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Abstract— Resource allocation in heterogeneous parallel and 

distributed computing systems is the process of allocating user 

tasks to processing elements for execution such that some 

performance objective is optimized. In this paper, a new resource 

allocation algorithm for the computing grid environment is 

proposed.  It takes into account the heterogeneity of the 

computational resources. It resolves the single point of failure 

problem which many of the current algorithms suffer from.  In 

this algorithm, any site manager receives two kinds of tasks 

namely, remote tasks arriving from its associated local grid 

manager, and local tasks submitted directly to the site manager 

by local users in its domain. It allocates the grid workload based 

on the resources occupation ratio and the communication cost. 

The grid overall mean task response time is considered as the 

main performance metric that need to be minimized. The 

simulation results show that the proposed resource allocation 

algorithm improves the grid overall mean task response time. 
(Abstract) 
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I. INTRODUCTION 

As a result of advances in wide-area network technologies 
and the low-cost of computing resources, currently, a wide 
variety of parallel and distributed computing systems are 
available to the user community. These varieties range from 
the traditional multiprocessor vector systems to clusters or 
networks of workstations and even the geographically 
dispersed meta-systems connected by high-speed Internet 
connections (Computing Grid). Computing Grid is hardware and 
software infrastructure that provides dependable, consistent, 
pervasive, and inexpensive access to high-end computational 
capabilities. It enables coordinated resource sharing within 
dynamic organizations consisting of individuals, institutions, 
and resources, for solving computationally intensive 
applications. Such applications include, but not limited to 
meteorological simulations, data intensive applications, 
research of DNA sequences, and nanomaterials. It supports the 
sharing and coordinated use of resources, independently of 
their physical type and location, in dynamic virtual 
organizations that share the same goal.  Thus computing grid 
is designed so that users won't have to worry about where 
computations are being performed [1-4]. 

Basically, grid resources are geographically distributed 
computers or clusters (sites), which are logically aggregated to 

serve as a unified computing resource. The primary motivation 
of grid computing system is to provide users and applications 
with pervasive and seamless access to vast high performance 
computing resources by creating an illusion of a single system 
image [1, 3, 5-7]. Grid Computing is becoming a generic 
platform for high performance and distributed computing due 
to the variety of services it offers such as computation 
services, application services, data services, information 
services, and knowledge services. These services are provided 
by the servers or processing elements in the grid computing 
system. The servers and the processing elements are typically 
heterogeneous in the sense that they have different processor 
speeds, memory capacities, and I/O bandwidths [5,8]. 

The recent development of grid computing technologies 
has provided us a means of using and sharing heterogeneous 
resources over local/wide area networks, and geographically 
dispersed locations. However, the Grid dynamic framework 
nature where resources are subjected to changes due to system 
performance degradation, node failure, allocation of new 
nodes in the infrastructure, etc.  Hence, a grid resource 
management system (RMS) should be capable of adapting to 
these changes and take appropriate decisions to improve 
performance of users computing applications. A resource 
consumer is defined as an agent that controls the consumer. A 
RMS is defined as a service that is provided by a distributed 
computing system that manages a pool of named resources 
that is available for computing such that a system- or job-
centric performance metric is optimized. 

At the same time, the decisions for resource sharing should 
be made while maintaining the autonomy of their 
environments and geographical locations. Thus, the RMS 
should provide a highly scalable and configurable approach 
for sharing and securely accessing the resources [9]. 

To increase the system throughput, it is desired to allocate 
the tasks of a distributed (parallel) application program to the 
PEs to some objectives, ranging from the minimization of task 
execution time and communication cost [10–13], to the 
maximization of system reliability and safety [14-16]. 
Moreover, the system components (PEs and communication 
links) may be capacitated with limited amount of resources 
which constrains the demand of the allocated modules. 

Resource allocation in heterogeneous parallel and 
distributed computing systems is the process of assigning 
(scheduling) tasks to processing elements (computers or 
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processors) for execution such that some performance 
objective is optimized. For example, a common objective in 
resource allocation is to minimize the total response time 
required to complete a set of tasks [11, 12, 16, 17]. 

Basically, a Grid scheduler (GS) receives applications 
from Grid users, selects feasible resources for these 
applications according to acquired information from the Grid 
Information Service Module (GISM), and finally generates 
application-to-resource mappings, based on certain objective 
functions and predicted resource performance [18]. Unlike 
what happens in traditional parallel and distributed systems, 
GS usually cannot control Grid resources directly, but work 
like brokers. They are not necessarily located in the same 
domain with the resources which are visible to them.  

In this paper, we propose a new resource allocation 
algorithm that would allow users to carry out their tasks by 
transparently accessing autonomous, distributed, and 
heterogeneous resources and improves the Grid computing 
performance in terms of mean task response time. The 
proposed algorithm takes into account the heterogeneity of the 
grid computational resources. It distributes the workload based 
on the resources occupation ratio and the communication cost. 
As in [19], we focus on the steady-state mode, where the 
number of tasks submitted to the grid is sufficiently large and 
the arrival rate of tasks does not exceed the grid overall 
processing capacity. The class of problems addressed by the 
proposed policy is the computation-intensive and totally 
independent tasks with no communication between them. A 
simulation model is built to evaluate the performance of the 
proposed policy. Through simulation, the performance of the 
proposed resource allocation algorithm is evaluated and 
compared with that of similar algorithms. 

The rest of this paper is organized as follows: Section II 
presents related work. Section III describes the Grid 
computing model and assumptions. Section IV introduces the 
proposed resource allocation algorithm. Section V presents the 
simulation environment and results. Finally, Section VI 
summarizes this paper. 

Related works and motivations 

Resource allocation problem has been studied intensively 
in the traditional distributed systems literature for more than 
two decades. Various policies and algorithms have been 
proposed, analyzed, and implemented in a number of studies 
[20-22]. It is more difficult to achieve resource allocation in 
Grid computing systems than in traditional distributed 
computing ones because of the heterogeneity and the complex 
dynamic nature of the Grid systems [18--23].  

Many papers have been published recently to address the 
problem of resource allocation in Grid computing 
environments. Some of the proposed algorithms for the Grid 
computing environments are modifications or extensions to 
the traditional distributed systems resource allocation 
algorithms. In [24], a decentralized model for heterogeneous 
grid has been proposed as a collection of clusters. In [17], the 
authors presented a tree-based model to represent any Grid 
architecture into a tree structure. The model takes into account 
the heterogeneity of resources and it is completely 

independent from any physical Grid architecture. However, 
they did not provide any task allocation procedure. Their 
resource management policy is based on a periodic collection 
of resource information by a central entity, which might be 
communication consuming and also a bottleneck for the 
system. In [18], the authors proposed a ring topology for the 
Grid managers which are responsible for managing a dynamic 
pool of processing elements (computers or processors).The 
resource allocation algorithm was based on the real computers 
workload.  In [25], the authors proposed a hierarchical 
structure for grid managers rather than ring topology to 
improve scalability of the grid computing system. They also 
proposed a task allocation policy which automatically 
regulates the job flow rate directed to a given grid manager. In 
[26], Aram proposes a resource allocation policy using 
reinforcement learning by creating multiple agents. In [27], the 
author presents dynamic resource allocation mechanisms by 
using service level agreement, best fit algorithm and process 
migration. In [28], Tibor introduces a resource allocation 
protocol for providing quality of service by using probability 
tree modeled as an AND/OR tree and the execution of a 
process is carried out through a search of a solution tree. In 
[29], Manpreet presents a resource oriented ant algorithm 
using ant colony as its key allocation strategy. In [30], 
Rouhollah and Hadi proposed an Analytic hierarchy process 
(ARA) by using Multi-Criteria Decision Making (MCDM), 
static and dynamic methods. In [31], Adil et al.  proposed a 
bidding-based grid resource selection by applying a single 
reservation mechanism. In [32], Dawei, introduces an 
optimizing grid resource allocation by combining fuzzy 
clustering with application preference. He applied a novel 
heuristic, min-min algorithm and ACO (Ant Colony) 
algorithm. 

In this paper, we developed a distributed task resource 
allocation algorithm that can cater for the following unique 
characteristics of practical Grid Computing environment: 

 Large-scale: As a grid can encompass a large number 
of high performance computing resources that are 
located across different domains and continents, it is 
difficult for centralized model to address 
communication overhead and administration of remote 
workstations. 

 Heterogeneous grid resources: The Grid resources are 
heterogeneous in nature, they may have different 
hardware architectures, operating systems, computing 
power, resource capacity, and network bandwidth 
between them.  

 Effects from considerable transfer delay: The 
communication overhead involved in capturing load 
information of local grid managers before making a 
dispatching decision can be a major issue negating the 
advantages of task migration. We should not ignore the 
considerable dynamic transfer delay in disseminating 
load updates on the Internet.  

 Tasks are non-preemptable:  Their execution on a grid 
resource can't be suspended until completion.      

 Tasks are independent: There is no communication 
between tasks. 
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 Tasks are computation intensive (CPU-bounded): 
Tasks spend more time doing computations. 

II. COMPUTING GRID MODEL 

We consider a computing grid model which is based on a 
hierarchical geographical decomposition structure. It consists 
of a set of clusters or sites present in different administrative 
domains. For every local domain, there is a Local Grid 
Manager (LGM) which controls and manages a local set of 
sites (clusters). Every site owns a set of processing elements 
(PEs) and a Site Manager (SM) which controls and manages 
the PEs in that site. Resources within the site are 
interconnected together by a Local Area Network (LAN).  The 
LGMs communicate with the sites in their local domains via 
the corresponding SMs using a High-Speed network. LGMs 
all over the world are connected to the global network or 
WAN by switches.  

Grid users can submit their tasks for remote processing 
(remote tasks) through the available websites browsers using 
the Grid Computing Service (GCS) to the LGMs. This makes 
the job submission process easy and accessible to any number 
of clients. The Global Scheduler (GS) at the LGMs distributes 
the arriving tasks to the SMs according to a task allocation 
policy which is based on the available information about the 
SMs. Also, any local site or cluster user can submit his 
computing tasks (local tasks) directly to the SM in his domain. 
Hence, any SM will have two kinds of arriving tasks namely, 
remote tasks arriving from its associated LGM and local tasks 
submitted directly to the SM by the local users. We assume 
that local tasks must be executed at the site in which they have 
been submitted (i.e., they are not transferred to any other site). 
The Local Scheduler at the SM in turn distributes the arriving 
tasks on the PEs in its pool according to a task allocation 
policy which is based on the PE's load information. When the 
execution of the tasks is finished, the GCS notify the users by 
the results of their tasks.  

A top-down three level view of the considered computing 
grid model is shown in Fig. 1. It can be explained as follows: 

 Level 0: Local Grid Manager (LGM)  
Every node in this level, called Local Grid Manager 

(LGM), is associated with a set of SMs. It realizes the 
following functions: 

1) It manages a pool of Site Managers (SMs) in its 

geographical area (domain). 

2) It collects information about its corresponding SMs.  

3) New SMs can join the GCS by sending a join request 

to register themselves at the nearest parent LGM.   

4) LGMs are also involved in the task allocation and 

load balancing process not only in their local domains but 

also in the whole grid.   

5) It is responsible for balancing the accepted workload 

between its SMs by using the GS. 

6) It sends the task allocation decisions to the nodes in 

the level 1 (SMs). 

 Level 1: Site Manager (SM)  
Every node in this level, called Site Manager (SM), is 

associated with a grid site (cluster). It is responsible for: 

1) Managing a pool of processing elements (computers 

or processors) which is dynamically configured (i.e., 

processing elements may join or leave the pool at any time).  

2) Registering a new joining computing element to the 

site. 

3) Collecting information such as CPU speed, Memory 

size, available software and other hardware specifications 

about active processing elements in its pool and forwarding it 

to its associated LGM. 

4) Allocating the incoming tasks to any processing 

element in its pool according to a specified task allocation 

algorithm. 

 Level 2: Processing Elements (PE)  
At this level, we find the worker nodes (processing 

elements) of the grid linked to their SMs. Any private or 
public PC or workstation can join the grid system by 
registering within the nearest parent SM and offer its 
computing resources to be used by the grid users. When a 
computing element joins the grid, it starts the GCS system 
which will report to the SM some information about its 
resources such as CPU speed, memory size, available software 
and other hardware specifications. 

Every PE is responsible for: 

1) Maintaining its workload information. 

2) Sending instantaneously its workload information to 

its SM upon any change. 

3) Executing  its load share decided by the associated 

SM based on a specified task allocation policy



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 2, 2013 

254 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 1. Computing Grid Model Architecture 

As it could be seen from this decomposition, adding or 
removing SMs or PEs becomes very easy, flexible and serves 
both the openness and the scalability of proposed grid 
computing model. Also, the proposed model is a completely 
distributed model. It overcomes the bottleneck of the 
hierarchal models presented in [1, 33] by removing the Grid 
Manager or Global node which centralizes the global load 
information of the entire grid. The Grid manager node can be a 
bottleneck and therefore a point of failure in their models. The 
proposed model aims to reduce the overall mean response time 
of tasks and to minimize the communication costs. 

Any LGM acts as a web server for the grid model. Clients 
(users) submit their computing tasks to the associated LGM 
using the web browser. Upon a remote task arrival, according 
to the available load information, the LGM accepts the 
incoming task for proceeding at any of its sites or immediately 
forwards it to the fastest available LGM. The accepted rate of 
tasks will be passed to the appropriate SM based on the 
proposed task allocation algorithm. The SM in turn distributes 
these computing tasks according to the available PEs load 
information to the fastest available processing element for 
execution. 

A.  System parameters  

For each resource participating in the grid the following 

parameters are defined which will be used later in the task 

allocation process. 

1) Task parameters: Every Task is represented by a task 

Id, number of task instructions NTI, and a task size in bytes 

TS. 

2) PEs parameters: CPU speed, available memory, 

workload index which can be calculated using the total 

number of jobs queued on a given PE and its speed. 

3) Processing Element Capacity (PEC): Number of 

tasks per second a PE can process. It can be calculated using 

the CPU speed and an average number of instructions per 

task. 

4) Total Site Manager Processing Capacity (TSMPC): 

Number of tasks per second the site can process. It can be 

calculated as the sum of the PECs of all the processing 

elements of that site. 

5) Total Local Grid Manager Processing Capacity 

(LGMPC): Number of tasks that can be executed under the 

responsibility of the LGM per second. The LGMPC can be 

calculated by summing all the TSMPCs for all the sites 

managed by the LGM. 

6) Total Grid Processing Capacity (TGPC): Number of 

tasks executed by the whole grid per second. The TGPC can 

be calculated by summing all the LGMPCs for all the LGMs in 

the grid. 

7) Network Parameter: Bandwidth size 

8) Performance Parameters: The overall mean task 

response time is used as the performance parameter. 

III. PROPOSED TASK RESOURCE ALLOCATION ALGORITHM 

A two-level task resource allocation algorithm for the 
multi-cluster grid computing environment, where clusters are 
located in different local area networks, is proposed.  This 
algorithm takes into account the heterogeneity of the 
computational resources. It distributes the system workload 
based on the fastest available processing elements load 
balancing policy. We assume that the tasks submitted to the 
grid system are totally independent tasks with no inter-process 
communication between them, and that they are computation 
intensive tasks. The FCFS scheduling policy is applied for 
tasks waiting in queues, both at Global scheduler and Local 
scheduler. FCFS ensures certain kind of fairness, does not 
require advance information about the task execution time, do 
not require much computational effort, and is easy to 
implement. Since the SMs and their PEs resources in a site are 
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connected using a LAN (very fast), only the communication 
cost between the LGMs and the SMs is considered.  

The proposed task allocation algorithm is explained at each 
level of the grid architecture as follows: 

A.  Local Grid Manager Level 

A LGM is responsible of managing a group of SMs as well 
as exchanging its load information with the other LGMs. It has 
Global Information System (GIS) which consists of two 
information modules: Local Grid Managers Information 
Module (LGMIM) and the Sites Managers Information 
Module (SMIM). The LGMIM contains all the needed 
information about the other LGMs such as load information 
and communication bandwidth size. The LGMIM is updated 
periodically by the LGMs. Similarly, the SMIM has all the 
information about the local SMs managed by that LGM such 
as load information, memory size, communication bandwidth, 
and available software and hardware specifications. Also, the 
SMIM is periodically updated by the SMs managed by that 
LGM. Since the LGMs communicate using the global network 
or the WAN (slow internet links) while the LGM 
communicates with its SMs using a High Speed network (fast 
communication links), the periodical interval for updating 
LGMIM tG is set to be greater than the periodical interval for 
updating the SMIM (tS i.e., tG > tS) to minimize the 
communication overhead. The GS uses the information 
available in these two modules in taking the task allocation 
decisions. 

When an external (remote) task arrives at ith LGM, its GS 
does the following steps: 

Step 1: Workload Estimation 

1) To minimize the communication overhead, based on 

the information available at its SMIM which is more 

frequently updated than the LGMIM (since TG>TS), the GS 

accepts the task for local processing at the current LGMi if 

that LGM is in the steady state  (i.e., i  <1)  and goto step 2  
else  

begin  {else} 

a)  Check the task size S in MB. 

b) Based on the information available at the LGMIM, 

for every LGMK, K≠i compute the following:  

),( ki
KK

LGMLGMLinkSpeed

S
RC  ,  

K=(1,2,…,i-1,i+1,…,L) 

where: 

 
k

K
K

N
R


 is the occupation ratio at the LGMK; where

KN  is the total number of tasks at the LGMK, and K  

is the total processing capacity of the LGMK. 

 ),( ki LGMLGMLinkSpeed  is the speed (in Mbps) of 

communication link between the current LGMi, and the 
other LGMK, K≠i. 

 L is the number of LGMs in the whole grid. 

a.  Detecting the fastest available LGM to send the 

task to it 

1) Find the LGMK, K=1,2,…,i-1,i+1,…,L having the 

lowest value of KC .  

2) Forward the task immediately to the LGMK, update 

the LGMIM at the GIS and goto step 1 for servicing a new 

task. 

end  {else} 
Note: We assume that a transferred task from LGMi to 

LGMK for remote processing receives its service at the LGMK 
and is not transferred to other LGMs (i.e., each task is 
forwarded at most once to minimize the communication cost). 

Step 2: Distributing the workload accepted for processing 
at the LGMi on its SMs.  

Based on the information available on the SMIM, for every 
SM number j managed by the LGMi, compute the following:  

)21,
),(

,…,m,j=(
SMLGMLinkSpeed

S
RC

ji
ijij   

where: 

 S is the task size in MB. 

 
ij

ij

ij

N
R


  is the occupation ratio at the jth  SM managed 

by the LGMi; where ijN  is the total number of tasks at 

the jth  SM managed by the LGMi, and ij is the total 

processing capacity of  jth  SM managed by the LGMi. 

 ),( ji SMLGMLinkSpeed  is the speed (in Mbps) of 

communication link between the jth SM and the LGMi. 

 m is the number of SMs managed by the LGMi. 

1) Find the SMj having the lowest value of ijC (fastest 

available SM), j=1,2,.., m. 

2) Schedule the task for processing at SMj.  

3) Finally update the SMIM at GIS and goto step 1 for 

servicing a new task.    

B.  Site Manager Level 

As it is explained earlier, the SM or master node is 
responsible of monitoring a dynamic pool of heterogeneous 
processing elements (PEs) that are connected via a LAN and 
taking the task allocation decisions to distribute the workload 
on the PEs in its pool. It has Local Information System which 
handles all the information about all the PEs managed by that 
SM such as load information, memory size, and available 
software and hardware specifications. This information is 
stored in what is called Processing Elements Information 
Module (PEIM). Since the SM and the PEs within its site are 
interconnected via a LAN which is regularly very fast, the 
PEIM is instantaneously updated by the PEs when any change 
occurs in their state and the communication cost within a site 
is ignored. 

To be close to reality, any local site or cluster user can 
submit its computing tasks (local tasks) directly to the SM.  
Hence, any SM will have two different kinds of arriving tasks 
namely, remote tasks arriving from the associated LGM and 
local tasks submitted directly to the SM by the local users. To 
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limit the communication cost, we assume that local tasks will 
be executed at the site in which  they have been submitted as 
long as the site is in the steady state otherwise, the LS 
forwards the exceeded rate to the associated LGM. The SM 
periodically updates the GIS at the LGM with its load and 

resources information. The SM periodically updates the GIS at 
the LGM with its load and resources information. The LS at 
the SM will use a task allocation policy similar to that used by 
the GS at LGM. This means that the site workload will be 
distributed among its group of PES based on the fastest 
available PE policy. Using this policy, the utilization of PEs 
will be maximized, and hence their throughput will be 
improved which leads to improve whole system performance. 

The LS schedules the arriving tasks, either remote or local, 
based on the FCFS policy. For any arriving task, the LS does 
the following: 

Step 1: Workload Estimation 

(i) Based on the information available at the PEIM, the 

LS, for every PEK, k=1,2,…,n, computes the 

occupation ratio:  

ijk

ijk

ijk

N
R


 , j=1,2,…,m and k=1,2,…,n for m SMs.  

where: 

 ijkN  is the total number of tasks in the queue of the kth 

PE at jth SM managed by ith LGM (LGMi). 

 ijk is the processing capacity of kth PE at jth SM 

managed by ith LGM (LGMi). 
Step 2: Decision Making (Finding the fastest PE available 

to process the task in it)  

1) Find the PEK, K=1,2,…,n having the lowest value of 

ijkR   

2) Schedule the task for processing at that PEk and goto 

step 1 to schedule a new task. 

C.  Performance Metrics  

We refer to the length of time between the instant from the 
task arrival time to the grid and the instant when it leaves the 
grid, after all processing and communication are over as the 
task response time. Let rj be the response time of taskj, hence 
the overall mean response time RT is given by:  






N

j

jr
N

RT

1

1 , where N is the total number of processed 

tasks.  

IV. SIMULATION RESULTS AND DISCUSSION 

A. Simulation Tool and Environment 

Even though there are many available tools for simulating 
scheduling algorithms in Grid computing environments such 
as Bricks, OptorSim, SimGrid, GangSim, Arena, Alea, and 
GridSim, see [34] for more details, the simulation was carried 
out using the GridSim v4.0 simulator [35]. It provides 
facilities for modeling and simulating entities in grid 
computing environments such as heterogeneous resources, 

system users, applications, and resource load balancers which 
are used in designing and evaluating load balancing 
algorithms. In order to evaluate the performance of the 
proposed task allocation algorithm, a heterogeneous grid 
environment was built using different resource specifications. 
The resources differ in their operating systems, RAM, and 
CPU speed. In GridSim, tasks are modeled as Gridlet objects 
which contain all the information related to the task and the 
execution management details.  All the needed information 
about the available grid resources can be obtained from the 
Grid Information Service (GIS) entity that keeps track of all 
resources available in the grid environment.  

B. Simulation Tool and Environment 

Even though there are many available tools for simulating 
scheduling algorithms in Grid computing environments such 
as Bricks, OptorSim, SimGrid, GangSim, Arena, Alea, and 
GridSim, see [34] for more details, the simulation was carried 
out using the GridSim v4.0 simulator [35]. It provides 
facilities for modeling and simulating entities in grid 
computing environments such as heterogeneous resources, 
system users, applications, and resource load balancers which 
are used in designing and evaluating the task allocation 
algorithms. In order to evaluate the performance of the 
proposed algorithm, a heterogeneous grid environment was 
built using different resource specifications. The resources 
differ in their operating systems, RAM, and CPU speed. In 
GridSim, tasks are modeled as Gridlet objects which contain 
all the information related to the task and the execution 
management details.  All the needed information about the 
available grid resources can be obtained from the Grid 
Information Service (GIS) entity that keeps track of all 
resources available in the grid environment.  

 All simulations experiments have been performed on a PC 
(Dual Core Processor, 3.2 GHz, 2GB RAM) running on 
Windows xp OS. The bandwidth speed between LGMs (low 
capacity link) was set to 10Mbps, and the bandwidth speed 
between LGMs and SMs (high capacity link) varies from 
50Mbps to 100Mbps. All time units are in seconds. 

C. Performance evaluation and Analysis 

Both of the external (remote) tasks and  local tasks arrive 
sequentially to the LGMs and the SMs respectively with inter-
arrival times which are independent, identically, and 
exponentially distributed. Simultaneous arrivals are excluded. 
The service times of LGMs are independent and exponentially 
distributed. Task parameters (size and service demand) are 
generated randomly.  Each result presented is the average 
value obtained from 5 simulation runs with different random 
numbers seeds.  

Experiments 1: 
On a heterogeneous grid model consisting of 3 LGMs 

having 4, 2, 1, 5 SMs respectively. The total grid processing 
capacity is set to 1000 task/second (t/s). For this model to be 
stable, total task arrival rate (remote arrivals plus local 
arrivals) must be less than 1000 t/s.  

During experiments explanation, task allocation and load 
balancing are used interchangeably. In this experiment, we 
focused on the results related to objective parameter (i.e., 
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overall mean task response time) according to various 
numbers of tasks. During the experiment, 20 % from the total 
tasks arrived to the SMs are local tasks. In Fig. 3, we compare 
between the grid overall mean task response time obtained 
under the proposed load balancing (task allocation) policies 
(PLBPs)  and that obtained without using any load balancing 
policies at all (No. LB). From that figure, we can see that as 
the number of tasks increases the overall mean task response 
time increases. The increase of grid overall mean task 
response time is less in PLBPs as compared to the increase in 
the grid overall mean task response time without using any 
load balancing policies. 

 

  

Fig. 3.  Grid Overall Mean Task Response Time Of Plbps Vs. No. LB 

To evaluate how much improvement is obtained in the grid 
overall mean task response time as a result of applying the 

PLBPs, we computed the improvement ratio NPN T/)T(T  , 

where NT  is the grid overall mean task response time without 

using any balancing polices, and PT  is the grid overall mean 

task response time under PLBPs, see Fig. 4. From that figure, 
one can see that the improvement ratio gradually decreases as 
the grid workload increases, and it decreases rapidly as the 
grid workload approaches the saturation point (i.e., traffic 
intensity (λ/µ)≈1). The maximum improvement ratio is about 
73% and is obtained when the grid workload is low. This 
result was anticipated since the PLBPs distribute the grid 
workload based on the resources occupation ratio and the 
communication cost which leads to maximizing grid resources 
utilization and as a result the grid overall mean task response 
time is minimized. In contrast, the distribution of the grid 
workload on the resources without using any loads balancing 
policies (No. LB.) leads to unbalanced workload distribution 
on the resources, which leads to poor resources utilization and 
hence, the grid performance is affected. 

Experiments 2:  
In this experiment, the performance of the PLBPs is 

compared with that of Random_GS and Random_LS policies 
described in [33], and Min_load and Min_cost policies 
described in [36]. Our model is limited to approach their 
models by reducing the number of LGMs to 1 and setting the  
Local Tasks Arrival Rate (LTAR) to 0 (i.e., no local arrivals is 
allowed). In this case the LGM represent the Grid Manager 
(GM) or Global Scheduler (GS) in their models. During the 

experiment, we set the number of SMs to 4 with total 
processing capacity of 550 t/s. 

 
 

Fig. 4. Grid overall mean task response time improvement ratio 

For this model to be stable, external arrival rate must be 
less than 550 t/s. Each simulation ends after 550,000 tasks are 
completed.  Fig. 5 shows the overall mean task response time 
obtained under the Random_GS and Random_LS, Min_Load and 

Min_Cost, and the proposed load balancing policies. From that 
figure, we can see that the grid overall mean task response 
time obtained by all policies increases as the total arrival rate 
increases. Also from that figure, we can see that the PLBPs 
outperforms the Random_GS and Random_LS, and Min_Load and 

Min_Cost policies in terms of grid overall mean task response 
time.  

 

Fig. 5. Grid overall mean task response time of Random_GS and 

Random_LS,  Min_Load and Min_Cost, and the proposed load balancing 
policies. 

To evaluate how much improvement is obtained in the grid 
overall mean task response time as a result of applying the 
PLBPs over the other policies, we computed the improvement 

ratios RPR T/)T(T  , and MPM T/)T(T  where RT , MT , and 

PT  are the grid overall mean task response time obtained 

using the Random_GS and Random_LS, Min_Load and 
Min_Cost, and the PLBPs, see Fig. 6. From that figure, one 
can see that the PLBPs outperforms the Random_GS and 
Random_LS, and Min_Load and Min_Cost policies in terms 
of grid overall mean task response time and the maximum 
improvement is bout 50% and 30% respectively. The 
improvement ratio gradually increases as the grid workload 
increases until the workload becomes moderate where the 
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maximum improvement ratio is obtained and after that the 
improvement ratio decreases gradually as the grid workload 
increases approaching the saturation point (i.e., traffic 
intensity (λ/µ)≈1). 

This result was anticipated since the PLBPs distribute the 
grid workload based on the resources occupation ratio which 
leads to maximizing the resources utilization and as a result, 
the grid overall mean response time is minimized. In contrast, 
the Random_GS and Random_LS load distribution policies 
distribute the workload on the resources randomly without 
putting any performance metric in mind which may lead to 
unbalanced workload distribution.  

This situation leads to poor resources utilization and hence, 
the grid performance is degraded. Also, Min_Load and 
Min_Cost load balancing policies suffer from higher 
communication cost compared to the PLBPs. Notice that in the 
PLBPs, once a task is accepted by a LGM, it will be processed 
by any of its sites and it will not be further transferred to any 
other LGM. In contrast to the Min_Load and Min_Cost load 
balancing policies where a task may circulate between the grid 
resources leading to higher communication overhead. To be 
fair, we must say that according to the obtained simulation 
results, the performance of the Min_Load and Min_Cost load 
balancing policies is much better than that of the Random_GS 
and Random_LS distribution policies. 

 
 

Fig. 6. Improvement ratio obtained by the proposed load balancing policies 

over Random_GS and Random_LS, and Min_Load and Min_Cost policies. 

Experiments 3: 
This experiment is done to study the effect of the local 

arrival rate on the performance of the PLBPS. During the 
experiment,  the same grid parameters setting of the second 
experiment is used, and we set the ratio of the LTAR=0% , 
LTAR=10% and 25% form the TTAR to the grid.  As it can be 
seen form Fig. 7, the overall mean task response time 
decreases  as the LTAR ratio from the TTAR increases. This 
result is obvious since the LTAR arrives directly to the SMs 
and don't suffer from any transmission delay at all. 

 
 

Fig. 7. Grid overall mean task response obtained for different ratios of 

LTAR from TTAR. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a decentralized two-level task 
allocation algorithm for allocating the workload in a multi-
cluster grid environment where clusters are located at 
administrative domains. The proposed algorithm takes into 
account the heterogeneity of the grid computational resources, 
and it resolves the single point of failure problem which many 
of the current policies suffer from. The task allocation 
decisions in this policy are taken at the local grid manager and 
at the site manager levels. The proposed policy allows to any 
site manager to receive two kinds of tasks namely, remote 
tasks arriving from its associated local grid manager,  and 
local tasks submitted directly to the site manager by the local 
users in its domain, which makes this policy closer to reality 
and distinguishes it from any other similar policy. It allocates 
the workload based on the resources occupation ratio and the 
communication cost which leads to minimize the grid overall 
mean task response time. To evaluate the performance of the 
proposed task allocation policy a simulation model is built. In 
this model, the grid overall mean task response time is 
considered as the main performance metric that need to be 
minimized. The simulation results show that the proposed 
algorithm improves the grid performance in terms of overall 
mean task response time.  
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