
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

251 | P a g e
www.ijacsa.thesai.org

An Efficient Algorithm for Resource Allocation in

Parallel and Distributed Computing Systems

S. F. El-Zoghdy

Computer Science Dep.,

College of Computers &

Information Technology,

Taif University, Taif, KSA

M. Nofal

Computer Engineering Dep.,

College of Computers &

Information Technology,

Taif University, Taif, KSA

M. A. Shohla

Computer Engineering Dep.,

College of Computers &

Information Technology,

Taif University, Taif, KSA

A. El-sawy

Computer Science Dep.,

College of Computers &

Information Technology,

Taif University, Taif, KSA

Abstract— Resource allocation in heterogeneous parallel and

distributed computing systems is the process of allocating user

tasks to processing elements for execution such that some

performance objective is optimized. In this paper, a new resource

allocation algorithm for the computing grid environment is

proposed. It takes into account the heterogeneity of the

computational resources. It resolves the single point of failure

problem which many of the current algorithms suffer from. In

this algorithm, any site manager receives two kinds of tasks

namely, remote tasks arriving from its associated local grid

manager, and local tasks submitted directly to the site manager

by local users in its domain. It allocates the grid workload based

on the resources occupation ratio and the communication cost.

The grid overall mean task response time is considered as the

main performance metric that need to be minimized. The

simulation results show that the proposed resource allocation

algorithm improves the grid overall mean task response time.
(Abstract)

Keywords-grid computing; resource management; load

balancing; performance evaluation; queuing theory; simulation

models (key words)

I. INTRODUCTION

As a result of advances in wide-area network technologies
and the low-cost of computing resources, currently, a wide
variety of parallel and distributed computing systems are
available to the user community. These varieties range from
the traditional multiprocessor vector systems to clusters or
networks of workstations and even the geographically
dispersed meta-systems connected by high-speed Internet
connections (Computing Grid). Computing Grid is hardware and
software infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end computational
capabilities. It enables coordinated resource sharing within
dynamic organizations consisting of individuals, institutions,
and resources, for solving computationally intensive
applications. Such applications include, but not limited to
meteorological simulations, data intensive applications,
research of DNA sequences, and nanomaterials. It supports the
sharing and coordinated use of resources, independently of
their physical type and location, in dynamic virtual
organizations that share the same goal. Thus computing grid
is designed so that users won't have to worry about where
computations are being performed [1-4].

Basically, grid resources are geographically distributed
computers or clusters (sites), which are logically aggregated to

serve as a unified computing resource. The primary motivation
of grid computing system is to provide users and applications
with pervasive and seamless access to vast high performance
computing resources by creating an illusion of a single system
image [1, 3, 5-7]. Grid Computing is becoming a generic
platform for high performance and distributed computing due
to the variety of services it offers such as computation
services, application services, data services, information
services, and knowledge services. These services are provided
by the servers or processing elements in the grid computing
system. The servers and the processing elements are typically
heterogeneous in the sense that they have different processor
speeds, memory capacities, and I/O bandwidths [5,8].

The recent development of grid computing technologies
has provided us a means of using and sharing heterogeneous
resources over local/wide area networks, and geographically
dispersed locations. However, the Grid dynamic framework
nature where resources are subjected to changes due to system
performance degradation, node failure, allocation of new
nodes in the infrastructure, etc. Hence, a grid resource
management system (RMS) should be capable of adapting to
these changes and take appropriate decisions to improve
performance of users computing applications. A resource
consumer is defined as an agent that controls the consumer. A
RMS is defined as a service that is provided by a distributed
computing system that manages a pool of named resources
that is available for computing such that a system- or job-
centric performance metric is optimized.

At the same time, the decisions for resource sharing should
be made while maintaining the autonomy of their
environments and geographical locations. Thus, the RMS
should provide a highly scalable and configurable approach
for sharing and securely accessing the resources [9].

To increase the system throughput, it is desired to allocate
the tasks of a distributed (parallel) application program to the
PEs to some objectives, ranging from the minimization of task
execution time and communication cost [10–13], to the
maximization of system reliability and safety [14-16].
Moreover, the system components (PEs and communication
links) may be capacitated with limited amount of resources
which constrains the demand of the allocated modules.

Resource allocation in heterogeneous parallel and
distributed computing systems is the process of assigning
(scheduling) tasks to processing elements (computers or

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

252 | P a g e
www.ijacsa.thesai.org

processors) for execution such that some performance
objective is optimized. For example, a common objective in
resource allocation is to minimize the total response time
required to complete a set of tasks [11, 12, 16, 17].

Basically, a Grid scheduler (GS) receives applications
from Grid users, selects feasible resources for these
applications according to acquired information from the Grid
Information Service Module (GISM), and finally generates
application-to-resource mappings, based on certain objective
functions and predicted resource performance [18]. Unlike
what happens in traditional parallel and distributed systems,
GS usually cannot control Grid resources directly, but work
like brokers. They are not necessarily located in the same
domain with the resources which are visible to them.

In this paper, we propose a new resource allocation
algorithm that would allow users to carry out their tasks by
transparently accessing autonomous, distributed, and
heterogeneous resources and improves the Grid computing
performance in terms of mean task response time. The
proposed algorithm takes into account the heterogeneity of the
grid computational resources. It distributes the workload based
on the resources occupation ratio and the communication cost.
As in [19], we focus on the steady-state mode, where the
number of tasks submitted to the grid is sufficiently large and
the arrival rate of tasks does not exceed the grid overall
processing capacity. The class of problems addressed by the
proposed policy is the computation-intensive and totally
independent tasks with no communication between them. A
simulation model is built to evaluate the performance of the
proposed policy. Through simulation, the performance of the
proposed resource allocation algorithm is evaluated and
compared with that of similar algorithms.

The rest of this paper is organized as follows: Section II
presents related work. Section III describes the Grid
computing model and assumptions. Section IV introduces the
proposed resource allocation algorithm. Section V presents the
simulation environment and results. Finally, Section VI
summarizes this paper.

Related works and motivations

Resource allocation problem has been studied intensively
in the traditional distributed systems literature for more than
two decades. Various policies and algorithms have been
proposed, analyzed, and implemented in a number of studies
[20-22]. It is more difficult to achieve resource allocation in
Grid computing systems than in traditional distributed
computing ones because of the heterogeneity and the complex
dynamic nature of the Grid systems [18--23].

Many papers have been published recently to address the
problem of resource allocation in Grid computing
environments. Some of the proposed algorithms for the Grid
computing environments are modifications or extensions to
the traditional distributed systems resource allocation
algorithms. In [24], a decentralized model for heterogeneous
grid has been proposed as a collection of clusters. In [17], the
authors presented a tree-based model to represent any Grid
architecture into a tree structure. The model takes into account
the heterogeneity of resources and it is completely

independent from any physical Grid architecture. However,
they did not provide any task allocation procedure. Their
resource management policy is based on a periodic collection
of resource information by a central entity, which might be
communication consuming and also a bottleneck for the
system. In [18], the authors proposed a ring topology for the
Grid managers which are responsible for managing a dynamic
pool of processing elements (computers or processors).The
resource allocation algorithm was based on the real computers
workload. In [25], the authors proposed a hierarchical
structure for grid managers rather than ring topology to
improve scalability of the grid computing system. They also
proposed a task allocation policy which automatically
regulates the job flow rate directed to a given grid manager. In
[26], Aram proposes a resource allocation policy using
reinforcement learning by creating multiple agents. In [27], the
author presents dynamic resource allocation mechanisms by
using service level agreement, best fit algorithm and process
migration. In [28], Tibor introduces a resource allocation
protocol for providing quality of service by using probability
tree modeled as an AND/OR tree and the execution of a
process is carried out through a search of a solution tree. In
[29], Manpreet presents a resource oriented ant algorithm
using ant colony as its key allocation strategy. In [30],
Rouhollah and Hadi proposed an Analytic hierarchy process
(ARA) by using Multi-Criteria Decision Making (MCDM),
static and dynamic methods. In [31], Adil et al. proposed a
bidding-based grid resource selection by applying a single
reservation mechanism. In [32], Dawei, introduces an
optimizing grid resource allocation by combining fuzzy
clustering with application preference. He applied a novel
heuristic, min-min algorithm and ACO (Ant Colony)
algorithm.

In this paper, we developed a distributed task resource
allocation algorithm that can cater for the following unique
characteristics of practical Grid Computing environment:

 Large-scale: As a grid can encompass a large number
of high performance computing resources that are
located across different domains and continents, it is
difficult for centralized model to address
communication overhead and administration of remote
workstations.

 Heterogeneous grid resources: The Grid resources are
heterogeneous in nature, they may have different
hardware architectures, operating systems, computing
power, resource capacity, and network bandwidth
between them.

 Effects from considerable transfer delay: The
communication overhead involved in capturing load
information of local grid managers before making a
dispatching decision can be a major issue negating the
advantages of task migration. We should not ignore the
considerable dynamic transfer delay in disseminating
load updates on the Internet.

 Tasks are non-preemptable: Their execution on a grid
resource can't be suspended until completion.

 Tasks are independent: There is no communication
between tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

253 | P a g e
www.ijacsa.thesai.org

 Tasks are computation intensive (CPU-bounded):
Tasks spend more time doing computations.

II. COMPUTING GRID MODEL

We consider a computing grid model which is based on a
hierarchical geographical decomposition structure. It consists
of a set of clusters or sites present in different administrative
domains. For every local domain, there is a Local Grid
Manager (LGM) which controls and manages a local set of
sites (clusters). Every site owns a set of processing elements
(PEs) and a Site Manager (SM) which controls and manages
the PEs in that site. Resources within the site are
interconnected together by a Local Area Network (LAN). The
LGMs communicate with the sites in their local domains via
the corresponding SMs using a High-Speed network. LGMs
all over the world are connected to the global network or
WAN by switches.

Grid users can submit their tasks for remote processing
(remote tasks) through the available websites browsers using
the Grid Computing Service (GCS) to the LGMs. This makes
the job submission process easy and accessible to any number
of clients. The Global Scheduler (GS) at the LGMs distributes
the arriving tasks to the SMs according to a task allocation
policy which is based on the available information about the
SMs. Also, any local site or cluster user can submit his
computing tasks (local tasks) directly to the SM in his domain.
Hence, any SM will have two kinds of arriving tasks namely,
remote tasks arriving from its associated LGM and local tasks
submitted directly to the SM by the local users. We assume
that local tasks must be executed at the site in which they have
been submitted (i.e., they are not transferred to any other site).
The Local Scheduler at the SM in turn distributes the arriving
tasks on the PEs in its pool according to a task allocation
policy which is based on the PE's load information. When the
execution of the tasks is finished, the GCS notify the users by
the results of their tasks.

A top-down three level view of the considered computing
grid model is shown in Fig. 1. It can be explained as follows:

 Level 0: Local Grid Manager (LGM)
Every node in this level, called Local Grid Manager

(LGM), is associated with a set of SMs. It realizes the
following functions:

1) It manages a pool of Site Managers (SMs) in its

geographical area (domain).

2) It collects information about its corresponding SMs.

3) New SMs can join the GCS by sending a join request

to register themselves at the nearest parent LGM.

4) LGMs are also involved in the task allocation and

load balancing process not only in their local domains but

also in the whole grid.

5) It is responsible for balancing the accepted workload

between its SMs by using the GS.

6) It sends the task allocation decisions to the nodes in

the level 1 (SMs).

 Level 1: Site Manager (SM)
Every node in this level, called Site Manager (SM), is

associated with a grid site (cluster). It is responsible for:

1) Managing a pool of processing elements (computers

or processors) which is dynamically configured (i.e.,

processing elements may join or leave the pool at any time).

2) Registering a new joining computing element to the

site.

3) Collecting information such as CPU speed, Memory

size, available software and other hardware specifications

about active processing elements in its pool and forwarding it

to its associated LGM.

4) Allocating the incoming tasks to any processing

element in its pool according to a specified task allocation

algorithm.

 Level 2: Processing Elements (PE)
At this level, we find the worker nodes (processing

elements) of the grid linked to their SMs. Any private or
public PC or workstation can join the grid system by
registering within the nearest parent SM and offer its
computing resources to be used by the grid users. When a
computing element joins the grid, it starts the GCS system
which will report to the SM some information about its
resources such as CPU speed, memory size, available software
and other hardware specifications.

Every PE is responsible for:

1) Maintaining its workload information.

2) Sending instantaneously its workload information to

its SM upon any change.

3) Executing its load share decided by the associated

SM based on a specified task allocation policy

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

254 | P a g e
www.ijacsa.thesai.org

Fig. 1. Computing Grid Model Architecture

As it could be seen from this decomposition, adding or
removing SMs or PEs becomes very easy, flexible and serves
both the openness and the scalability of proposed grid
computing model. Also, the proposed model is a completely
distributed model. It overcomes the bottleneck of the
hierarchal models presented in [1, 33] by removing the Grid
Manager or Global node which centralizes the global load
information of the entire grid. The Grid manager node can be a
bottleneck and therefore a point of failure in their models. The
proposed model aims to reduce the overall mean response time
of tasks and to minimize the communication costs.

Any LGM acts as a web server for the grid model. Clients
(users) submit their computing tasks to the associated LGM
using the web browser. Upon a remote task arrival, according
to the available load information, the LGM accepts the
incoming task for proceeding at any of its sites or immediately
forwards it to the fastest available LGM. The accepted rate of
tasks will be passed to the appropriate SM based on the
proposed task allocation algorithm. The SM in turn distributes
these computing tasks according to the available PEs load
information to the fastest available processing element for
execution.

A. System parameters

For each resource participating in the grid the following

parameters are defined which will be used later in the task

allocation process.

1) Task parameters: Every Task is represented by a task

Id, number of task instructions NTI, and a task size in bytes

TS.

2) PEs parameters: CPU speed, available memory,

workload index which can be calculated using the total

number of jobs queued on a given PE and its speed.

3) Processing Element Capacity (PEC): Number of

tasks per second a PE can process. It can be calculated using

the CPU speed and an average number of instructions per

task.

4) Total Site Manager Processing Capacity (TSMPC):

Number of tasks per second the site can process. It can be

calculated as the sum of the PECs of all the processing

elements of that site.

5) Total Local Grid Manager Processing Capacity

(LGMPC): Number of tasks that can be executed under the

responsibility of the LGM per second. The LGMPC can be

calculated by summing all the TSMPCs for all the sites

managed by the LGM.

6) Total Grid Processing Capacity (TGPC): Number of

tasks executed by the whole grid per second. The TGPC can

be calculated by summing all the LGMPCs for all the LGMs in

the grid.

7) Network Parameter: Bandwidth size

8) Performance Parameters: The overall mean task

response time is used as the performance parameter.

III. PROPOSED TASK RESOURCE ALLOCATION ALGORITHM

A two-level task resource allocation algorithm for the
multi-cluster grid computing environment, where clusters are
located in different local area networks, is proposed. This
algorithm takes into account the heterogeneity of the
computational resources. It distributes the system workload
based on the fastest available processing elements load
balancing policy. We assume that the tasks submitted to the
grid system are totally independent tasks with no inter-process
communication between them, and that they are computation
intensive tasks. The FCFS scheduling policy is applied for
tasks waiting in queues, both at Global scheduler and Local
scheduler. FCFS ensures certain kind of fairness, does not
require advance information about the task execution time, do
not require much computational effort, and is easy to
implement. Since the SMs and their PEs resources in a site are

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

255 | P a g e
www.ijacsa.thesai.org

connected using a LAN (very fast), only the communication
cost between the LGMs and the SMs is considered.

The proposed task allocation algorithm is explained at each
level of the grid architecture as follows:

A. Local Grid Manager Level

A LGM is responsible of managing a group of SMs as well
as exchanging its load information with the other LGMs. It has
Global Information System (GIS) which consists of two
information modules: Local Grid Managers Information
Module (LGMIM) and the Sites Managers Information
Module (SMIM). The LGMIM contains all the needed
information about the other LGMs such as load information
and communication bandwidth size. The LGMIM is updated
periodically by the LGMs. Similarly, the SMIM has all the
information about the local SMs managed by that LGM such
as load information, memory size, communication bandwidth,
and available software and hardware specifications. Also, the
SMIM is periodically updated by the SMs managed by that
LGM. Since the LGMs communicate using the global network
or the WAN (slow internet links) while the LGM
communicates with its SMs using a High Speed network (fast
communication links), the periodical interval for updating
LGMIM tG is set to be greater than the periodical interval for
updating the SMIM (tS i.e., tG > tS) to minimize the
communication overhead. The GS uses the information
available in these two modules in taking the task allocation
decisions.

When an external (remote) task arrives at ith LGM, its GS
does the following steps:

Step 1: Workload Estimation

1) To minimize the communication overhead, based on

the information available at its SMIM which is more

frequently updated than the LGMIM (since TG>TS), the GS

accepts the task for local processing at the current LGMi if

that LGM is in the steady state (i.e., i <1) and goto step 2
else

begin {else}

a) Check the task size S in MB.

b) Based on the information available at the LGMIM,

for every LGMK, K≠i compute the following:

),(ki
KK

LGMLGMLinkSpeed

S
RC ,

K=(1,2,…,i-1,i+1,…,L)

where:

k

K
K

N
R

 is the occupation ratio at the LGMK; where

KN is the total number of tasks at the LGMK, and K

is the total processing capacity of the LGMK.

),(ki LGMLGMLinkSpeed is the speed (in Mbps) of

communication link between the current LGMi, and the
other LGMK, K≠i.

 L is the number of LGMs in the whole grid.

a. Detecting the fastest available LGM to send the

task to it

1) Find the LGMK, K=1,2,…,i-1,i+1,…,L having the

lowest value of KC .

2) Forward the task immediately to the LGMK, update

the LGMIM at the GIS and goto step 1 for servicing a new

task.

end {else}
Note: We assume that a transferred task from LGMi to

LGMK for remote processing receives its service at the LGMK
and is not transferred to other LGMs (i.e., each task is
forwarded at most once to minimize the communication cost).

Step 2: Distributing the workload accepted for processing
at the LGMi on its SMs.

Based on the information available on the SMIM, for every
SM number j managed by the LGMi, compute the following:

)21,
),(

,…,m,j=(
SMLGMLinkSpeed

S
RC

ji
ijij

where:

 S is the task size in MB.

ij

ij

ij

N
R

 is the occupation ratio at the jth SM managed

by the LGMi; where ijN is the total number of tasks at

the jth SM managed by the LGMi, and ij is the total

processing capacity of jth SM managed by the LGMi.

),(ji SMLGMLinkSpeed is the speed (in Mbps) of

communication link between the jth SM and the LGMi.

 m is the number of SMs managed by the LGMi.

1) Find the SMj having the lowest value of ijC (fastest

available SM), j=1,2,.., m.

2) Schedule the task for processing at SMj.

3) Finally update the SMIM at GIS and goto step 1 for

servicing a new task.

B. Site Manager Level

As it is explained earlier, the SM or master node is
responsible of monitoring a dynamic pool of heterogeneous
processing elements (PEs) that are connected via a LAN and
taking the task allocation decisions to distribute the workload
on the PEs in its pool. It has Local Information System which
handles all the information about all the PEs managed by that
SM such as load information, memory size, and available
software and hardware specifications. This information is
stored in what is called Processing Elements Information
Module (PEIM). Since the SM and the PEs within its site are
interconnected via a LAN which is regularly very fast, the
PEIM is instantaneously updated by the PEs when any change
occurs in their state and the communication cost within a site
is ignored.

To be close to reality, any local site or cluster user can
submit its computing tasks (local tasks) directly to the SM.
Hence, any SM will have two different kinds of arriving tasks
namely, remote tasks arriving from the associated LGM and
local tasks submitted directly to the SM by the local users. To

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

256 | P a g e
www.ijacsa.thesai.org

limit the communication cost, we assume that local tasks will
be executed at the site in which they have been submitted as
long as the site is in the steady state otherwise, the LS
forwards the exceeded rate to the associated LGM. The SM
periodically updates the GIS at the LGM with its load and

resources information. The SM periodically updates the GIS at
the LGM with its load and resources information. The LS at
the SM will use a task allocation policy similar to that used by
the GS at LGM. This means that the site workload will be
distributed among its group of PES based on the fastest
available PE policy. Using this policy, the utilization of PEs
will be maximized, and hence their throughput will be
improved which leads to improve whole system performance.

The LS schedules the arriving tasks, either remote or local,
based on the FCFS policy. For any arriving task, the LS does
the following:

Step 1: Workload Estimation

(i) Based on the information available at the PEIM, the

LS, for every PEK, k=1,2,…,n, computes the

occupation ratio:

ijk

ijk

ijk

N
R

 , j=1,2,…,m and k=1,2,…,n for m SMs.

where:

 ijkN is the total number of tasks in the queue of the kth

PE at jth SM managed by ith LGM (LGMi).

 ijk is the processing capacity of kth PE at jth SM

managed by ith LGM (LGMi).
Step 2: Decision Making (Finding the fastest PE available

to process the task in it)

1) Find the PEK, K=1,2,…,n having the lowest value of

ijkR

2) Schedule the task for processing at that PEk and goto

step 1 to schedule a new task.

C. Performance Metrics

We refer to the length of time between the instant from the
task arrival time to the grid and the instant when it leaves the
grid, after all processing and communication are over as the
task response time. Let rj be the response time of taskj, hence
the overall mean response time RT is given by:

N

j

jr
N

RT

1

1 , where N is the total number of processed

tasks.

IV. SIMULATION RESULTS AND DISCUSSION

A. Simulation Tool and Environment

Even though there are many available tools for simulating
scheduling algorithms in Grid computing environments such
as Bricks, OptorSim, SimGrid, GangSim, Arena, Alea, and
GridSim, see [34] for more details, the simulation was carried
out using the GridSim v4.0 simulator [35]. It provides
facilities for modeling and simulating entities in grid
computing environments such as heterogeneous resources,

system users, applications, and resource load balancers which
are used in designing and evaluating load balancing
algorithms. In order to evaluate the performance of the
proposed task allocation algorithm, a heterogeneous grid
environment was built using different resource specifications.
The resources differ in their operating systems, RAM, and
CPU speed. In GridSim, tasks are modeled as Gridlet objects
which contain all the information related to the task and the
execution management details. All the needed information
about the available grid resources can be obtained from the
Grid Information Service (GIS) entity that keeps track of all
resources available in the grid environment.

B. Simulation Tool and Environment

Even though there are many available tools for simulating
scheduling algorithms in Grid computing environments such
as Bricks, OptorSim, SimGrid, GangSim, Arena, Alea, and
GridSim, see [34] for more details, the simulation was carried
out using the GridSim v4.0 simulator [35]. It provides
facilities for modeling and simulating entities in grid
computing environments such as heterogeneous resources,
system users, applications, and resource load balancers which
are used in designing and evaluating the task allocation
algorithms. In order to evaluate the performance of the
proposed algorithm, a heterogeneous grid environment was
built using different resource specifications. The resources
differ in their operating systems, RAM, and CPU speed. In
GridSim, tasks are modeled as Gridlet objects which contain
all the information related to the task and the execution
management details. All the needed information about the
available grid resources can be obtained from the Grid
Information Service (GIS) entity that keeps track of all
resources available in the grid environment.

 All simulations experiments have been performed on a PC
(Dual Core Processor, 3.2 GHz, 2GB RAM) running on
Windows xp OS. The bandwidth speed between LGMs (low
capacity link) was set to 10Mbps, and the bandwidth speed
between LGMs and SMs (high capacity link) varies from
50Mbps to 100Mbps. All time units are in seconds.

C. Performance evaluation and Analysis

Both of the external (remote) tasks and local tasks arrive
sequentially to the LGMs and the SMs respectively with inter-
arrival times which are independent, identically, and
exponentially distributed. Simultaneous arrivals are excluded.
The service times of LGMs are independent and exponentially
distributed. Task parameters (size and service demand) are
generated randomly. Each result presented is the average
value obtained from 5 simulation runs with different random
numbers seeds.

Experiments 1:
On a heterogeneous grid model consisting of 3 LGMs

having 4, 2, 1, 5 SMs respectively. The total grid processing
capacity is set to 1000 task/second (t/s). For this model to be
stable, total task arrival rate (remote arrivals plus local
arrivals) must be less than 1000 t/s.

During experiments explanation, task allocation and load
balancing are used interchangeably. In this experiment, we
focused on the results related to objective parameter (i.e.,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

257 | P a g e
www.ijacsa.thesai.org

overall mean task response time) according to various
numbers of tasks. During the experiment, 20 % from the total
tasks arrived to the SMs are local tasks. In Fig. 3, we compare
between the grid overall mean task response time obtained
under the proposed load balancing (task allocation) policies
(PLBPs) and that obtained without using any load balancing
policies at all (No. LB). From that figure, we can see that as
the number of tasks increases the overall mean task response
time increases. The increase of grid overall mean task
response time is less in PLBPs as compared to the increase in
the grid overall mean task response time without using any
load balancing policies.

Fig. 3. Grid Overall Mean Task Response Time Of Plbps Vs. No. LB

To evaluate how much improvement is obtained in the grid
overall mean task response time as a result of applying the

PLBPs, we computed the improvement ratio NPN T/)T(T ,

where NT is the grid overall mean task response time without

using any balancing polices, and PT is the grid overall mean

task response time under PLBPs, see Fig. 4. From that figure,
one can see that the improvement ratio gradually decreases as
the grid workload increases, and it decreases rapidly as the
grid workload approaches the saturation point (i.e., traffic
intensity (λ/µ)≈1). The maximum improvement ratio is about
73% and is obtained when the grid workload is low. This
result was anticipated since the PLBPs distribute the grid
workload based on the resources occupation ratio and the
communication cost which leads to maximizing grid resources
utilization and as a result the grid overall mean task response
time is minimized. In contrast, the distribution of the grid
workload on the resources without using any loads balancing
policies (No. LB.) leads to unbalanced workload distribution
on the resources, which leads to poor resources utilization and
hence, the grid performance is affected.

Experiments 2:
In this experiment, the performance of the PLBPs is

compared with that of Random_GS and Random_LS policies
described in [33], and Min_load and Min_cost policies
described in [36]. Our model is limited to approach their
models by reducing the number of LGMs to 1 and setting the
Local Tasks Arrival Rate (LTAR) to 0 (i.e., no local arrivals is
allowed). In this case the LGM represent the Grid Manager
(GM) or Global Scheduler (GS) in their models. During the

experiment, we set the number of SMs to 4 with total
processing capacity of 550 t/s.

Fig. 4. Grid overall mean task response time improvement ratio

For this model to be stable, external arrival rate must be
less than 550 t/s. Each simulation ends after 550,000 tasks are
completed. Fig. 5 shows the overall mean task response time
obtained under the Random_GS and Random_LS, Min_Load and

Min_Cost, and the proposed load balancing policies. From that
figure, we can see that the grid overall mean task response
time obtained by all policies increases as the total arrival rate
increases. Also from that figure, we can see that the PLBPs
outperforms the Random_GS and Random_LS, and Min_Load and

Min_Cost policies in terms of grid overall mean task response
time.

Fig. 5. Grid overall mean task response time of Random_GS and

Random_LS, Min_Load and Min_Cost, and the proposed load balancing
policies.

To evaluate how much improvement is obtained in the grid
overall mean task response time as a result of applying the
PLBPs over the other policies, we computed the improvement

ratios RPR T/)T(T , and MPM T/)T(T where RT , MT , and

PT are the grid overall mean task response time obtained

using the Random_GS and Random_LS, Min_Load and
Min_Cost, and the PLBPs, see Fig. 6. From that figure, one
can see that the PLBPs outperforms the Random_GS and
Random_LS, and Min_Load and Min_Cost policies in terms
of grid overall mean task response time and the maximum
improvement is bout 50% and 30% respectively. The
improvement ratio gradually increases as the grid workload
increases until the workload becomes moderate where the

0
5

10
15
20
25
30
35
40

100 200 300 400 500 600 700 800 900 1000

O
ve

ra
ll

M
ea

n
 R

e
sp

o
n

se

Ti
m

e

Total Task Arrival Rate

No. LB. Proposed

0.5

0.55

0.6

0.65

0.7

0.75

100 200 300 400 500 600 700 800 900 1000

O
ve

ra
ll

M
e

an
 T

as
k

R
e

sp
o

n
se

 T
im

e

Im
p

ro
ve

m
e

n
t R

at
io

Total Task Arrival Rate

0

5

10

15

20

100 150 200 250 300 350 400 450 500 550 O
ve

ra
ll

M
ea

n
 T

as
k

R
es

p
o

n
se

 T
im

e

Total Task Arrival Rate

Random Min Proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

258 | P a g e
www.ijacsa.thesai.org

maximum improvement ratio is obtained and after that the
improvement ratio decreases gradually as the grid workload
increases approaching the saturation point (i.e., traffic
intensity (λ/µ)≈1).

This result was anticipated since the PLBPs distribute the
grid workload based on the resources occupation ratio which
leads to maximizing the resources utilization and as a result,
the grid overall mean response time is minimized. In contrast,
the Random_GS and Random_LS load distribution policies
distribute the workload on the resources randomly without
putting any performance metric in mind which may lead to
unbalanced workload distribution.

This situation leads to poor resources utilization and hence,
the grid performance is degraded. Also, Min_Load and
Min_Cost load balancing policies suffer from higher
communication cost compared to the PLBPs. Notice that in the
PLBPs, once a task is accepted by a LGM, it will be processed
by any of its sites and it will not be further transferred to any
other LGM. In contrast to the Min_Load and Min_Cost load
balancing policies where a task may circulate between the grid
resources leading to higher communication overhead. To be
fair, we must say that according to the obtained simulation
results, the performance of the Min_Load and Min_Cost load
balancing policies is much better than that of the Random_GS
and Random_LS distribution policies.

Fig. 6. Improvement ratio obtained by the proposed load balancing policies

over Random_GS and Random_LS, and Min_Load and Min_Cost policies.

Experiments 3:
This experiment is done to study the effect of the local

arrival rate on the performance of the PLBPS. During the
experiment, the same grid parameters setting of the second
experiment is used, and we set the ratio of the LTAR=0% ,
LTAR=10% and 25% form the TTAR to the grid. As it can be
seen form Fig. 7, the overall mean task response time
decreases as the LTAR ratio from the TTAR increases. This
result is obvious since the LTAR arrives directly to the SMs
and don't suffer from any transmission delay at all.

Fig. 7. Grid overall mean task response obtained for different ratios of

LTAR from TTAR.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a decentralized two-level task
allocation algorithm for allocating the workload in a multi-
cluster grid environment where clusters are located at
administrative domains. The proposed algorithm takes into
account the heterogeneity of the grid computational resources,
and it resolves the single point of failure problem which many
of the current policies suffer from. The task allocation
decisions in this policy are taken at the local grid manager and
at the site manager levels. The proposed policy allows to any
site manager to receive two kinds of tasks namely, remote
tasks arriving from its associated local grid manager, and
local tasks submitted directly to the site manager by the local
users in its domain, which makes this policy closer to reality
and distinguishes it from any other similar policy. It allocates
the workload based on the resources occupation ratio and the
communication cost which leads to minimize the grid overall
mean task response time. To evaluate the performance of the
proposed task allocation policy a simulation model is built. In
this model, the grid overall mean task response time is
considered as the main performance metric that need to be
minimized. The simulation results show that the proposed
algorithm improves the grid performance in terms of overall
mean task response time.

REFERENCES

[1] B. Yagoubi and Y. Slimani, "Task load balancing strategy for grid
computing", J. of Computer Science, vol. 3, no. 3: pp. 186-194, 2007.

[2] I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann Puplishers, 2
nd

 edition, USA, 2004.

[3] K. Lu, R. Subrata, and A. Y. Zomaya, "On the performance-driven load

distribution for heterogeneous computational grids", J. of Computer and
System Science, vol. 73, no. 8, pp. 1191-1206, 2007.

[4] P. Kumar, Load Balancing and Job Migration in Grid Environment, MS.

Thesis, Thapar University, 2009.

[5] K. Li, "Optimal load distribution in nondedicated heterogeneous cluster
and grid computing environments", J. of Systems Architecture, vol. 54,

pp. 111–123, 2008.

[6] S. Parsa and R. Entezari-Maleki ," RASA: A new task scheduling
algorithm in grid environment", World Applied Sciences J. (Special

Issue of Computer & IT), pp. 152-160, 2009

0

0.1

0.2

0.3

0.4

0.5

0.6

100 150 200 250 300 350 400 450 500 550

O
ve

ra
ll

M
e

a
n

 T
a

sk
 R

e
sp

o
n

se

Ti
m

e
 Im

p
ro

ve
m

e
n

t
R

at
io

Total Task Arrival Rate

(TR-TP)/TR (TM-TP)/TM

0

5

10

100 150 200 250 300 350 400 450 500 550

O
ve

ra
ll

M
e

an
 T

as
k

R
e

sp
o

n
se

 T
im

e

Total Task Arrival Rate (TTAR)

LTAR=0% TTAR LTAR=10% TTAR

LTAR=25% TTAR

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 2, 2013

259 | P a g e
www.ijacsa.thesai.org

[7] Y. Li, Y. Yang, M. Ma, and L. Zhou, "A hybrid load balancing strategy

of sequential jobs for grid computing environments", J. Future
Generation Computer Systems, vol. 25, pp. 819-828, 2009.

[8] S. F. El-Zoghdy, "A capacity-based load balancing and job migration
algorithm for heterogeneous Computational grids", Int. J. of Computer

Networks & Communications (IJCNC) vol.4, no.1, pp. 113-125, 2012.

[9] J. Pathak, J. Treadwell, R. Kumar, P. Vitale, F. Fraticelli, and P. Alto,
"A framework for dynamic resource management on the grid", HPL-

2005-153, August, 2005.

[10] P.Yin, S. Yu, P. Wang, and Y. Wang, "Multi-objective task allocation in
distributed computing systems by hybrid particle swarm optimization",

J. Applied Mathematics and Computation, vol. 184 , pp.407–420, 2007.

[11] C.H. Lee, K.G. Shin, "Optimal task assignment in homogeneous
networks", IEEE Trans. on Parallel and Distributed Systems, vol. 8,

pp.119–129, 1997.

[12] A. Tom Pa, S. R. Murthy, "Optimal task allocation in distributed systems
by graph matching and state space search", J. of Systems and Software,

vol. 46, pp. 59–75, 1999.

[13] A. Ernst, H. Hiang, M. Krishnamoorthy, "Mathematical programming
approaches for solving task allocation problems", Proc. of the 16

th

National Conf. of Australian Society of Operations Research, 2001.

[14] S. Kartik, S. R. Murthy, "Task allocation algorithms for maximizing

reliability of distributed computing systems", IEEE Transactions on
Computers, vol. 46 pp.719–724, 1997.

[15] S. Srinivasan, N.K. Jha, "Safety and reliability driven task allocation in

distributed systems", IEEE Trans. on Parallel and Distributed Systems,
vol. 10, pp. 238–251,1999.

[16] C. Hsieh, "Optimal task allocation and hardware redundancy policies in

distributed computing systems", European J. of Operational Research,
vol. 147, pp. 430–447, 2003.

[17] http://www.engr.uconn.edu/~lester/papers/Wseas04.pdf, A. M.

Mohamed, R. Ammar and L. Lipsky, "Efficient resource allocation for
parallel and distributed systems"

[18] F. Dong and S. G. Akl, "Scheduling algorithms for grid computing: state

of the art and open problems", Tech. Report No. 2006-504, School of
Computing, Queen’s University Kingston, Ontario, 2006.

[19] O. Beaumont, A. Legrand, L. Marchal and Y. Robert, "Steady-state

scheduling on heterogeneous clusters". Int. J. of Foundations of
Computer Science, vol. 16, no.2, pp. 163-194, 2005.

[20] J. Regehr, J. Stankovic, and M. Humphrey, "The case for hierarchical
schedulers with performance guarantees", Tech. Report No CS-2000-07,

University of Virginia, 2000.

[21] S. Zhou, X. Zheng, J. Wang, and P. Delisle, "Utopia: A load sharing
facility for large, heterogeneous distributed computing systems", J. J.

Softw. Pract. Exper., vol. 23, no. 12, pp. 1305–1336, 1993.

[22] G. Banga, P. Druschel, J. Mogul,"Resource containers: A new facility
for resource management in server systems", Proc. of the 3

rd
 USENIX

Symposium on Operating Systems Design and Implementation (OSDI
99), February 1999.

[23] K. Krauter, R. Buyya and M. Maheswaran, "A taxonomy and survey of

grid resource management systems for distributed computing", J. Softw.
Pract. Exper., vol. 32, pp.135–164, 2002.

[24] P. Pazel, T. Eilam, L. Fong, M. Kalantar, K. Appleby, and G.
Goldszmidt.”Neptune: A dynamic resource allocation and planning

system for a cluster computing utility”, 2
nd

 Int. Symp. on Cluster
Computing and the Grid (CCGRID'02), Berlin, Germany, May 2002.

[25] S. Corsava and V. Getov, “ Intelligent architecture for automatic

resource allocation in computer clusters”, Int. Parallel and Distributed
Processing Symposium, Nice, France, Apr 2003.

[26] G. Aram, C. Karl and L. Kristina," Resource allocation in the grid using

reinforcement learning", IEEE Comput. Soc., vol. 3, pp.1314-1315,
2004.

[27] I. Leila, B. Mills and A. Hennebelle, "A formal model of dynamic

resource allocation in grid computing environment", Proc. of the 9
th

ACIS Int. Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD '08), IEEE
Computer Society Washington, DC, USA, 2008.

[28] S. Manpreet, "GRAAA: Grid resource allocation based on ant

algorithm", .J. Adv. Inf. Technol., vol. 1, no. 3, pp. 133-135, 2010.

[29] G. Rouhollah, and S.S. Hadi,. "A grid resource allocation method based
on analytic hierarchy process", 5

th
 Int. Sym. on Telecommunications

(IST'2010), 2010.

[30] Y. Adil, , A. A. Hanan, and A. A. Atahar, "A bidding-based grid

resource selection algorithm using single reservation mechanism", Int. J.
Comp. Appl., vol. 16, no. 4, pp. 39-43, 2011..

[31] S. Dawei, C. Guiran, J. Lizhong and W. Xingwei, "optimizing grid

resource allocation by combining fuzzy clustering with application
preference", Int Conf. on Advanced Computer Control (ICACC), pp:

22-27, 2010.

[32] G. Tibor, "A resource allocation protocol for providing quality of service
in grid computing, using a policy-based approach", AICT-ICIW '06

Proc. of the Advanced Int'l Conf. on Telecommunications and Int'l Conf.
on Internet and Web Applications and Services, IEEE Computer Society

Washington, DC, USA, 2006.

[33] S., Zikos, and H. D. Karatza, "Resource allocation strategies in a 2-level
hierarchical grid system", Proc. of the 41

st
 Annual Simulation Symp.

(ANSS), April 13–16, IEEE Computer Society Press, SCS, pp. 157–164,
2008.

[34] Y. ZHU, "A survey on grid scheduling systems", Tech. Report,

Department of Computer Science, Hong Kong University of Science and
Technology, 2003.

[35] R. Buyya, "A grid simulation toolkit for resource modelling and

application scheduling for parallel and distributed computing",
www.buyya.com/gridsim/

[36] J. Balasangameshwara, and N. Raju, "A decentralized recent neighbour
load balancing algorithm for computational grid", Int. J. of ACM

Jordan, vol. 1, no. 3, pp. 128-133, 2010.

http://www.sciencedirect.com/science/article/pii/S0164121298100882
http://www.sciencedirect.com/science/article/pii/S0164121298100882
http://www.sciencedirect.com/science/article/pii/S0164121298100882

