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Abstract—In this paper, we present an algorithm for solving 

the structured variational inequality problem, and prove the 

global convergence of the new method without carrying out any 

line search technique, and the global R-convergence rate are also 
given under the suitable conditions. 
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I. INTRODUCTION  

Leting mappings : , :
n m

f X R g Y R  , the structured 

variational inequality problem with linear constraint is to find 

vector 
*

u   such that 

* *
( ) ( ) 0,

T
u u T u u                          (1.1) 

where
( )

, ( ) ,
( )

x f x
u T u

y g y
 
   
   
   

{( , ) | , ,x y x X y Y Ax      

},By b ,
n m

X R Y R   are given nonempty closed convex 

sets, ,f g are given continuous monotone operators,

,
r n r m

A R B R
 

  ,
r

b R . We denote the solution set of the 

VI by 
*

 , and assume that it is nonempty throughout this 

paper. 

By attaching a Lagrange multiplier vector 
r

R   to the 

linear constraints Ax By b  ,(1.1)can be equivalently 

transformed into the following compact form, denoted by VI:  

Find 
*

w W such that  

* *
( ) ( ) 0,

T
w w Q w w W                         (1.2) 

where

( )

, ( ) ( ) ,

T

T

f x Ax

w y Q w g y B

z Ax by b







  

 

  
  
        

 ,
r

W X Y R    and 

the solution set of (1.2) is denoted by 
*

W which is always 
assumed to be nonempty. 

This problem has important applications in many fields, 
such as network economics, traffic assignment, game theoretic 
problems, etc.  For example,  Nagurney  et  al.  ([1])  developed  
a  variational inequality  based  supply  chain  network  
equilibrium  model consisting  of  three  tiers  of  decision-
makers  in  the  network. They established some governing 
equilibrium conditions based on the optimality conditions of 

the decision-makers along with the market equilibrium 
conditions. In recent years, many methods have been proposed 
to solve the VI ([2-8]). The alternating direction method 
(ADM) is a powerful method for solving the structured 
problem (1.2), since it decompose the original problems into a 
series subproblesm with lower scale, which was originally 

proposed by Gabay and Mercier ([5]) and Gabay（ [6] ）. Ye 
and Yuan [7] proposed a new descent method for VI by adding 
an additional projection step to the above ADM. Han ([8]) 
proposed a modified alternating direction method for 
variational inequalities with linear constraints. At each 
iteration, the method only makes an orthogonal projection to 
simple set and some function evaluations. Motivated by [7, 8], 
we present a new algorithm for the structured variational 
inequality problem, and prove the global convergence of the 
new method without carrying out any line search technique. 
Furthermore, we also show that this method is global R  linear 
convergent under the suitable conditions. 

Some notations used in this paper are in order. The vectors 
considered in this paper are all taken in Euclidean space 
equipped with the standard inner product, which is denoted by 

nR . We let  and
1
 respectively denote the usual Euclidean 

2-norm and 1-norm of vectors in nR . The transpose of matrix 

M  (vector x ) be denoted by 
T

M (
T

x ). 

II. PRELIMINARIES 

In this section, we first give the following definition of 
projection operator and some relate properties ([9]). For 

nonempty closed convex set nR  and any vector nx R , 

the orthogonal projection of x onto is denoted by ( )P x . 

Lemma 2.1 For any , ,nu R v   then ( ) ,P u u v    

.( ) 0  P u    

For (1.2), 0   is constant,  

1

2

3

( , ) [ ( )]

[ ( ( ) )]( , )

( , ) [ ( ( ) )]

( , ) ( )

           

W

T

X

T

Y

e w w P w Q w

x P x f x Ae w

e w y P y g y B

e w Ax By b

 

 

  

 

  

  

    

 

  
  
  

   
   

 

is called projection-type residual function, and let 

( ) : ( ) .r e   The following conclusion provides the 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 3, 2013 

142 | P a g e  
www.ijacsa.thesai.org 

relationship between the solution set of (1.2) and that of 
projection-type residual function ([10]). 

Lemma 2.2   is a solution of (1.2) if and only if 

( ) 0.r    

To establish theoretical analysis of the following algorithm, 
we also need the following definition. 

Definition 2.1 The mapping : n mf R R  is said to be co-

coercive with modulus 0   is 

 .
2( ) ( ), ( ) ( ) , , nf x f y x y f x f y x y R       ‖ ‖   

Definition 2.2 The mapping : n mf R R  is said to be 

strongly monotone if there is constant 0   such that  

2( ) ( ), , , .nf x f y x y x y x y R       ‖ ‖  

Obviously, suppose that f is strongly monotone with 

positive constant  , and is Lipschitz continuous with positive 

constant 0L  . Then the f  is co-coercive, i.e., for any

, nx y R , we have 

2

2

2 2

2                                       

( ) ( ), ( )

( ) ( ) .

f x f y x y x y L x y
L

f x f y
L






       

 

‖ ‖ ‖ ‖

‖ ‖
  (2.1) 

III. ALGORITHM AND CONVERGENCE 

In this following, we formally state our algorithm. 

Algorithm 3.1 

Step1. Take 0,  31 2
,2 ,min ,0

n m r

 


  
 
  

   where 

the positive constants 1, 2 , 3 are defined in the following 

Theorem 3.1, and take initial point 0 .nx R Set 0;k   

Step2. Compute  

1

[ ( ( ) )]

[ ( ( ) )]

( )

[ ( )] ;

T

X

T

Y

k k
W

k k k

k k k k

k k k

P x f x A

P y g y B

Ax By b

P Q

 

 

 

   

  
 
  
 
   
 

              

(3.1) 

Step3. If 
1k k    ‖ ‖  stop, otherwise, go to Step 2 

with : 1.k k   

Remark The algorithm is based on problem (1.2). 

Obviously, if 1k k   , combining Lemma 2.2, then k  is a 
solution of (1.2), and so is also (1.1). In the following 
theoretical analysis, we assume that Algorithm 3.1 generates an 
infinite sequence. 

Lemma 3.1 Suppose that the matrix M is positive semi-

definite, and 0max   is a maximum eigenvalue of M , we have 

2(1/ ) ( ),T

max

ly My My y R  ‖ ‖  where 
0 0

0 0 .

0

T

T

A

M B

A B

 
 

  
 
 

 

Proof: Since the matrix M is positive semi-definite, then 
there exists an orthogonal matrix P  such that 

 1 2 ,, , , ,0, ,0diag sPMP      •  where 1 2 0.s       

Set Py  , then  

 

2 2 2 2 2 2
1 1 2 2

2 2 2
1 2

2

            

            

            

1 2
diag 0 ,0)

( )

diag( , , , ,0 ,0)

.

 (

(1/ )

(1/ )

(1/ )

, , , ,

s s

s

max

max

max

sy My y P Py

y P Py

My

  

     

  









  



 ‖ ‖

• • •

• •
 

Theorem 3.1 Suppose that ,f g are co-coercive with 

positive constants 1 2,  , respectively, and the matrix M is 

positive semi-definite.  

Then the sequence { }k  converges globally to a solution 

of (1.1). 

Proof: By Lemma 2.1, we have  

1 1( ) [ ], 0, .k k k kQ W                                 
(3.2) 

We take * *W  , then  

* *
,( ) 0, .Q W                                            (3.3) 

Let *  in (3.2), take 1k    in (3.3), adding these two 
inequalities yields 

* * *

* 1 * 1

* * 1 1 * 1

* * 1

1 * 1

1

1 *

[ ( ) ( )], [ ( ) ( )],

0 [ ( ) ( )] ,

[ ( ) ( )], ,

[ ( ) ( )],

,    

,    

k k k

k k k k

k k k k k

k k k k

k k k

k k

k k k

Q Q Q Q

Q Q

Q Q

Q Q

       

      

        

      

   

 

   

 

  



 



 

       

      

         

       

   

 

  

* * *

* * *

** *

* * * *

* 1 1 * 1

1

( ( ) ( )) ( )

( ( ) ( )) ( )

( ) ( )

 

( ( ) ( )) ( ) ( ( ) ( )) ( )[ ]

 

[ ( ) ( )]  ,    ,

k k k

k k k

kk k

k k k k

T
T

T

T T

k k k k k k

f x f x A x x

g y g y B y y

A x x B y y

f x f x x x g y g y y y

Q Q

 

 



 



          

   

   

  

   

 

  

   
   
   
   

 

        

 



2

*

* * *

1 2 3

2

* *

* * * * * *

* *

* 1 1 * 1

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

 ( ) ( ) ( ) ( ) ( ) ( )

     ]

 

( ) ( )

[

 [ ( ) ( )], ,

[

k

k k T k

k k

T

T T T Tk k k k k k

k kT T

k k k k k k

A

f x f x g y g y B

A x x B y y

A x x x x A B y y

y y B

Q Q

 

 

      

 

        

   

  



    

  

        

  

         



 



‖ ‖ ‖ ‖

2

* 1 1 * 1

]

  [ ( ) ( )], ,k k k k k kQ Q          
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* *

* * * *

1 2 3

* *

1 2 3

22

1 1

2

2

*

* 1 1 * 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ]

  

[

[ ( ) ( )],

 

  

[ ( ) ( )], ,

k k

k k k k

k k

k k k k

k k k k k k

A x x B y y

f x f x g y g y A x x B y y

Q

f x f x g y g y

Q

Q Q

  

   



     

        

 

  

  

     

   



       



        

   ‖ ‖ ‖ ‖+ ‖ ‖

‖ ‖ ‖ ‖

31 2* * * *

1 1 1

* 1

*

*

2

1

2

* *

* 1 1 * 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

,

( )

[ ( ) ( )], ,  

k k k k

k k

k

k

k k

k k k k k k

f x f x g y g y A x
n m r

x B y y

f x f x

g y g y

Ax By b Ax By b

Q Q
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* 1

*

* * 1

* *

2

1 * 1

1 * 1

* *
2

( ) ( )

(

[ ( ) ( )],

[ ( ) ( )],) ( )

( ) ( )

  ,

,

( ) ( ) [ ( ) ( ) ,

 

]

 

k k k

k

k k k k

k k

k k k

k k k

k k k k

f x f x

g y g y

Ax By b Ax B b

Q

Q
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Q

Q

Q Q Q Q

    

    

   



   

       





 

 





    

  

    

    

  
  

    
  
  

    

       
 

1

1 * 1

* * 1

1 * 1

* * 1

1 * 1

1 2 * 1

2

2 * 2

2
2

1

2

,

( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( )
4

,

1 1 1

4 2 2

 

2

  

  

 

k k k

k k k k

k k k

k k k k

k k k

k k k k k

Q Q Q Q

Q Q Q Q

   

       

   


       



   


       





 



 



 

  



    

      
 

    

     

    

  



    

‖ ‖‖ ‖

‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ 2

1 2 * 1 2 * 21 1 1
( 1 ,

2 2 2 2

k

k k k k
     



       

‖

)‖ ‖ ‖ ‖ ‖ ‖

where the second inequality follows from the fact that ,f g  are 

co-coercive with positive constants 
1 2
,  and Lemma 3.1; the 

fourth inequality is obtained by 

2 2 2 2       ( ) ( 0, 0, 0)ca b a b c a b c       , 

the fifth inequality and the seventh inequality follow from 
the fact that 

1
, ,nx x n x x R     

and the sixth inequality is true by letting min   

31 2
, , ,

n m r

   
 
  

the ninth inequality follows from the 

Cauchy-Schwarz inequality. Thus, we have  

1 2 * 1 2 * 2( 1
2

0k k k k
     


       )‖ ‖‖ ‖‖ ‖ . 

Combining this with 20 u  , we have 

1 2 * 2 * 1 22 2

2 2

k k k ku u

u u

 
       

   ‖ ‖ ‖ ‖ ‖ ‖           

(3.4) 

i.e.,  

2 * 2 * 1 2(
2 2

2 2
.k k ku u

u u
r

 
      

   ) ‖ ‖ ‖ ‖               

(3.5) 

by (3.4), we conclude that the nonnegative sequence 
*

{ }
k ‖ ‖ is strictly decreasing and convergent. Thus, we 

have ( )kr x  converges to 0 by (3.5).  We also obtain that the 

sequence 
*{ }k ‖ ‖  is bounded since it is convergent, and so 

is{ }k . Let { }ik  be a subsequence of { }k  and converges to

 , since ( )r   is continuous, we have ( ) 0r   , i.e.,   is a 
solution of (1.1). 

On the other hand, we suppose that   is also a 

accumulation point of{ }k , and let { }jk
 be a subsequence of 

{ }k  and converges to .  For any jk
, there exists i  such that

i jk k
, by (3.4), we obtain that 2 2 0 j i

k k      ‖ ‖ ‖ ‖ as

i
k  . Using (3.4) again, we can also obtain 0j i

k k  ‖ ‖ . 

Thus, we have  

0j ji i
k kk k              ‖ ‖‖ ‖‖ ‖‖ ‖  as 

i
k  ,  

i.e.,   . Thus, the sequence { }k  converges globally to 

a solution of (1.1). 

To establish the R  linear convergence rate of 
Algorithm3.1, we also need the following conclusion which is 
crucial to convergence rate of algorithm. 

Lemma 3.2 Suppose that ,f g  are strongly monotone with 

positive constants 
1 2
,  , and are Lipschitz continuous with 

positive constants 
1 2

0, 0L L  , respectively, the matrix
T

T

A

B

 
 
 

 

has full-column rank. Then for any n m rR   , there exists a 

solution *  of (1.1) such that  

1 1 1

1 2 3

*
max{ , }, 1

1
{ } ( ).u u L r


       ‖ ‖                     (3.6) 

Proof:  Since ,[ ( )]( ) W WP Qe        by (1.1),  

* *( ( ) ) ( ) 0.Te Q                               (3.7) 

Combining * *W  with Lemma 2.1, we have 

* [ ( )], [ ( )] [ ( )] 0.W WP Q P Q Q                            
(3.8) 

Substituting [ ( )]WP Q   in (3.8) by ( )e   yields 

*( ( )) [ ( ) ( )] 0.Te e Q                                     (3.9) 

Adding (3.7) and (3.9), one has 

     
* *[( ) ( )] [ ( ) ( ( ) ( ))] 0,Te e Q Q            

app:ds:seventh
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i.e.,
* * * *( ) [ ( ) ( )] ( ) [( ) ( ( ) ( ))]

( ) ( ) 0.

T T

T

Q Q e Q Q

e e

          

 

     

 

Combining this with Definition 2.2, a direct computation yields 

* * *

1 1 1 * *

1 2 3

* *

* *

* * *

1 1 1 * * *

1 2 3

* *

2 2 2* 2

) )

, ( ( )max{ , ( )) ( ( ) ( ))}

( (

( ) ( )

]

( ( ) ( )

[

max{ , }

) ( )

, ( ( ) ( )) ( )

( ) ( )

T
T

T

T T

T
M

x x y y

f x f x g y g yx x y y

f x f x A x x

g y g y B y y

A x x B y

u

y

u u

u

 

 

 





  







 

  

  

 









  



    
 

    
 



 



   

 ‖ ‖

*

* * *

1 1 1 * * *

1 2 3

** *

1 1 1 * *

1 2 3

1 1 1

1 2 3

1
{ ( )

( ( ) ) ( ( ) )

, ( ( ) ) ( ( ) )

(

max{ , }

max{ , }[( ) ( ( ) (

) ( )

))]

max{ , }

,

, T

T
T T

T T

e x

f x A f x A x x

g y B g y B y y

Ax By b

u u

u u

A

Q

u u

x

Q

By b



 

 





    





  

  

  

 
 
 
 
 

     
   

      
          



  



•

* *

* *

* *

1 1 1

1 2 3

1 1 1

1 2 3

[( ) ( ( ) ( ))] ( ) ( )}

1
{ ( ) ( ( ( ) ( )) )}

1
( ){ },

max{ , }

ma

,

x{ , },

T
Q Q e e

e Q Q

r L

u u

u u

      

     


     






  

  

   

  

  





‖ ‖‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

where    

2
1

1

3 , ,
T

T

A
A B A B

B





  

    
  

.  Thus, we can conclude that 

(3.6) holds.  

Theorem 3.2 Suppose that the hypotheses of Lemma 3.2 
holds, and  satisfies the condition 

1 1 1
1 2 3

2

2 21max{ , }

2

2 ,
0,

{ }
1

u u

u

u L



   





   

then the sequence { }k  converges to a solution of (1.1) R 

linearly.  

Proof:  Combining (3.5) with (3.6), one has 

    

1 1 1
1 2 3

2 2
*

2 2

2
2 * * 1 22

(
2 2

1

2

max{ , }, { }

.

k

k k ku u

u u

u u L

r



 

 
 

    

  

 








 ) ‖ ‖  

i.e., 

1 1 1

1 2 3

2 2
* 1 2 *

2 2
max{ , }

2

2 , 1{ }
k k

u u

u

u L

 


   

  

 

 
 
 




‖ ‖

By
1 1 1

1 2 3

2

2 2max{ , } 1

2

2 ,
1 0,

{ }u u

u

u L

 

   


  


then the desired 

result follows. 

IV. CONCLUSIONS  

In this paper, we proposed a new iterative method for 
solving the structured variational inequality problem (VI), and 
have proved its global convergence without carrying out any 
line search technique. Furthermore, the error bound estimation 
for VI is also established under the suitable conditions, based 
on this, we prove that the method has global R-linear 
convergence rate. Surely, under milder conditions, we may 
established global error bounds for VI, and may use the error 
bound estimation to establish quick convergence rate of the 
method for solving the VI. This is a topic for future research. 
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