminal < SLOT> which represents the time
slot for a lecture in the schedule is replaced by the rule

(Rslot) into the sequence of non-terminals
<LECTURE> <ROOM><TIMESLOT>

 Algorithm: Context-Free Grammar

 --

 1: let S := the start symbol.

 2: let N := a set of non-terminals.

 3: let T := a set of terminals.

 5: let Schedule[] := {}empty array of all lectures

 6: let Lecture[]={} empty slot

 7: Input: P: productionType

 8: Output: Schedule

 9: let Rules:: = a set of rules that contain P.

 10: If TypeOf (P) is Course

 11: let Rules [] ← InfluenceMap()

 12: If TypeOf (P) is Professor|| Group|| Room || TimeSlot

 13: let rand:= RandomNumber()%SizeOf(Rules)

 14: let Rules [] ← Rules [rand]

 15: For each rule in Rules

 16: If rule is nonTerminal

 17: For Each productionType in rule

 18: CFG(productionType)

 19: End for

 20: Else

 21: let Schedule [] ←rule.productionType

 22: End for

 23: Return Schedule

Fig. 2. The recursive SCFG parsing algorithm

 The non-terminal <LECTURE> is re-written with the
sequence {<COURSE> <PROFESSOR> <GROUP>};
each one of the non-terminals, in the sequence, is re-
written to its terminal by selecting its production rule
with the higher probability given to that rule to be
chosen.

 Lines [1:6] define the storage for the start symbol from
which the beginning of the sequence, array of non-
terminals , another one for terminals and two empty
arrays on for the output schedule and another one for
temporary storage for lecture components.

 Line [7] the input for the parser is a productionType
which can be any elements of the problem (e.g.
professor, group, room, timeslot or even a rule that
maps non-terminal with another non-terminal or with
another terminal).

 Line [8] the output schedule.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

110 | P a g e
www.ijacsa.thesai.org

 Line [9] define a variable the holds the rules that the
input productionType contains.

 The first non-terminal is <COURSE>, which has many
rules as the total number of courses in the schedule; the
algorithm selects the rule that contains the course
returned from the Influence Map algorithm which
returns the course with the higher priority this
algorithm will be introduced later. the second non-
terminal is <PROFESSOR> which has many rules as
the total number of professors who gives the course,
selected previously, then the professor rule is selected
randomly .the last non-terminal is <GROUP> which
has the rule that re-write this non-terminal to the group
that takes the selected course. this is implemented as
following:

 Lines [10:11] the if-condition checks if productionType
is the ‘Course’ element ,if so, then invoke the
InfluenceMap procedure to get the course with the
highest probability in the form of course-to-
availableSlot rule(s).

 Lines [12:14] the if-condition checks if the input
productionType is the ‘Professor’ element (contains the
available professors), if so, then selects one of the
available professors randomly; this is applied the same
for the group, room or timeslot elements.

 Lines [15:22] this is a loop where we iterates over the
rules; if the rules of the current productionType are
non-terminal (set of professors, set of groups, set of
rooms or set of timeslot) then call the algorithm
recursively against each productionType in that non-
terminal; else if the rules are terminal (professor,
group, room or timeslot) then add it to the output array.

 Finally, we end up with a sequence of group, professor,
course which is the element of the lecture.

 Repeating the process of selecting non-terminal
symbols in the sequence, and replacing them with the
right hand side of some corresponding production.

B. Influence Maps

In the previous section we constructed the schedule from
its elements (professors, groups, course and random slot) using
stochastic context free grammar. But, how each production
rule determines the probability by which it selects the correct
course, professor, etc. in other words how each individual
(lecture) is placed in its fittest time and place? For answering
this question let’s understand and make use of a great concept
in the field of artificial intelligence in games, the Influence
mapping. Influence mapping is an invaluable and proven game
artificial intelligence technique for performing tactical
assessment. Influence maps have been used most often in
strategy games, but are also useful for many other types of
games that require an aspect of tactical analysis [20].

As there is no standard implementation of Influence Map
we use simple implementation consists of a grid which has
values assigned to each cell based on some function which
represents a spatial feature or concept. The Stochastic

Influence Mapping Algorithm used in this work is a 2D grid
contains the time slots in its column headers and the available
days in the headers of the rows representing the time table. In
general, every time the algorithm is invoked we fill the grid
with zeros the lecture gets its slot (place/time) based on its
probability. This means that the lecturer with the higher
probability, the higher priority it takes to proceed reserving his
slot. The probability value for each lecturer is assigned based
on the space available for him, and the less space available to
a lecturer increases its probability/priority, and vice versa.
Every time the map is constructed we reserve a slot
(place/time) for the lecture with the highest probability. The
Influence-Mapping algorithm is shown in Fig. 3.

Algorithm: Influence Map

--

1: let Courses[] := Array of all courses.

2: let ReservedCourses[] := an global array of reserved lectures.

3: let tempMaxProb := 0

4: let crsWithMaxProb := empty

5: Input: Courses

6: Output: Lecture with valid room, day and time.

7: for each course in Courses

8: if course is not in ReservedCourses

9: let nRooms := number of rooms available for the

group which the current course belongs to.

10: let nDays := number of days available for the professor who

gives the course.

11: let nTimeSlots := number of time slots per day available for

the professor(s) who give(s) the course.

12: let nRequiredSlots := number of required time slots for all

courses.

13: let probabiliy:= nRequiredSlots / (nRooms * nDays *

nTimeSlots).

14: if probability > tempMaxProb

15: let tempMaxProb:= probability

16: let crsWithMaxProb:= course

17: end for

18: let ReservedLecs[] ← crsWithMaxProb

19: Return crsWithMaxProb.

Fig. 3. The Influence Mapping Algorithm

We can illustrate the work of the Influence Map algorithm
as follows:

 Lines [1:4] the array “Courses” represents the array
that holds all courses in the problem, the global array

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

111 | P a g e
www.ijacsa.thesai.org

“ReservedCourses” which keeps track of the lectures
that has been already selected before, the
tempMaxProb and crsWithMaxProb are variables to
hold the temporary maximum probability and the
course with this maximum.

 Line [5] the input array of all courses.

 Line [6] the output course with highest probability.

 Lines [7:17] the loop iterates over all the courses and
checks if the course is not selected before then make
simple computation to calculate priority of this course
this priority equals the division of the required
resources (timeslot and room) by the available
resources (timeslot of the available professor and
available room)

 Lines [18:19] add the result course to list of the
reserved courses and returns.

 Note: The returned type is a productionType this is an
abstract type of all the elements in our implementation
of the context-free grammar parser.

Usually if we design an algorithm, the best way to present
its efficiency is to compute its time complexity. Time
complexity is commonly estimated by counting the number of
elementary operations performed by the algorithm, where an
elementary operation takes a fixed amount of time to perform.
Where each time the algorithm is invoked on the same set of
courses will iterate over the courses, subtracting the courses
that have been already parsed before, that is given by the
formula n*(n+1)/2; Thus, the time complexity of the
Stochastic Influence Mapping algorithm presented here is
O(n2).

C. The Proposed Approach and its Advantages

The solution proposed here to the timetabling problem is a
heuristic search method that might not always find the best
solution but it is guaranteed to find a good solution in
reasonable time. The Stochastic Context Free Grammar Parser
takes the structure of the timetable in a suitable format and
generates a formal representation of one lecture; each lecture
contains professor, course, group, time and room with the
constraints imposed by the user. The parser runs as many
times as the number of courses in the schedule producing a set
of lectures, and each production rules are rewritten based on a
specific probability produced by probabilistic Influence Map .

The algorithm should use influence map for lecturers to
prioritize the lectures to take the precedence in the assigning
slots operation. Sometimes the conflicts occur when all the
appropriate slots for a low-probability lecture are reserved for
high-probability lecture, to handle such cases; another
influence map for slots is constructed. After the parser invokes
the influence map for the lecturer to get the lecturer with the
highest probability in order to bind his lectures to appropriate
and available slots and here comes the role of the influence
map for the slots but on the contrary of the lecturer influence
map, the slot influence map returned the slot with low-
probability. In order to make things simpler we use influence

map only for lecturers and whenever the conflicts occur the
algorithm re-assign different slot.

One of the advantages of this approach lies in the using of
the Context-Free Grammar to construct the time table; using
this implies strongly-typed contents to the behavior of the
algorithm. Strongly-Typed behavior means specifying one or
more restrictions on how operations involving values of
different data types can be intermixed. Also, the algorithm
gives various, on the fly and feasible schedule each time the
algorithm runs. As each time the influence map picks a free
slot from the available slots for underlying lecture it does so
randomly; thus, every time it assigns different available slot to
the lecture.

D. Case Study

This case study illustrates the work of the new approach.

Suppose there is a schedule that is composed of four courses

as shown in Fig. 4.

SCHEDULE → SLOT

SLOT → { LECTURE, ROOM, TIMESLOT }

LECTURE → { GROUP,PROFESSOR,COURSE }

GROUP → Diploma

PROFESSOR → David | John

COURSE → Math | Physics | Calculus | C.Science

ROOM → R19

TIMESLOT → Sun (8:11)………..Thu(17:20)

Fig. 4. Example of a schedule composed of four courses.

We can apply the re-writing rules of the SCFG timetabling

as shown in Fig. 5, where the output is four lectures.

S1 {{ Diploma, Alan, Calculus}, {R19}, Wed (15:18)}

S2 {{ Diploma, John, Physics }, { R19}, Wed (15:18)}

S3 {{ Diploma, David, Eng. Fund. }, { R19}, Sat (8:11)}

S4 {{ Diploma, Alan, Math }, {R19}, Mon (11:14)}

Fig. 5. The output of the re-writing rules is four lectures.

To determine which lecture is chosen the Influence
mapping algorithm is applied. The Influence mapping
algorithm is giving the precedence to the lecture S2 to reserve
the slot R19-Wed (15:18), based on its superior probabilistic
value which is indicated by red circle as shown in Fig. 6.

Fig. 6. The Influence mapping algorithm is giving the precedence to the

lecture S2 based on its superior probabilistic value.

S2 8:11 11:14 15:18

Sun. 0.05555 0 0

Mon. 0 0.05555 0

Wed. 0 0 0.166
6

http://en.wikipedia.org/wiki/Data_type

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

112 | P a g e
www.ijacsa.thesai.org

IV. EXPERIMENTAL RESULTS

The performance results for the proposed system are
presented by designing and implementing a desktop
application program using Java programming language. We
called the program “Automated Timetabling Solver
(ATTSolver)” and the output is produced in PDF file format.

The implementation of the system is tested with the
following specifications:

 Operating system windows 7 ultimate with system type
32-bit

 Hardware specification processor 2 GHz and memory
1.5 GB.

 To evaluate the results and the performance of the
ATTSolver system, we compare it with the aSc
Timetables software system. aSc timetable generator
uses novel in-house developed algorithm. It is loosely
based on backtracking with plenty of heuristics and
special data structure optimized for maximum
performance [21].

 The experiment that is used in the comparison is a
timetable consists of one class group with 67 courses
and 63 professors and one or more time-constraints on
each professor. Fig. 7, 8, and 9 show some of the
snapshots screen of the graphical user interface of the
ATTSolver system.

Fig. 7. The form used in the data entry for the information about the courses.

Fig. 8. The form used in the data entry for the information about the
professors and their constraints.

Fig. 9. The dialogs which are responsible for setting constraint for both time
and courses assigned for specific professor.

The output of the ATTSolver system is exported in PDF
file format as shown in Fig. 10.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

113 | P a g e
www.ijacsa.thesai.org

Fig. 10. The output table of the ATTSolver system in pdf file format

The experiments are performed to compare the
performance of both aSc software system and ATTSolver
system for the number of tested schedules, until the fittest
solution in each run is satisfied, and the execution time
through five sequential runs. The ATTSolver gives best results
where the number of tested schedules of the ATTSolver is
fewer in compared to the number of tested schedules of the
aSc software as shown in Fig. 11. In addition, the execution
time of the ATTSolver system is much better than that of the
aSc in all cases of the sequential runs. The reason of these
results returns to the using of Stochastic Context-Free
Grammar rules to build schedule and make use of influence
maps to assign the fittest slot (place & time) for each lecture in
the timetable.

Fig. 11. The number of tested schedules of aSc and ATTSolver

Fig. 12. Execution time of aSc and ATTSolver systems

V. CONCLUSION AND FUTURE WORK

This paper presented a solution of the problem of finding
suitable class schedule by using strongly-typed heuristic
search technique. The system uses Stochastic Context-Free
Grammar rules to build schedule and make use of influence
maps to assign the fittest slot (place and time) for each lecture
in the timetable. The system is taking the soft constraints as
well as the hard constraint into the consideration based on its
priority making various, instant, and suitable timetable. The
results of comparing ATTSolver and aSc systems reveal that
the number of tested schedules in ATTSolver system is always
less than that in aSc system. Moreover, the execution time for
ATTSolver system is much better than that of aSc system in
all cases of the sequential runs. In future work we intend to
apply the ATTSolver system in the field of software
engineering as an approach of refactoring the code and apply
the fittest design pattern.

REFERENCES

[1] A. Schaerf, “A survey of automated timetabling,” Artificial Intelligence

Review, Kluwer Academic Publishers, vol. 13, pp. 87-127, 1999.

[2] D. Montana, “Strongly typed genetic programming,” ACM, vol.3, Issue
2, 1995.

[3] M. Carter and D. Johnson, “Extended clique initialization in examination
timetabling,” Journal of Operational Research Society, vol. 52, pp. 538-

544, 2001.

[4] L. Reis and E. Oliveira, “A language for specifying complete
timetabling problems, Selected Papers from the 3rd International

Conference on the Practice and Theory of Automated Timetabling, 2001.

[5] E. Burke, and S. Petrovic, “Recent research directions in automated
timetabling,” European Journal of Operational Research, vol. 140, pp.

266–280, 2002..

[6] O. Rossi-Doria, et al. , “A comparison of the performance of different
metaheuristics on the timetabling problem,” In Proc. 4th International

Conference on the Practice and Theory of Automated Timetabling IV,
PATAT02, 2002.

[7] A. Welsh, and B. Powell, “An upper bound for the chromatic number of

a graph and its application to timetabling problems,” The Computer
Journal, vol. 10, issue 1, pp. 85–86, 1967.

183
157

222

177

296

20
7 3 11 15

0

50

100

150

200

250

300

350

1st Run 2nd Run 3rd Run 4th Run 5th Run

aSc ATTSolver

1 1 1 1 1

0.22
0.173

0.282 0.298

0.547

0

0.2

0.4

0.6

0.8

1

1.2

1st Run 2nd Run 3rd Run 4th Run 5th Run

ti
m

e
 in

 s
ec

o
n

d
s

aSc ATTSolver

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 12, 2013

114 | P a g e
www.ijacsa.thesai.org

[8] S. Brailsford, C. Potts and B. Smith, “Constraint satisfaction problems:

algorithms and applications,” ELSEVIER; European Journal of
Operational Research,vol. 119, pp. 557-581, 1999.

[9] D. Gaspero, and S. Tabu, “Search techniques for examination
timetabling,” Selected Papers from the 3rd International Conference on

the Practice and Theory of Automated Timetabling, 2000.

[10] G. White, B Xie, and S. Zonjic, “Using tabu search with longer-term
memory and relaxation to create examination timetables,” ELSEVIER,

European Journal of Operational Research, vol. 153, Issuo 1 pp. 80-91,
Feb. 2004.

[11] D. Abramson, “Constructing school timetables using simulated

annealing: sequential and parallel algorithms,” Management Science,
vol. 37, No. 1, pp. 98-113, Jan. 1991.

[12] T. Duong and K. Lam, “Combining constraint programming and

simulated annealing on university exam timetabling,” In Proceedings of
the 2nd International Conference in Computer Sciences, Research,

Innovation & Vision for the Future (RIVF2004), Hanoi, Vietnam,
February 2-5, 2004.

[13] S. Abdullah, “Heuristic Approaches for university timetabling

problems,” PhD Thesis, School of Computer Science and Information
Technology, University of Nottingham, UK , July 2006.

[14] A. Colorni, M. Dorigo, and V. Maniezzo, “A genetic algorithm to solve

the timetable problem,” Technical Report. 90-060 revised, Politecnico di
Milano, Italy, 1992.

[15] Burke and H. Rudova, “Practice and theory of automated timetabling,”
Selected Papers from the 6th International Conference. Lecture Notes

in Computer Science, vol. 3867, 2007.

[16] B. Bilgin, E. Ozcan and E. Korkmaz, “An experimental study on hyper-
heuristics and exam timetabling,” Proceedings of the 6th International

Conference on Practice and Theory of Automated Timetabling, 2006.

[17] M. Malim, A Khader, A Mustafa, “Artificial immune algorithms for
university timetabling,” Proceedings of the 6th International Conference

on the Practice & Theory of Automated Timetabling, September, 2006.

[18] S. Sutar and R. Bichkar, “University timetabling based on hard
constraints using genetic algorithm,” International Journal of Computer

Applications, Vol 42, No.15, March 2012.

[19] C. Antunes and A. Oliveira, “Using context-free grammars to constrain
apriori-based algorithms for mining temporal association rules,”

Workshop Proceedings on Temporal Data Mining, 2002.

[20] P. Tozour, “Influence mapping game programming Gemes 2,” Chalres
River Media, 2001.

[21] http://help.asctimetables.com/index.php

