
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

9 | P a g e
www.ijacsa.thesai.org

Toward the Integration of Traditional and Agile

Approaches

Hung-Fu Chang

Computer Science

University of Southern California

Los Angeles, United States

Stephen C-Y. Lu

Viterbi School of Engineering

University of Southern California

Los Angeles, United States

Abstract—The agile approach uses continuous delivery,

instead of distinct procedure, to work closer with customers and

to respond faster requirement changes. All of these are against

the traditional plan driven approach. Due to agile method’s

characteristics and its success in the real world practices, a

number of discussions regarding the differences between agile

and traditional approaches emerged recently and many studies

intended to integrate both methods to synthesize the benefits

from these two sides. However, this type of research often

concludes from observations of a development activity or surveys

after a project. To provide a more objective supportive evidence

of comparing these two approaches, our research analyzes the

source codes, logs, and notes. We argue that the agile and

traditional approaches share common characteristics, which can

be considered as the glue for integrating both methods. In our

study, we collect all the submissions from the version control

repository, and meeting notes and discussions. By applying our

suggested analysis method, we illustrate the shared properties

between agile and traditional approaches; thus, different

development phases, like implementation and test, can still be

identified in agile development history. This result not only

provides a positive result for our hypothesis but also offers a
suggestion for a better integration.

Keywords—Source Code Analysis; Software Data Mining;

Agile Development

I. INTRODUCTION

Developing a modern software system becomes very
challenging due to the increasing customer demands on more
functions and higher quality. Especially, when software
engineers face this challenge under very dynamic market, how
to change their software or service in order to satisfy the need
of faster delivery, better quality and lower cost rises many
discussions [1, 2].

Recently, many suggestions for improving software
development methods have come from real world practitioners.
The main trend is the agile method. Unlike traditional
development method, which requires a disciplined and distinct
procedure, the agile development places the highest priority on
satisfying the customer needs through continuous delivery [3,
4]. It emphasizes on rapidly iterations with the focus on
working software so it can embrace closely customer
collaboration by using faster responses to changing needs.

 In addition, the theory behind the traditional methods
is that all the requirements can be defined at the beginning of
the system building process and a sequence of well-articulated

tasks like systems planning, analysis, architecture, design,
development, and testing can be explicitly defined [5].
Therefore, the development process is systematic, and the
boundary of each task can be clearly identified. On the other
hand, the agile method is more chaotic. It contains the
evolutionary delivery through short iterative cycles that
blending planning, action, and testing activities within intense
human collaboration.

Software industry found that agile process fits small and
stand-alone projects better. Developers and managers have
difficulties to scale up and to integrate agile practices into the
organization that already has well-defined traditional process.
Therefore, industry seeks a solution of integrating agile and
traditional methods so their benefits can be synthesized
[18].Past studies have discussed the agile method in the area of
focusing on the integration of both traditional and agile
developments or comparison of these two different methods
[6]. Those suggested integration methods and the comparison
studies are mostly inferred from the description of development
activities or the review of the process. But, there are not any
comparison research or any integration method, which has
previously been published in the aspect of source code and
design artifact’s data analysis. Therefore, one shortcoming of
these studies is lacking of supportive evidences from scientific
data analysis. To remedy this, we would like to investigate how
the agile method is executed in practices and what their results
or effects look like. We argued that agile and traditional
developments should still share many similar characteristics
although the whole agile development could be chaotic due to
putting various tasks together in a single iteration. Once we
identify different phases, such as requirement defining,
implementation, and testing in the whole agile development
history, how to integrate traditional and agile methods or how
to compare them can be further developed.

In this paper, we investigate the history of a software
project, which is developed by the agile approach. By cross-
referencing the source code and analysis of development log
and meeting notes, we identify several characteristics of the
agile development. We find that agile project development is
not so chaotic. It still demonstrates systematic aspects, like the
traditional software development.

The rest of this paper will be organized as follows. Section
2 will explore the related research. Section 3 will discuss the
detailed differences between agile and traditional software
developments. Section 4 will explain the analysis method.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

10 | P a g e
www.ijacsa.thesai.org

Section 5 will show the analysis results and then discuss them.
Finally, we will conclude our research and explain our future
research.

II. RELATED WORK

Many past studies reveal the differences or contradictions
between traditional and agile developments, tried to integrate
both methods by applying the agile method to traditional
approach. Parsons and Lai [7] discussed the hybrid approaches
in the software quality perspective and argued the differences
based on the statistics. Manhart and Schneider [8] showed the
integration of agile and traditional methods an industrial case
study. They claimed that both approaches shared the common
developing goal but had different kinds of emphases. Armitage
[9] described another hybrid approach that overlays the agile
process with higher level design approaches in order to assist
refactoring. Turner and Jain [10] researched the culture clash
between the agile and Capability Maturity Model Integration
(CMMI) processes. Lycett et al [11] suggested a situated
process framework, in which, patterns are developed through a
situated examination of contextual characteristics (e.g., project,
product, or team)and expressed as Rational Unified Process
(RUP) development cases. Alegria and Bastarrica [12]
discussed the way to reach CMMI level 2’s certification by
implementing agile methods like Scrum and Extreme
Programming (XP).

Several previous reviews were also published to introduce
characteristics of the agile method by comparing both agile and
traditional approaches. Cohen et al.’s [13] explored the history
of agile development, and particularly discusses relations
between agile development and the Capability Maturity Model
(CMM). Wang et al. introduced the contradictions in the agile
development and used a paradoxical perspective to deal with
them. Nerur et al. explored the differences and pointed out the
challenges of changing to the agile method.

Most past research proposed their integrated approach by
inserting the agile method into traditional development because
their assumption is that the developer can treat traditional
approach as an outline and then add the agile activities inside
each major phase. However, the validation of this type of study
lacks of the perspective of the data analysis about the delivered
artifacts. With the implementation data analysis supports, the
differences between agile and traditional development can
become clearer and both methods’ benefits can be synthesized
seamlessly.

III. AGILE AND TRADITIONAL SOFTWARE DEVELOPMENT

A. Agile vs Traditional software Development

One major reason to cause the failure of a software project
is that the built software system cannot be delivered on time.
Even if the software can be delivered on time, it may not
satisfy all the customer’s expectations. As a result, agile
software development is created to solve these problems.
However, agile methods also face some critics, for example,
insufficient architecture planning, over-emphasis on early
results, and low levels of test coverage. These shortages can
also be explicitly observed and understood while two
development process models are compared.

In the traditional software development, each step in the
process is clear. One must start only after the previous step is
completed. On the other hand, software engineers who use the
agile development do not wait for prior procedure to complete
(see Fig. 1). Each iteration, engineers review their results, and
then modify and test the product in the next iteration.

B. Observation of Source Code Changes

The implementation in traditional software process usually
starts after a thought-through design. The amount of source
codes usually increases largely during the early phase of
development because most function has been implemented.
After the main structure of the system becomes steady, the
lines of source codes gradually increase or decrease. Thus, the
source codes in the traditional method do not have dramatic
dynamic changes (i.e., rapidly increase or decrease in a large
amount) at anytime in the whole development.

Fig. 1. Agile Software Development Process

However, the agile method shows very differently. The key
characteristic of the agile method is rapid iteration. After every
time’s iteration, the release tries to meet customer’s
requirements. If not, changes should immediately happen in the
next iteration. The amount of source code change depends on
customer’s review result. Due to no solid development
planning, it is very possible to have changes about major
structure adjustment. In addition, requirements during the
whole development could change very often. As a result, the
source codes change largely. However, we argue that the agile
development can also demonstrate certain similar
characteristics as traditional development. In our analysis, we
would like to investigate this observation.

IV. ANALYSIS

A. Scope of Application

Our method targets the analysis of agile development
project. The agile development team’s software release and
team meeting is weekly. Although primary software releases

Initial Customer Needs and

Requirements

Iteration

1

Iteration

2

Iteration

N

Review

Review

Review

Iterations

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

11 | P a g e
www.ijacsa.thesai.org

and weekly meetings are stored, between two weekly releases,
there may still many development versions committed in the
repository as well as many discussions, and documents are
saved. Therefore, our analysis method will be applied to these
data.

B. Data Analysis Method

There are three major stages in our analysis. We firstly
collect data from the agile development project. In second
stage, we eliminate insignificant versions from our collected
dataset in order to reduce the efforts of the analysis. Lastly, we
identify those phases, such as requirement, software
architecture, implementation, or testing, as we define in the
traditional development. Finding these phases is the key step in
our justification of our source analysis hypothesis.

1) Data collection and engineering
Three types of data are collected from the project: meeting

notes, source codes, and version logs. Two programs are
written for collecting those data. The first program extracts all
the source codes and version logs from Subversion (SVN)
version control repository. Since the weekly meeting notes are
written in the MS Power Point or Word formats and
discussions are posted the internal wiki website. These textual
data are first extracted by the other program and then are
reorganized in to a time series structure. Using this time series
structure can help us to specify various phases according to the
project’s development timeline.

2) Identify key versions and development task
Because many versions are only saved for records, their

modifications are small and cannot reflect structure altering,
important designer’s decisions, or requirement changes. To
avoid analyzing these trivial versions, one of our jobs is to
identify the key versions in the development history. We use
two ways to identify key versions - source code and text
analyses.

a) Source code analysis
One characteristic of key versions in the source code

analysis is that the amount of code change is substantial.
Therefore, by comparing the number of source line of code
(SLOC) in two sequential versions, those key versions can be
identified. More importantly, in a source analysis diagram (e.g.,
SLOC VS version), the key version points can match the shape
of the curve and capture the turning points.

To determine the key versions, we develop three methods
to extract those versions that match significant changes. The
first method calculates the slop change (SC) against three
consecutive versions (see Fig. 2).

 SC = (Vn+1 - Vn) / (Vn - Vn-1) (1)

Vn is the measured value (e.g., SLOC in the SLOC VS
version diagram) at version n, Vn+1 represents is the measured
value at version n+1, and Vn-1 represents is the measured value
at version n-1.

This SC represents the angle between two tangents from
two sequential versions. Once the SC exceeds the threshold, the
key versions can be extracted.

Number of SLOC

or

Number of Classes

Vn-1

Version

Vn

Vn+1

SC

Fig. 2. The Calculation of the Slope Change

The second method extracts key versions based on the
calculation of the relative difference RC between two
sequential versions (see Fig. 3).We can also setup a threshold
to determine if a version is the key version. The equation below
is to calculate the relative changes RC.

 RC = (Vn - Vn-1) / Vn-1 (

Vn is the measured value at version n (e.g., SLOC in the
SLOC VS version diagram), and Vn-1 represents is the
measured value at version n-1.

Number of SLOC

or

Number of Classes
Vn-1

Version

Vn

RC

Vn – Vn-1

Vn-1

Fig. 3. The Calculation of the Relative Change

The third method is very similar to the second one. Instead
of calculating the relative change, we compute the direct
difference based on a normalized curve. The normalized values
are calculated based on the measured value divided by the
maximum value; for example, each number of SLOC divided
by maximum number of SLOC. After we get the normalized
values, we can direct calculate the difference using the formula
below.

 DC = (Vn - Vn-1) (3)

DC is direct change, Vn is the normalized value at version n,
and Vn-1 represents the normalized value at version n-1.

To avoid missing any significant modifications or possible
key version, the union of all the above three method’s results is
the entire key version set.

b) Text analysis
We applied text analysis in the developer’s meeting notes

and version logs. Since text analysis could be very time
consuming, rather than analyzing every version’s log, only key
version’s log is used.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

12 | P a g e
www.ijacsa.thesai.org

This method firstly detects the keywords according to its
frequency, developer’s descriptive guideline, or common
terminologies. For example, in the log “fixed the bug no 23”,
“bug” and “fix” can be two keywords which represent
correcting the program to satisfy the functional requirement.
Then, we manually identify the description about requirements
or development planning from meeting notes. After we analyze
the meeting notes and version logs, we can decide which type
of development task, such as debugging, building new function,
or testing, is the major activity between two versions.

3) Identify different phases
To identify different phases, we need to do cross-

referencing between the result of source code and text analysis.
The source code analysis tells us that which versions are
representative in the whole version history. The text analysis
shows the type of development activity between two versions.
With combining these two kinds of outcomes, we can further
understand the major development activity within a period of
time. In addition, the meeting note analysis result can also be
used to verify if the phase that we identify is valid or not.

V. RESULTS AND DISCUSSIONS

A. Case Study Project Background

The agile project that we investigate is called Visualization
of Attack Surfaces for Targeting (VAST). This is a tool that is
developed based on the Eclipse plug-in framework. The VAST
tool provides multi-column code viewer with bread crumb trail
so that it helps code auditors to retrace their thought processes
and shows source code overview in context of the software
vulnerability. The tool is developed by a five developer’s
product team in the Information Sciences Institute. The entire
developing time is 18 months, and 841 versions are committed.

The team follows many methods that the agile practices
proposed during entire development. First, their customer
worked closely with the team, like one of the team members.
The customer immediately clarifies their needs and identifies
the priority. The team does not hold any meetings to layout the
whole system structure; instead, customers reveal the expected
user interfaces. Second, the tool is released weekly, an
acceptance test is applied, and the customer discusses the
expectation in the next release. Third, the team has daily meet
like scrum to know each member’s obstacles and status. Lastly,
the team keeps refactoring the code. In addition, team members
also use an internal wiki site to maintain all the documents,
discussions, learning, and meeting notes. Since there is a
software release every week, in the initial stage of the project,
the VAST team does not spend much time to work on the
software architecture; instead, they quickly divide the task and
start to build the software. The team expects the software will
finally change while they have better understanding on design
and customer’s needs after several iterations.

B. Key Version Extraction

We apply equation (1), (2), and (3) to all the version history
in order to identify those key versions. In equation (1), (2), and
(3), we use 0.2, 0.2, and 0.15 as thresholds, respectively. The
entire key version is the union set of the results of all these
three equations. In Fig. 3 and 4, we pick those key version
points on the both original SLOC and Number of Classes

curves, respectively Then, we connect all the points to form a
curve that matches the original graph. The matching curves in
both Fig. 4 and 5 obviously still reserve the characteristics of
the original curves. This shows that the matching curves should
be able to have enough significance to represent the original
curves. Therefore, we have confidence to use these key
versions to do our next step analysis.

Fig. 4. Version VS SLOC and Its Matching Curve

Fig. 5. Version VS Number of Classes and Its Matching Curve

Fig. 6 shows the normalized matching curves of Number of
Classes and Number of SLOC. All the versions in Fig. 6 are
potentially the points that separate two different phases.
Therefore, by investigating the meeting notes, documents, and
discussions, we can validate separation points and detect
different type of development stage. In our text analysis, except
the logs of task assignment (e.g., developer X should work on
task 1), three kinds of descriptions can be identified. They are
functional, modification and testing or debugging descriptions.
The log also tells the re-factored versions that are those sharp
change points in matching curve. As well, in the meeting notes,
we can find when customers stop to request modification of the
system due to the stabilized needs. By knowing this time points
and various types of descriptions in the logs, through a cross-

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800

N
u

m
b

e
r

o
f

SL
O

C

Version

SLOC Matching Curve

0

20

40

60

80

100

120

140

0 200 400 600 800

N
u

m
b

e
r

o
f

C
la

ss
e

s

Version

Class Matching Curve

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

13 | P a g e
www.ijacsa.thesai.org

reference between discussion, logs, and meeting notes, we can
be divided the whole development history into four phases: (1)
customer needs to requirements (from version 1 to 173) (2)
developer’s learning and research (from version 174 to 264) (3)
implementation and testing (from version 264 to 625) (4)
debugging (from version 626 to the end of development -
version 841).

Fig. 6. Normalized Matching Curves of Version VS Number of Classes and
Version VS SLOC

Moreover, Fig. 6 also implies that the functional change
should be less or adding function is completed when the
development reaches a point where the whole system and
requirements are more stable (i.e., the end of the second phase).
After this point, the development activities turn to be focusing
on testing and debugging.

VI. CONCLUSION AND FUTURE RESEARCH

The agile approach recently becomes a main trend in both
industry and academia. Due to this, many studies try to
understand the differences between this new and old
development approaches to gain a balance between them, and
then the benefits of these two methods can be synthesized.
While there is no concrete data analysis of the implementation
to support the integration of both methods from past research,
our research particularly uses source code and design artifact
analysis to complement the type of study.

In our source analysis method, we capture the
characteristics of the SLOC VS version curve and then using
this normalized skeleton curve to specify each development
phase as traditional plan driven approach. From our case study
result, we find that agile and traditional approaches share
common features. The agile development has distinguished
each phase like traditional process. This provides a data
analysis evidence of the integration. We discover that the agile
activities can be treated as the sub-activities in primary

development phase. Our research may lack of the suggestion
from management’s point of view but we do provide another
perspective to the agile approach.

Since our paper only contains one project data analysis, in
the future, we should collect multiple projects’ data in order to
strengthen our conclusion. In addition, we may also apply our
source code analysis to enhance the software process
improvement so that the integration can be more precise and
seamless. Particularly, we would like to further research about
offering good advices for managing a software project that
could adopt the agile method.

REFERENCES

[1] J. Highsmith, and A. Cockburn, Agile Software Development: the
Business of Innovation, 2001.

[2] B. Boehm, “Get ready for agile methods, with care,” IEEE Computer

1(35), 64–69, 2002.

[3] T. Dybå and T. Dingsoyr, “Empirical Studies of Agile Software

Development: A Systematic Review,” Information and Software
Technology, Vol. 50, No. 9, August 2008, pp. 833-859.

[4] L Lindstrom and R. Jeffriess, “Extreme Programming and Agile

Software Development Methodologies,” Information Systems
Management, pp. 41-52, 2004.

[5] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of Migrating to

Agile Methodologies,” Communications of the ACM, Vol. 48, No. 5,
pp. 72-78, May 2005.

[6] X. Wang, E. Ó Conchir, and R. T. Vidgen, “A Paradoxical Perspective

on Contradictions in Agile Software Development,” ECIS, pp. 470-481,
2008.

[7] D. Parsons and R. Lal, “Hybrid Agile Development and Software

Quality,” International Software Quality Management, 2006.

[8] P. Manhart and K. Schneider, "Breaking the Ice for Agile Development
of Embedded Software: An Industry Experience Report," icse, pp.378-

386, 26th International Conference on Software Engineering (ICSE'04),
2004.

[9] J. Armitage, “Are agile methods good for design?” Interactions 11(1):
14-23, 2004.

[10] R. Turner and A. Jain, “Agile Meets CMMI: Culture Clash or Common

Cause?” XP/Agile Universe, pp.153-165, 2002.

[11] M. Lycett, R. D. Macredie, C. Patel and R. J. Paul, “Migrating Agile
Methods to Standardized Development Practice,” Computer 36: 79–85,

2003.

[12] J. A. H. Alegria, M. C. Bastarrica, “Implementing CMMI using a
Combination of Agile Methods,” CLEI Electron. J. 9(1), 2006.

[13] D. Cohen, M. Lindvall, P. Costa, An introduction to agile methods,

Advances in Computers, Advances in Software Engineering, Elsevier,
Amsterdam, 2004.

[14] B. Shilpa1 and I. Maya, “Generalized Framework for Agile Software

Development Process,” International Journal of Recent Trends in
Engineering, Vol 2, No. 4, November 2009.

[15] S. Augustine, B. Payne, F. Sencindiver, and S. Woodcock, “Agile
Project Management: Steering from the Edges,” Communications,

ACM, Vol. 48 Issue 12, pp. 85-89, December, 2005.

[16] M. Pikkarainen and A. Mantyniemi, “An Approach for Using CMMI in
Agile Software Development Assessments: Experiences from Three

Case Studies,” SPICE, May, 2006.

[17] L. Cao, K. Mohan, P. Xu, and B. Ramesh, “A framework for Adapting
Agile Development Methodologies,” European Journal of Information

Systems 18, pp. 332–343, 2009.

[18] Boehm B. and Turner R., “Management challenges to implement agile
processes in traditional development organizations”. IEEE Softw

22(5):30–38, 2005.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

Version

Number of Classes Match Curve

SLOC Match Curve

(1) (2) (3) (4)

