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Abstract—In this work we investigate the orbit-attitude pertur-

bations of a rigid spacecraft due to the effects of several forces

and torques. The spacecraft is assumed to be of a cylindrical

shape and equipped with a charged screen with charge density

σ. Clearly the main force affecting the motion of the spacecraft

is the gravitational force of the Earth with uniform spherical

mass. The effect of oblate Earth up to J2 is considered as

perturbation on both the orbit and attitude of the spacecraft,

where the attitude of the spacecraft is acted upon by what is

called gravity gradient torque. Another source of perturbation

on the attitude of the spacecraft comes from the motion of

the charged spacecraft in the geomagnetic field. This motion

generates a force known as the Lorentz force which is the source

of the Lorentz force torque influencing the rotational motion of

the spacecraft. In this work we give an analytical treatment of

the orbital-rotational dynamics of the spacecraft. We first use

the definitions of Delaunay and Andoyer variables in order to

formulate the Hamiltonian of the orbit-attitude motion under the

effects of forces and torques of interest. Since the Lorentz force

is a non-conservative force, a potential like function is introduced

and added to the Hamiltonian. We solve the canonical equations

of the Hamiltonian system by successive transformations using a

technique proposed by Lie and modified by Deprit and Kamel

to solve the problem. In this technique we make two successive

transformations to eliminate the short and long periodic terms

from the Hamiltonian.

I. INTRODUCTION

The motion of a rigid spacecraft is specified by its position,
velocity, attitude, and attitude motion. The first two describe
the translational motion of the center of mass of the spacecraft,
while the latter two describe the rotational motion of the body
about the center of mass, In general the translational and
attitude motions are independent as long as no resonance con-
ditions are assumed between the orbital and rotational motions,
where in this case attitude-orbit coupling results. A spacecraft
is in general under the perturbation effect of gravitaional
potential of the Earth, which includes both perturbations on the
orbital and the attitude motion of the spacecraft. Other forces

maybe added to the gravitational force, such as solar radiation
pressure, which is investigated analytically in [11] and [2]
. In this work we invesitgate analytically the perturbation
effects of both the gravitational force up to J2 and Lorentz
force on both the orbital and attitude motion. Following the
work of [2], this paper is organized as follows: we formulate
the Hamiltonian of the motion of the spacecraft under the
perturbing forces and torques, the problem is then tackled
using the straight forward Lie technique. This technique was
proposed by Lie and developed by Deprit and Kamel (see
[1] and [5]). In this technique we perform two successive
transformations to eliminate the short and long periodic terms
from the Hamiltonian, and hence the new canonical equations
are solved easily. The novelty of this work is that we obtain
an analytical solution of the problem. Despite the numerical
solution is accurate and can be applied in practise, analytical
treatments can lead to closed form solutions, and enables us
to analyze the problem.

II. COORDINATE SYSTEMS AND SYSTEMS OF
CANONICAL VARIABLES

Before starting to formulate the problem we first define
the coordinate systems and the canonical variables used to
describe the motion. Let the inertial coordiante system OXY Z
with origin at the Earth’s center and defined such that the
X−axis is toward the Vernal Equinox, the Y−axis is normal to
the X−axis and located in the equatorial plane and the Z−axis
coincides with the rotational axis of the Earth. Three unit
vectors (̂i, ĵ, k̂) are taken in the X,Y, Z directions respectively.
The body coordinate System O�X �Y �Z � is located at the center
of mass of the spacecraft with X �−axis, Y �−axis and Z �−axis
choosen along the principal axes of the spacecraft.The three
unit vectors (ê1, ê2, ê3) are taken in the X �, Y �, Z � directions
respectively. The orbital coordinate system O�ξηζ is located
at the center of mass of the spacecraft and with the ξ−axis
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along the radius vector of the spacecraft from the geocenter,
the η-axis is normal to the radius vector and in located in
the orbital plane and ζ-axis is normal to the orbital plane.The
three unit vectors (R̂, Ŝ, T̂ ) are taken in the ξ, η, ζ directions
respectively.

A. Sets of Canonical variables
There are two types of sets of canonical variables used,

one for the description of the orbital motion , and the other
describes the attitude motion. There are many sets of variables
for both types. Two of the most famous sets are Delaunay and
Andoyer sets of variables used to describe both orbital and
attitude motion respectively.

B. Delaunay variables
Delaunay variables are usually used to describe the orbital

motions of the Earth and of the Moon and Sun, assumed to
produce measurable tidal effects. They are usually defined as
:
l : Mean anomaly, g : Argument of perigee, h : Longitude
of the node, L =

√
µa , G =

�
µa(1− e2) and H =�

µa(1− e2) cos I . Where µ is the Earth’s mass, a is the
semi-major axis of the spacecraft, e is the eccenricity, and
I is the inclination.

C. Andoyer variables
Andoyer variables are the most commonly used for the de-

scription of attitude motion. [3] performed transformation from
the inertial frame to the body frame through the intermediate
invariable plane using 3− 1− 3− 1− 3 successive rotations.

The transformation matrix of this transformation is given in
terms of Andoyer variables as:

R(ha, Ia, ga, Ja, la) = [V 1 V 2 V 3] (1)

where Ia is the inclination of the invariable plane on the
reference plane, Ja is the angle between the invariable plane
and the body plane. The column vectors V 1,V 2 and V 3 are
given as:

V 1 =





(cha(cgacla − cJasgasla)− sha(−sIasJasla
+cIa(clasga + cgacJasla))

cha(−cJaclasga − cgasla)− sha(−clasIasJa

+cIa(cgacJacla − sgasla))
chasgasJa − sha(−cJasIa − cIacgasJa)





V 2 =





sha(cgacla − cJasgasla)
+cha(−sIasJasLa + cIa(clasga + cgacJasla))

sha(−cJaclasga − cgasla)
+cha(−clasIasJa + cIa(cgacJacLa − sgasla))

sgashasJa + cha(−cJasIa − cIacgasJa)





V 3 =




cIasJasla + sIa(clasga + cgacJasla)
cIaclasJa + sIa(cgacJacla − sgasla)

cIacJa − sIasJacga





Andoyer variables used in the previous transformation are
defined as: La ≡ Z � component of the angular momentum

vector (i.e. that normal to the body plane), Ga ≡ Total
angular momentum vector, Ha ≡ Z component of the angular
momentum vector (i.e. that normal to the reference plane). The
conjugate angle variables are :
la ≡ the longitude of the X � axis (of the body frame) with
respect to the node of the body plane on the invariable plane.
ga ≡ the longitude of the node N3 with respect to N2

(measured in the invariable plane).
ha ≡ longitude of the node N2 with respect to the X axis (of
the inertial frame).

III. FORMULATION OF THE HAMILTONIAN OF
THE ORBIT-ATTITUDE MOTION

The Hamiltonian of the orbit-attitude motion of the space-
craft is formulated using the prescribed Delaunay and Andoyer
variables. The total Hamiltonian consists of the Hamiltonian
of the gravitational potential, the Hamiltonian of the torque
free motion, and the Hamiltonian of the Lorentz torques.

A. Hamiltonian of the gravitational potential
As mentioned before the gravitational potential of oblate

Earth will be considered affecting on a spacecraft of a cylin-
drical shape and consisting of only one single body. The
gravitational potential of the Earth is given by [4] as

Vg = −
µm

Rc
{1 +

1

2
J2(

Re

Rc
)2(1− 3 sin2 φc)}Σ2)

−
µ

2R3
c

{(Σ1 − 3 +
3

2
J2(

Re

Rc
)2 × [(1− 5 sin2 φc)Σ1

−5(1− 7 sin2 φc)Σ2 + 2Σ3 + 20 sinφcΣ4]} (2)

where sinφc = sin I sin(f + g), J2 = 1.083 × 10−3 is the
coefficient of the second harmonic of Earth’s gravitational
potential and

Σ1 =
3�

i=1

Ii ,Σ2 =
3�

i=1

Iic
2
i3 ,Σ3 =

3�

i=1

Iic
2
ei3 ,Σ4 =

3�

i=1

Iici3cei3

and Ii are the principle moments of inertia of the satellite,
ci3 are the direction cosines between the principle axes and
the unit vector Ŝ along the radius vector Rc, and cei3 are the
direction cosines between the principal axes and the Earth’s
rotational axis.

The direction cosines ci3 and cei3 need to be evaluated
in terms of Delaunay and Andoyer variables. They were
evaluated in [2] and [6] as:
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c13 =
1�

i, j, k = −1
k �= 0

Aijk cos((f + g) + i(ha − h) + jga + kla) (3)

,

c23 =
1�

i, j, k = −1
k �= 0

Bijk sin((f + g) + i(ha − h) + jga + kla) (4)

and

c33 =
1�

i, j = −1

Cij sin((f + g) + i(ha − h) + jga) (5)

where the coefficients Aijk, Bijk and Cij are known functions of I, Ia and Ja arising from the transformations between frames.
Now after evaluating the direction cosines ci3 we proceed in evaluating their squares c2i3. We have

c213 =
�

i=0,2

2�

j, k,m = −2

Pijkm cos(i(f + g) + j(ha − h) + kga +mla) (6)

where

P0jkm = P2jkm =
1�

ν1, µ1 = −1
ν1 ± µ1 = j

1�

ν2, µ2 = −1
ν2 ± µ2 = k

�

ν3, µ3 = −1, 1
ν3 ± µ3 = m

Aν1ν2ν3Aµ1µ2µ3

2

,

c223 =
�

i=0,2

2�

j, k,m = −2

Qijkm cos(i(f + g) + j(ha − h) + kga +mla) (7)

where

Q0jkm = Q2jkm =
1�

ν1, µ1 = −1
ν1 − µ1 = j

1�

ν2, µ2 = −1
ν2 − µ2 = k

�

ν3, µ3 = −1, 1
ν3 − µ3 = m

Bν1ν2ν3Bµ1µ2µ3

2

−

1�

ν1, µ1 = −1
ν1 + µ1 = j

1�

ν2, µ2 = −1
ν2 + µ2 = k

�

ν3, µ3 = −1, 1
ν3 + µ3 = m

Bν1ν2ν3Bµ1µ2µ3

2

and

c233 =
�

i=0,2

2�

j, k = −2

Rijk cos(i(f + g) + j(ha − h) + kga) (8)

where

R0jk = R2jk =
1�

ν1, µ1 = −1
ν1 − µ1 = j

1�

ν2, µ2 = −1
ν2 − µ2 = k

Cν1ν2Cµ1µ2

2

−

1�

ν1, µ1 = −1
ν1 + µ1 = j

1�

ν2, µ2 = −1
ν2 + µ2 = k

Cν1ν2Cµ1µ2

2
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The direction cosines cei3 are evaluated as:

ce13 =
1�

i = 0,
j = −1

Aeij sin(iga + jla)

ce23 =
1�

i = 0,
j = −1

Beij cos(iga + jla) (9)

,

ce33 =
1�

i = 0

Cei cos(iga)

Here Aeij , Beij and Cei are functions of I, Ia, and Ja. Their squares are also evaluated as:

c2e13 =
2�

j = −1, k = −2

Ejk cos(jga + kla) (10)

where

Ejk =
1�

ν1, µ1 = 0
ν1 − µ1 = j

1�

ν2, µ2 = −1
ν2 − µ2 = k

Aeν1ν2Aeµ1µ2

2

−

1�

ν1, µ1 = 0
ν1 + µ1 = j

1�

ν2, µ2 = −1
ν2 + µ2 = k

Aeν1ν2Aeµ1µ2

2

,

c2e23 =
2�

j = −1, k = −2

Fjk cos(jga + kla) (11)

where

Fjk =
1�

ν1, µ1 = 0
ν1 ± µ1 = j

1�

ν2, µ2 = −1
ν2 ± µ2 = k

Beν1ν2Beµ1µ2

2

and

c2e33 =
2�

j=−1

Gj cos(jga) (12)

where

Gj =
1�

ν1, µ1 = 0
ν1 ± µ1 = j

Ceν1Ceµ1

2

The products ci3cei3 are also evaluated as:

c13ce13 =
1�

j=−1

2�

k,m=−2

Ujkm sin((f + g) + j(ha − h) + kga +mla) (13)

(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 4, No. 3, 2013 

275 | P a g e  
www.ijacsa.thesai.org 



where

Ujkm =
1�

ν1 = −1,
ν1 = j

1�

ν2 = −1,
µ2 = 0,

ν2 + µ2 = k

1�

ν3, µ3 = −1,
ν3 �= 0,

ν3 + µ3 = m

Aν1ν2ν3Aeµ2µ3

2

−

1�

ν1 = −1,
ν1 = j

1�

ν2 = −1,
µ2 = 0,

ν2 − µ2 = k

1�

ν3, µ3 = −1,
ν3 �= 0,

ν3 − µ3 = m

Aν1ν2ν3Aeµ2µ3

2

In the same way we get :

c23ce23 =
1�

j=−1

2�

k,m=−2

Vjkm sin((f + g) + j(ha − h) + kga +mla) (14)

where

Vjkm =
1�

ν1 = −1,
ν1 = j

1�

ν2 = −1,
µ2 = 0,

ν2 ± µ2 = k

1�

ν3, µ3 = −1,
ν3 �= 0,

ν3 ± µ3 = m

Bν1ν2ν3Beµ2µ3

2

and

c33ce33 =
1�

j=−1

2�

k=−2

Wjk sin((f + g) + j(ha − h) + kga) (15)

where

Wjk =
1�

ν1 = −1,
ν1 = j

1�

ν2 = −1,
µ2 = 0,

ν2 ± µ2 = k

Cν1ν2Ceµ2

2

B. Contribution of the gravitational potential to the total Hamiltonian
Considering the spacecraft is of a cylindrical shape and considering the dimensions of the cylinder to be of length ≈ 100m

then ρ
RE

is of order J2, where ρ is the radius vector of any point on the spacecraft relative to its center of mass, and
RE is the Earth’s radius. Now note that the principal moments of inertia Ii are directly proportional to the square of ρ,
sin2(φc) = sin2(I)( 12 −

1
2 cos(2g+ 2f)) and a = L2

µ . We then have a new form of the gravitational potential written in terms
of Delaunay and Andoyer variables as:

Vg = −
µ2

2L2
+

1

4

A2

L6

�
a

Rc

�3 �
(3s2 − 2)− 3s2 cos(2f + 2g)

�
(16)

−
J2
2

2!

µ4R2
e

2L6

�
a

Rc

�3 � j,k,m=2�

j, k,m = −2
i = 0.2

�B11
ijkm cos(i(f + g) + j(ha − h) + kga +mla)

�

−
J3
2

3!

3µ6R4
e

2L10

�
a

Rc

�5 � j,k,m=2�

j, k,m = −2
i = −2, 0, 2, 4

�C11
ijkm cos(i(f + g) + j(ha − h) + kga +mla)

�

(17)

where Rc is the distance from the center of Earth to the center of mass of the spacecraft, s = sin I , A2 = µ4R2
e and the

coefficients �B11
ijkm and �C11

ijkm are functions of Ia, Ja, I, Ii, Re and J2
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C. Contribution of Lorentz force to the Hamiltonian

If we consider the spacecraft is equipped with a charged cylindrical sheet with surface charge density σ, the total charge of
the spacecraft is Q =

�
S σdS, where S is the surface area of the screen. It was shown by [?] that when the center of charge

is off-center, the expression for Lorentz torque can be approximated by :

Nl = Qρ◦ × (v ×B)b (18)

where ρ◦ is the radius vector of the center of charge and is given by in the body coordinate system

ρ◦ = x◦ê1 + y◦ê2 + z◦ê3 =
1

Q

�

S
σρdS

v is the velocity of the center of mass of the spacecraft relative to the ECEF (Earth Centered Earth Fixed) frame and B is the
geomagnetic field intensity.

B = −grad Um (19)

where Um is the geomagnetic potential. We use here the inclined dipole model for the geomagnetic potential described in the
Cartesian coordinates. [?]

Um =
R3

e

R2
c

(g0
z

Rc
+ g1

x

Rc
+ h1

y

Rc
) (20)

where
g0 = −29615, g1 = −1728, h1 = 5186

Evaluating equation (18) in terms of Delaunay and Andoyer variables takes long calculations. The final form of the Lorentz
torque is then

Nl = Q(
RE

Rc
)3
�� i,j=3,k=2�

i, j = 0
k = −2

1�

m,n = −1
r, s = −1

�
X0

ijkmnrs

× cos(if + jg + kh+mga + nha + rla + sE)

+ �X0
ijkmnrs sin(if + jg + kh+mga + nha + rla + sE)

��
ê1

+

� i,j=3,k=2�

i, j = 0
k = −2

1�

m,n = −1
r, s = −1

�
Y 0
ijkmnrs cos(if + jg + kh+mga + nha + rla + sE)

+�Y 0
ijkmnrs sin(if + jg + kh+mga + nha + rla + sE)

��
ê2

+

� i,j=3,k=2�

i, j = 0
k = −2

1�

m,n = −1
r, s = −1

�
Z0
ijkmnrs cos(if + jg + kh+mga + nha + rla + sE)

+ �Z0
ijkmnrs sin(if + jg + kh+mga + nha + rla + sE)

��
ê3 (21)

where E is the eccentric anomaly, and the coefficients X0
ijkmnrs,

�X0
ijkmnrs, Y

0
ijkmnrs,

�Y 0
ijkmnrs Z0

ijkmnrs and �Z0
ijkmnrs are

known functions of I, Ia and Ja and arise from the transformations between coordinate systems.

D. Potential like function

Since Lorentz force is not conservative, i.e not derived from a potential function, we introduce the potential like function to
contribute to the Hamiltonian. The potential like function ϑl has the form

ϑl = −Nl.Rc = −Nl.Rc(c13ê1 + c23ê2 + c33ê3) (22)
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The potential like function is then evaluated in the form :

ϑl = −Q
R3

E

R2
c

�
i,j=4,k=3�

i, j = −2
k = −3

s = 1
m,n, r = 2�

m,n, r = −2
s = −1

�
A11

ijkmnrs

× sin(if + jg + kh+mga + nha + rla + sE)

+ �A11
ijkmnrs cos(if + jg + kh+mga + nha + rla + sE)

��
(23)

According to [?], the magnitude of the Lorentz torque acting on a spacecraft is

|Nl| = Q|ρ◦|Rc(ω◦ − ωE)|B| (24)

where ω◦ is the angular velocity of the rotation of the orbital coordinate system relative to the inertial system and ωE is the
angular velocity of diurnal rotation of the Earth. Thus if we take a practical example in which Rc = 7× 106 m, S = 100 m2,
the electric potential U = 3 × 105V and electric capacity cs = 10−11, so that the charge has a magnitude of 3 × 10−3.
ω◦ = 1.1× 10−3 and if |ρ◦| = 0.5 m then the Lorentz torque is of order ∼ 10−5, i.e. the order of Lorentz torque is close to
J2
2 . In terms of the small parameter J2 the potential like function can be written as:

ϑl = −
J2
2

2!

�
i,j=4,k=3�

i, j = −2
k = −3

s = 1
m,n, r = 2�

m,n, r = −2
s = −1

�
A11

ijkmnrs sin(if + jg + kh+mga + nha + rla + sE)

+ �A11
ijkmnrs cos(if + jg + kh+mga + nha + rla + sE)

���
a

Rc

�2 �QµR3
E

L2
(25)

where �Q = 2!Q
J2
2

.

E. Total Hamiltonian

Using the expressions of the gravitational potential and the potential like function, the total Hamiltonian is then written as:

H =
3�

n=0

Jn
2

n!
Hn (26)

where

H0 = −
µ2

2L2
+

1

2

�
1

I3
−

1

I1

�
L2
a +

1

2I1
G2

a (27)

where the second and third terms in H0 belong to the Hamiltonian of the torque free motion.

H1 =
1

4

A2

L6

�
a

Rc

�3 �
(3s2 − 2)− 3s2 cos(2f + 2g)

�
(28)
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H2 = −
µ4R2

e

2L6

�
a

Rc

�3 j,k,m=2�

j, k,m = −2
i = 0.2

�B11
ijkm cos(i(f + g) + j(ha − h) + kga +mla)

−

�QµR3
E

L2

�
a

Rc

�2
�

i,j=4,k=3�

i, j = −2
k = −3

s = 1
m,n, r = 2�

m,n, r = −2
s = −1

�
A11

ijkmnrs ×

sin(if + jg + kh+mga + nha + rla + sE)

+ �A11
ijkmnrs cos(if + jg + kh+mga + nha + rla + sE)

��
(29)

H3 = −
3µ6R4

e

2L10

�
a

Rc

�5 � j,k,m=2�

j, k,m = −2
i = −2, 0, 2, 4

�C11
ijkm cos(i(f + g) + j(ha − h) + kga +mla)

�
(30)

From the above equations we note that H0 is a function of L, La and Ga, hence l, laand ga are fast variables while the other
variables are slow ones.

IV. PERTURBATION APPROACH
Let � be the small parameter of the problem and let the canonical system of differential equations be written as :

u̇ = HT
U , U̇ = −HT

u

What is required is to construct two (or more) transformations (u, U ; �) → (ù, Ù) and (ù, Ù ; �) → (`̀u, `̀U) analytic in � at
� = 0 to eliminate in succession the short and long period terms from the Hamiltonian such that `̀U reduce to constants and
`̀u become linear functions of time.

The old and new Hamiltonians and the Generators are assumed expandable as

H = H0 +
�

n

�n

n!
Hn

H∗(−, ù2, ù3; Ù ; �) = H∗
0 (Ù1) +

�

n

�n

n!
H∗

n(−, ù2, ù3; Ù)

H∗∗(−; `̀U ; �) = H∗∗
0 ( `̀U) +

�

n

�n

n!
H∗∗

n (−; `̀U) (31)

W (ù; Ù ; �) =
�

n

�n

n!
Wn+1(ù; Ù)

W ∗(−, `̀u2, `̀u3;
`̀U ; �) =

�

n

�n

n!
Wn+1(−, `̀u2, `̀u3;

`̀U)

Elimination of Short period terms
Using the transformation equations we have the following basic identities

H∗
0 = H0

H∗
n = �Hn + (H0;Wn)

�Hn = Hn +
n−1�

j=1

��
n− 1
j − 1

�
(Hn−j ;Wj) +

�
n− 1
j

�
GjH

∗
n−j

�
(32)

Let u1 be the fast variable in H . We choose H∗
n to be the average of �Hn over u1; i. e.

H∗
n =< �Hn >u1 (33)

So that the periodic term is
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Pn = �Hn −H∗
n = (H0;Wn) (34)

from which

Wn =

�
∂H0

∂U1
1

�−1 �
Pndù1

After determining the generator, the elements of the transformation and its inverse are determined by

u = ù+
2�

n=1

Jn
2

n!
ù(n) , U = Ù +

2�

n=1

Jn
2

n!
Ù (n) (35)

ù = u+
2�

n=1

Jn
2

n!
u(n)(u, U) , Ù = U +

2�

n=1

Jn
2

n!
U (n)(u, U) (36)

where
ù(1) =

∂W1

∂Ù
, ù(2) =

∂W2

∂Ù
+ L1ù

(1) (37)

Ù (1) = −
∂W1

∂ù
, Ù (2) =

∂W2

∂ù
+ L1Ù

(1) (38)

and
u(1) = −ù(1) , u(2) = −ù(2) + 2L1ù

(1) (39)

U (1) = −Ù (1) , U (2) = −Ù (2) + 2L1Ù
(1) (40)

where L1 is the Lie derivative.
Note that in the last two equations the right hand sides are evaluated at ù = u and Ù = U .

A. Elimination of Long period terms
The second transformation to eliminate the long period terms proceeds in exactly the same way but replacing (u, U) by
(ù, Ù); (ù, Ù) by (`̀u, `̀U); H by H∗ ; H∗ by H∗∗ and W by W ∗

V. SOLUTION OF THE TRANSLATIONAL ROTATIONAL MOTION
In this section the translational rotational motion is solved using the Lie technique. As discussed in the previous section,

there will be two successive canonical transformations in order to eliminate the short and long period terms in succession.
secular and periodic terms will be retained up to O(J3

2 ) and O(J2
2 ) respectively.

A. Short Period transformation
we proceed to eliminate the short period terms (those depending on l, la and ga) from the Hamiltonian in equation (26)
1) Zero Order: Using equation (32) and equation (27) we find that :

H
∗
0 = H0 = −

µ2

2L2
+

1

2

�
1

I3
−

1

I1

�
L2
a +

1

2I1
G2

a

where all the variables in the right hand side are understood to be single primed, but the primes are removed from now on
for simplicity.

2) First Order: From equation (32) we have :

H
∗
1 = �H1 + (H0;W1) (41)

and

�H1 = H1 =
1

4

A2

L6

�
a

Rc

�3 �
(3s2 − 2)− 3s2 cos(2f + 2g)

�

we then choose H∗
1 to be the secular part of �H1. Thus we take the average of �H1 over the fast angles.

H
∗
1 =< �H1 >l,la,,ga=

1

8π3

� 2π

0

� 2π

0

� 2π

0

�H1dladgadl (42)

That is
H

∗
1 =

1

4

A2

L3G3
(1− 3

H2

G2
) (43)
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The Periodic part is given as

P = �H1 −H
∗
1 = (W1;H0) =

1

4

A2

L6

�
a

Rc

�3 �
(1− 3

H3

G3
)− 3s2 cos(2f + 2g)

�
−

1

4

A2

L3G3
(1− 3

H2

G2
) (44)

Since P is independent of la and ga, we have only ∂W1
∂l not vanishing.

thus

W1 =
L3

µ2

�
Pdl =

1

4

A2

µ2G3

�
(1− 3

H3

G3
)(f − l + e sin(f))

−3s2
�1
2
sin(2f + 2g) +

e

2

�1
3
sin(3f + 2g) + sin(f + 2g)

���
(45)

3) Second order: Again we use the perturbation equations.
The equations for the second order are :

H
∗
2 = �H2 + (H0;W2) (46)

�H2 = H2 + (H1 +H
∗
1;W1) (47)

Where H2 is given in equation(29) and the bracket (H1 +H∗
1;W1) is evaluated as:

(H1 +H
∗
1;W1) = −

3A2
2

16µ2L4G6

�
3s2 − 2

�2
−

3A2
2(4− 5s2)

16µ2L3G7

3�

i=1

K2
i,2 cos(if + 2g)

+
9A2

2s
2

8µ2L6G4
(4− 5s2)(f − l)

�
a

Rc

�3

sin(2f + 2g)

+
A2

2

256eµ2L11G8

�
a

Rc

�2 2�

j=−1

8�

i=0

�Hj,i cos(if + 2jg) (48)

where f is the true anomaly, K2
i,2 and �Hj,i are functions of e and s. Now �H2 is easily obtained. Now we take H∗

2 in equation
(46) to be the average of �H2

H
∗
2 =< �H2 >l,la,,ga=

1

8π3

� 2π

0

� 2π

0

� 2π

0

�H2dladgadl

In performing this averaging we use Hansen coefficients to express functions of the true and eccentric anomaly in terms of
the mean anomaly. �

a

Rc

�n

cos(mf) =
�

k≥0

a−n,m
k (e) cos(kl) (49)

and �
a

Rc

�n

sin(mf) =
�

k≥0

b−n,m
k (e) sin(kl) (50)

where the coefficients a, b are Hansen coefficients that many procedures has been developed to evaluate[?].
Upon averaging of �H2 we have

H
∗
2 =

2�

i=0

H∗
i cos(ig) +

j=2�

j = −2
i = 0, 2,−2

��B
11

0ij00 cos(ig + j(ha − h))−
�QµR3

E

L2
×

j=4,k=3�

j = −2
k = −3

n = 2�

n = −2

�
F 11
jk0n00 sin(jg + kh+ nha) + �F 11

jk0n00 cos(jg + kh+ nha)

�

(51)
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and the generator W2 is given as

W2 =
∞�

i=−∞

j=4,k=3�

j = −2
k = −3

m,n, r = 2�

m,n, r = −2

�
F 22
ijkmnr sin(il + jg + kh+mga + nha + rla)

+ �F 22
ijkmnr cos(il + jg + kh+mga + nha + rla)

�
(52)

where F 11
jk0n00,

�F 11
jk0n00, F

22
ijkmnr and �F 22

ijkmnr are functions of the action variables.
4) Third order:: The equations for the third order are

H
∗
3 = �H3 + (H0;W3) (53)

�H3 = H3 +
2�

j=1

��
2

j − 1

�
(H3−j ;Wj) +

�
2
j

�
GjH

∗
3−j

�

= H3 + (H2;W1) + 2G1H
∗
2

+2(H1;W2) +G2H
∗
1

= H3 + (H2 + 2H∗
2 − (H∗

1;W1) ;W1) + (2H1 +H
∗
1;W2) (54)

The bracket (H2 + 2H∗
2 − (H∗

1;W1) ;W1) is evaluated as

(H2 + 2H∗
2 − (H∗

1;W1) ;W1) =
∞�

i=−∞

j=4,k=3�

j = −4
k = −3

2�

m,n,r=−2

Q11
ijkmnr ×

cos(il + jg + kh+mga + nha + rla)

+ �Q11
ijkmnr sin(il + jg + kh+mga + nha + rla)

(55)

and the bracket (H1 + 2H∗
1;W2)

(H1 + 2H∗
1;W2) =

∞�

i=−∞

j=4,k=3�

j = −4
k = −3

m,n, r = 2�

m,n, r = −2

Q22
ijkmnr ×

cos(il + jg + kh+mga + nha + rla)

+ �Q22
ijkmnr sin(il + jg + kh+mga + nha + rla)

�
(56)

So that when using equation (30) we have

H
∗
3 =< H3 + (H2 + 2H∗

2 − (H∗
1;W1) ;W1) + (2H1 +H

∗
1;W2) >l,la,ga

After performing the averaging we have

H
∗
3 = −

3µ6R4
e

2L10

� j=2�

j = −2
i = −2, 0, 2, 4

�C11
ij00a

−5,i
0 cos(ig + j(ha − h))

�

+
j=4,k=3�

j = −4
k = −3

2�

n=−2

�
��Q
11

jkn cos(jg + kh+ nha) +
��Q
22

jkn sin(jg + kh+ nha)

�
(57)

where Q11
ijkmnr,

�Q11
ijkmnr, Q

22
ijkmnr,

�Q22
ijkmnr,

��Q
11

jkn and ��Q
22

jkn are all functions of the action variables and the previously
computed coefficients.
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B. Elements of Short Period transformation
The elements of the transformation are obtained following the same procedures used by Kamel[?]. The equations are :

ù(1)
i =

∂W1

∂Ùi

= W1i , ù(2)
i =

∂W2

∂Ùi

+ L1ù
(1)
i (i = 1, 2, 3) (58)

Ù (1)
i = −

∂W1

∂ùi
= W1,3+i , Ù (2)

i = −
∂W2

∂ùi
+ L1Ù

(1)
i (i = 1, 2, 3) (59)

where

L1ù
(1)
i =

3�

j=1

�
∂W1i

∂ùj
W1j +

∂W1i

∂Ùj

W1,3+j

�
(60)

L1Ù
(1)
i =

3�

j=1

�
∂W1,i+3

∂ùj
W1j +

∂W1,i+3

∂Ùj

W1,3+j

�
(61)

The derivatives of W2 in the above expressions were already computed while evaluating Poisson brackets.

C. Long Period Transformation
In the new transformation we consider that the new Hamiltonian is expandable in powers of J2 such that

H
∗∗ = H

∗∗
0 ( `̀L, `̀Ga,

`̀La) +
2�

n=1

Jn
2

n!
H

∗∗
n ( `̀L, `̀G, `̀H, `̀La,

`̀Ga,
`̀Ha) (62)

and the generator W ∗ is expandable as

W ∗(`̀g, `̀h, `̀ha,
`̀L, `̀G, `̀H, `̀La,

`̀Ga,
`̀Ha) =

2�

n=0

Jn
2

n!
W ∗

n+1(`̀g,
`̀h, `̀ha,

`̀L, `̀G, `̀H, `̀La,
`̀Ga,

`̀Ha) (63)

We use the same equations of transformation but now to transform the system associated with H∗ to H∗∗

H
∗∗
0 = H

∗
0

H
∗∗
n = �H∗

n + (H∗
0;W

∗
n)

�H∗
n = H

∗
n +

n−1�

j=1

��
n− 1
j − 1

�
(H∗

n−j ;Wj) +

�
n− 1
j

�
GjH

∗∗
n−j

�
(64)

but since W ∗ is a function of the slow variables only (`̀g, `̀h, `̀ha) then the bracket (H∗
0;W

∗
n) vanishes, and the last two of

equations (64) can be written in a single equation as

H
∗∗
n = H

∗
n +

n−1�

j=1

��
n− 1
j − 1

�
(H∗

n−j ;Wj) +

�
n− 1
j

�
GjH

∗∗
n−j

�
(65)

Now we solve for different orders as before.
1) Zero Order:: The identity for the zero order is

H
∗∗
0 = H

∗
0

thus
H

∗∗
0 = −

µ2

2L2
+

1

2

�
1

I3
−

1

I1

�
L2
a +

1

2I1
G2

a

where we will be omitting the double primes from now on for simplicity.
2) First order: From equation (65) the identity for the first order is

H
∗∗
1 = H

∗
1

from which

H
∗∗
1 =

1

4

A2

L3G3
(1− 3

H2

G2
) (66)
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3) Second order: : From (65) the identity for the first order is

H
∗∗
2 = H

∗
2 +

1�

j=1

��
1
0

�
(H∗

1;W1) +

�
1
1

�
G1H

∗∗
1

�

= H
∗
2 + (H∗

1;W1) +G1H
∗∗
1

= H
∗
2 + (H∗

1;W1) + (H∗
1;W1)

= H
∗
2 + 2(H∗

1;W
∗
1 ) (67)

so that

H
∗∗
2 = 2(H∗

1;W
∗
1 ) +

2�

i=0

H∗
i cos(ig) +

j=2�

j = −2
i = 0, 2,−2

��B
11

0ij00 cos(ig + j(ha − h))−
�QµR3

E

L2
×

j=4,k=3�

j = −2
k = −3

n = 2�

n = −2

�
F 11
jk0n00 sin(jg + kh+ nha) + �F 11

jk0n00 cos(jg + kh+ nha)

�
(68)

we perform the averaging over H∗
2 and the secular part in the right hand side is then chosen to be H∗∗

2

that is

H
∗∗
2 = H∗

0 +
��B
11

00000 −
�QµR3

E

L2
�F 11
000000 (69)

and then we evaluate W1 from the remaining part as

W1 =
j=4,k=3�

j = −2
k = −3

n = 2�

n = −2

�
R∗

jkn cos(jg + kh+ nha) + �R∗
jkn sin(jg + kh+ nha)

�

where as before the coefficients H∗
i ,

��B
11

0ij00, F
11
jk0n00,

�F 11
jk0n00, R

∗
jkn and �R∗

jkn are functions of the action variables and the
previously computed coefficients.

4) Third Order:: The equations of the third order are

H
∗∗
3 = �H∗

3 + 3(H∗
1;W

∗
2 ) (70)

�H∗
3 = H

∗
3 +

2�

j=1

��
2

j − 1

�
(H∗

3−j ;W
∗
j ) +

�
2
j

�
GjH

∗∗
3−j

�

= H
∗
3 +

3

2
(H∗

2 +H
∗∗
2 ;W ∗

1 ) (71)

the bracket (H∗
2 +H∗∗

2 ;W ∗
1 ) is evaluated as

(H∗
2 +H

∗∗
2 ;W ∗

1 ) =
j=8,k=6�

j = −6
k = −6

n = 4�

n = −4

�
S∗14
jkn cos(jg + kh+ nha) + �S∗14

jkn sin(jg + kh+ nha)
�

(72)

Proceeding, we then evaluate H∗∗
3 as

H
∗∗
3 =< �H∗

3 >g,h,ha= −
3µ6R4

e

2L10

�
�C11
0000a

−5,0
0

�
+Q11

000000 +Q22
000000 +

3

2
S∗14
000 (73)
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and

W ∗
2 = −

µ6R4
e

2L10

k=2�

k = −2
j = −2, 0, 2, 4

�C∗22
jk sin(jg + k(ha − h))

+
1

3

j=4,k=3�

j = −4
k = −3

2�

n=−2

�
Q∗44

jkn sin(jg + kh+ nha)− �Q∗44
jkn cos(jg + kh+ nha)

�

+
1

2

j=8,k=6�

j = −6
k = −6

n = 4�

n = −4

�
S∗16
jkn sin(jg + kh+ nha)− �S∗16

jkn cos(jg + kh+ nha)
�

(74)

D. Elements of Long Period transformation
The elements of the transformation and its inverse maybe obtained from the equations of short period transformation, but

with the replacement of Wn by W ∗
n , (u, U) by (ù, Ù) , Ln by L∗

n and (ù, Ù) by (`̀u, `̀U).

E. Secular perturbations and the computation of position and velocity
The equations of motion are now reduced to

d `̀U

dt
= −

∂H∗∗

∂ `̀u
= 0 ,

d`̀u

dt
=

∂H∗∗

d `̀U
= c (75)

where c are arbitrary constants so that they admit the solution

`̀U = `̀U0 , `̀u = `̀u0 + ct (76)

where the constants ( `̀U0, `̀u0) are to be determined from the initial conditions.
Let the elements (u0, U0) be known at a given initial epoch t0 then we can obtain the constants ( `̀U0, `̀u0) as follows:
1- From the elements of the transformation we can compute the initial values (Ù0, ù0) from

ù0 = u0 +
2�

n=1

Jn
2

n!
u(n)
0 , Ù0 = U0 +

2�

n=1

Jn
2

n!
U (n)
0 (77)

2- From the corresponding equations for the elements of the long period transformations

`̀u0 = ù0 +
2�

n=1

Jn
2

n!
ù(n)
0 , `̀U0 = Ù0 +

2�

n=1

Jn
2

n!
Ù (n)
0 (78)

Now having determined `̀u0 and `̀U0 we can evaluate H∗∗ = H∗∗( `̀U), and in turn the constants c are now known.
To compute the position and velocity at any time t we compute

ù = `̀u+
2�

n=1

Jn
2

n!
`̀u(n) , Ù = `̀U +

2�

n=1

Jn
2

n!
`̀U (n) (79)

then

u = ù+
2�

n=1

Jn
2

n!
ù(n) , U = Ù +

2�

n=1

Jn
2

n!
Ù (n) (80)

Having determined (u, U) at time t, we compute the position, velocity, attitude and attitude motion of the spacecraft.
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VI. CONCLUSION

In this paper we have obtained an analytical solution for the orbit-attitude motion of a charged spacecraft under the effect of
Earth oblateness (J2) and Lorentz force through Hamiltonian framework. The problem is tackled by means of Lie perturbation
technique. Two successive canonical transformations were performed in order to eliminate the short and long period terms in
succession. secular and periodic terms were retained up to O(J3

2 ) and O(J2
2 ) respectively.
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