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Abstract—This paper describes a numerical solution for plane 

elasticity problem. It includes algorithms for discretization by 

mixed finite element methods. The discrete scheme allows the 

utilization of Brezzi - Douglas - Marini element (BDM1) for the 

stress tensor and piecewise constant elements for the 

displacement. The numerical results are compared with some 

previously published works or with others coming from 
commercial code like ABAQUS. 
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I. INTRODUCTION 

Mixed finite element methods for linear elasticity are 
based on approximations of a stress- displacement system 
derived from the Hellinger-Reissner variational principle 
[7], in which both displacements and stresses were 
approximated simultaneously. 

The mathematical analysis and applications of mixed 
finite element methods have been widely developed since 
the seventies. A general analysis for this kind of methods 
was first developed by Brezzi [8]. We also have to mention 
the papers by Babuska [14] and by Crouzeix and Raviart 
[15] which, although for particular problems, introduced 
some of the fundamental ideas for the analysis of mixed 
methods. 

We also refer the reader to [16][17], where general 
results were obtained, and to the books [6][18][19]. 

Many mixed finite element methods have been 
developed for plane elasticity, and generally speaking, 
they can be grouped into two categories: methods that 
enforce the symmetry of the stress weakly, and methods that 
enforce the symmetry exactly (strongly). In the former 
category, the stress tensor is not necessarily symmetric, but 
rather orthogonal to anti-symmetric tensors up to certain 
moments. Weakly imposed stress symmetry methods also 
introduce a new variable into the formulation that 
approximates the anti-symmetric part of the gradient of 
u; see for example [2][3].On other hand, exactly symmetric 
stress methods have been much more difficult to construct. 
The first class of  

inf_sup stable methods was the so called composite 
elements [4][5]. 

Section II  presents the model problem used in this 
paper. The discretization by mixed finite elements 
described is in section III. Numerical experiments carried 
out within the framework of this publication and their 
comparisons with other results are shown in section IV. 

II. GOVERNING EQUATIONS 

The equilibrium equations and boundary conditions are  

                 (1)  

               (2)  

               (3)  

               (4)  

Where n is the unit outward normal. In the above, σ is 
the Cauchy stress, and f is the body force per unit volume. 

The constitutive relation is given by Hooke’s law: 

       (5)    
Where C is the Hooke tensor, C is assumed here to 

have constant coefficients. Its inverse (compliance tensor) 
will be denoted by E. Hence 

                  (6)    
We consider small strains and displacements. The 

kinematics equations therefore consist of the strain-
displacement relation 

            (7)     

Where      
 

 
         is the symmetric part of the 

gradient operator, and the boundary condition 

              (8)      



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

162 | P a g e  
www.ijacsa.thesai.org 

 

 
Fig. 1. Body With Internal Boundary Subjected To Loads.  

We set 

                     
 
; 

 
                                . 

 

(9)  

                                      
 
  (10)  

    
        

                                       
(11)  

Then the standard weak formulation of the equilibrium 
equations is the following: 

Find                and         
     such that: 

              
 

            
 

            
  

  

               

(12)   

          
 

         
 

               
      (13)   

    One can see that (12)-(13) practically coincide with the 

variational formulation of the Hellinger-Reissner principle. 

The use of this principle in the framework of finite elements 

can be traced Back to the pioneering work of Herrmann [9] 

and Hellan [10]. The interest in using the stress field σ as an 
independent variable is questionable in as simple a case as the 

present one, but it is clear in more general and more 

complicated problems involving nonlinearities, plasticity, and 

so on. 
Let the bilinear forms a and b, and the linear forms l 

and s such that: 

                      
 

 (14)   

                   
 

 (15)  

               
 

 (16)  

                
  

                        (17)   

The underlying weak formulation (12)-(13) may be 
restated as: 

Find         and         
     such that: 

                                               (18)   

                              
      (19)   

THEOREM 1. Let E and Ψ be real Hilbert spaces, 
         a bilinear form on E × E, and       a bilinear 
form an E × Ψ. Set 

                                  (20)   

And assume that: 

                                  
          (21)  

                  
   

       
      

    
         

     

(22)  

 
Then for every l1   E′ and l2   Ψ′ there exist a unique 

solution         of the problem 

                                            (23)   

                                 (24)  

REMARK 1. If problem (21)-(22) has a unique solution 
for every        and          then (20) holds and the 
bilinear form a(ξ1, ξ2) restricted to K, is nonsingular (in the 
sense that it induces an isomorphism from K onto K’). 
Clearly if one assumes that a (ξ1, ξ2) is symmetric and 
positive semi definite, then (21) and (22) are necessary and 
sufficient for the existence and uniqueness of the solution 
of (23)-(24). 

REMARK 2. It is clear that if a (ξ1, ξ2) is symmetric; 

the solution         of (23)-(24) minimizes the functional 

 

        
 

 
                  (25)   

On the subspace of E, 

                                            (26)   

And the formulation (23)-(24) corresponds to the 

introduction in (25)-(26) of the Lagrange multiplier     . 

III. MIXED FINITE ELEMENT APPROXIMATION 

Let        , be a family of rectangulations of Ω. 
The edges of elements will be denoted   (i=1, 2, 3 or 

i=1, 2, 3, 4) in the two-dimensional case. Let us deal first 
with the abstract framework (23)-(24). Assume that we are 
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given two sequences          and          of subspaces E 
and Ψ, respectively.  

We set  

                                         . (27)   

We have the following approximation theorem 

THEOREM 2. Assume that 

                                   
          (28)   

                  
   

        
      

    
          

       

(29)  

Then for every l1   E′ and l2   Ψ′, and for every h > 0, 
the discrete problem 

                                              (30)   

                                   (31)  

Has a unique solution. Moreover, there exists a 
constant               such that 

                            
    

     
          

   
   

     
              

(32)   

The dependence of    on    and     can be easy traced 

[8]. Clearly if (21) and (22) hold with constants    and    
independent of h, then (32) holds with a constant    
independent of h. 

We define in general, for m integer ≥ 0, 

                               (33)   

Where 

     
     

   
        

                      (34)   

These derivatives being taken in the sense of 
distributions. On this space, we shall use the semi-norm  

      
              

 

     

 (35)   

 
and the norm 

    
         

 

   

  (36)   

We are now ready for the error estimates. 
THEOREM 3. If (σ, u) is the solution of (12)-(13) and 

(σh, uh) is the solution of (30)-(31), there exist a constant C 
> 0 such that: 

                                          (37)    

 

Discretization of the mixed formulations, for linear 
elliptic operators, many examples of successful 
discretization of (12)-(13) are known. The first ones were 
introduced by Raviart and Thomas in [11] and then re-
elaborated and extended to more general cases by Nedelec 
[12]. Other families of possible discretization were 
introduced years later by Brezzi, Douglas, and Marini 
[1][13]. 

To give a more precise definition of our mixed finite 
element approximation we shall need a few definitions. Let 
us define on an element K. 

Pk: the space of polynomials of degree ≤ k.  

We shall also need polynomial spaces on the edges of 
the elements 

                                       

          . (38)  

In the two-dimensional, for the triangular elements we 
have 

 

                 
          (39)  

                       
 
          

                     (40)  

                
                     (41)  

Restricting             to have a normal trace in 
         yields a space larger than       , but having 
essentially the same properties, that we denote 
            

The dimension of      is thus 

dim     = 
                                           

 

 
                                   

  

(42)  
For the triangular case we thus have the following 

inclusions between the spaces just defined 

                                        
      

(43)  
We consider the space obtained basically from the 

space of Brezzi-Douglas-Marini. 

                  
    (44)  

We have  

                      (45)  

dim      = 6 (46)  
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Fig. 2. .  Brezzi - Douglas - Marini element, the element diagrams for the 

stress and displacement elements. 

The discrete scheme allows the utilization of BDM1 for 
the stress tensor and piecewise constant elements for the 
displacement. 

We define, for choice of BDM1 (K),  a space 

                                   

         
(47)   

 

               
                            (48)   

We chose finite dimensional subspace   
         

  (div, Ω). 

A mixed finite element approximation of (12)-(13) is defined 

by 
Find        and         such that 

              
 

            
 

            
  

  

        
         

(49)   

            
          

             . (50)  

We obtain a system of linear equations 

    

  
  

 
 
    

 
   (51)  

Where                    

The matrix associated for the system (51) is symmetric 
indefinite. We use the iterative methods Minimum 
Residual Method (MINRES) for solving the symmetric 
system. 

IV. NUMERICAL SIMULATIONS 

Example 1. Circular Void in a Finite Plate 

Here a void of radius 0.3 is placed in the center of a 
plate of size 3 × 3 which is subjected to a unit stress in the 
y-direction.  

The stress plot for σyy s is in excellent agreement with 
the expected 3σ stress concentration at the edges of the 
hole. 

 
 

Fig. 3. Stress Solution Σxx By Mixed Finite Element Method (Left) And 

Stress Solution (Right) Computed By ABAQUS. 

 

Fig. 4. Stress Σxy By Mixed Finite Element Method (Left) And Stress 

Solution (Right) Computed By ABAQUS. 

 
 

Fig. 5. Stress Σyy By Mixed Finite Element Method (Left) And Stress 

Solution (Right) Computed By ABAQUS. 

 

 
Fig. 6. Curve Of The Displacement Ux And Uy Along Hole In A Finite 

Plate 
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Example 2. Circular Inclusion in a Finite Plate 

Here an inclusion with E = 70gpa and         and 
radius 0.5 is placed in the center of a plate of size 6 x 10 
with E = 50gpa and        which is subjected to a unit 
tension in the y-direction. 

 
Fig. 7. Stress Σxx By Mixed Finite Element Method (Left) And Stress 

Solution (Right) Computed By ABAQUS. 

 
 

Fig. 8. Stress Σxy By Mixed Finite Element Method (Left) And Stress 

Solution (Right) Computed By ABAQUS. 

 
 

Fig. 9. Stress Σyy By Mixed Finite Element Method (Left) And Stress 

Solution (Right) Computed By ABAQUS. 

 
Fig. 10. Curve Of Displacement Ux And Curve Of Displacement Uy Along 

Inclusion In A Finite Plate. 

V. CONCLUSION 

We were interested in this work in the numeric solution 
for equilibrium equations. It includes algorithms for 
discretization by mixed finite element methods. The 
discrete scheme allows the utilization of BDM1 for the 

stress tensor and piecewise constant elements for the 
displacement. Our results agree with ABAQUS. 

Numerical results are presented to see the performance 
of the method, and seem to be interesting by comparing 
them with other recent results. 
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