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 Abstractt—Achieving semantic interoperability is a current 

challenge in the field of data integration in order to bridge 

semantic conflicts occurring when the participating sources and 

receivers use different or implicit data assumptions. Providing a 

framework that automatically detects and resolves semantic 

conflicts is considered as a daunting task for many reasons, it 

should preserve the local autonomy of the integrated sources, as 

well as provides a standard query language for accessing the 

integrated data on a global basis. Many existing traditional and 

ontology-based approaches have tried to achieve semantic 

interoperability, but they have certain drawbacks that make 

them inappropriate for integrating data from a large number of 

participating sources. 

We propose semantic conflicts reconciliation (SCR) 

framework, it is ontology-based system in which all data 

semantics explicitly described in the knowledge representation 

phase and automatically taken into account through the 

interpretation mediation service phase, so conflicts detected and 

resolved automatically at the query time.  

Keywords—Data Integration; Heterogeneous Sources; 

Interoperability; Semantic Conflicts; Context; Reconciliation 

Ontology. 

I. INTRODUCTION 

Despite the fact that a typical large organization spends 
nearly 30% of its IT budget on integration and interoperation 
related efforts, many inter- and intra- organizational systems 
still have poor interoperability [10]. Technologies already 
exist to overcome the heterogeneity in hardware, software, and 
syntax that is used in different systems (e.g., the ODBC 
standard, XML based standards, web services and SOA-
Service Oriented Architectures) .While these capabilities are 
essential to information integration, they do not address the 
issue of heterogeneous data semantics that exist both within 
and across enterprises [11]. 

Heterogeneity problem occurs when data sources and 
receivers use different contexts (assumptions); a user submit 
query and interprets the results in a certain context, which 
completely different from contexts received from sources. 
Implicit assumptions made in each source need to be explicitly 

described and used to reconcile conflicts when data from these 
systems are combined [3]. Ontology plays an important role 
on making domain assumptions unambiguous or uniquely 
identifies the meaning of concepts in a specific domain of 
interest. 

Let us assume that the comparison service covers 100 
countries, each having its unique currency and each consisting 
of 100 vendors. Thus, there are a total of 10,000 sources in 
this example. For simplicity, let’s assume the consumer 
chooses his context to be the same as one of the sources. 
Although all vendors in the same country may use the same 
currency for price, they may use different price definitions and 
scale factors [9]. Table 1 summarizes the potential context 
differences in terms of just these four semantic aspects : 
currency, scale factor, price definition, and date format (for the 
purpose of finding exchange rate at a given day). 

TABLE I.  Semantic Differences in Data Sources [9] 

 

Thus, there could be 3600 (i.e., 100*4*3*3) different 
contexts amongst these sources; e.g., one source has US 
dollars for currency, scale factor being 1, price as tax and 
shipping and handling included, with mm/dd/yyyy date 
format; another source has Turkish liras for currency, scale 
factor being 1000000, price as only tax included, with dd-mm- 
yyyy date format, etc. The online comparison service needs to 
implement the conversions so that the comparison can be 
performed for sources in any context. 

Implementing tens of thousands of data conversions is not 
an easy task; but maintaining them to cope with changes in 
data sources and receiver requirements over time is even more 
challenging [2] 
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According to Firat [1] there are three dimensions of 
semantic heterogeneity: contextual, ontological and temporal. 
Contextual heterogeneity occurs when different systems 
(sender/receiver) make different assumptions about the 
representation of the same concept, such as the profit of a 
company can be represented in DEM (i.e., Deutschmarks) in 
one system or in USD (i.e., U.S. dollars) in another, where the 
currency used is the assumption. So there will be two or more 
not identical representations of the same thing. Ontological 
heterogeneity occurs when different meanings denoted by the 
same term (e.g., whether the profit is gross profit including 
taxes or net profit excluding taxes) because there is a 
definitional conflicts concerning the inclusion or exclusion of 

TABLE II.  Temporal vs. Atemporal heterogeneity [4].tax in the profit.  

 
Both the representational and the ontological assumptions 

can be static and do not change over time within an interested 
time period, in which case time is not of concern. The 
resulting heterogeneity is atemporal. Conversely, the 
assumptions can change over time, and the resulting 
heterogeneity is temporal [4]. 

 

There should be systematic approaches in order to reconcile 

semantic heterogeneity among heterogeneous sources and 

receivers. 

 

II. Existing Approaches For Achieving Semantic 

Interoperability 
We can resolve semantic conflicts by hand-coded 

programs but on small scale only; alternative solutions are 
needed as the number of systems and the complexity of each 
system increase. 

A. Traditional Approaches  

Brute-force Data Conversions (BF)  
In the Brute-force Data Conversions (BF) approach all 

necessary conversions implemented with hand-coded 
programs. For example, if we have N data sources and 
receivers, N (N-1) such conversions need to be implemented 
to convert the sources context to the receiver context. These 
conversions become costly to implement and very difficult to 
maintain When N is large. This is a labor-intensive process; 
nearly 70% of integration costs come from the implementation 
of these data conversion programs. A possible variation of the 
(BF) approach is to group sources that share the same set of 
semantic assumptions into one context. The approach allows 
multiple sources in the same context to share the same 
conversion programs, so the numbers of conversion programs 
will be reduced. We refer to the original approach and this 

variation as BFS and BFC, respectively [2]. These approaches 
are illustrated schematically in Fig 1. 

 

Fig.1. Traditional approaches to Semantic Interoperability [9]. 

Global Data Standardization (GS) 
If we could develop and maintain a single data standard 

that defines a set of concepts and specifies the corresponding 
representation, all semantic differences would disappear and 
there would be no need for data conversion. Unfortunately, 
such standardization is usually infeasible in practice for 
several reasons. There are legitimate needs for having 
different definitions for concepts, storing and reporting data in 
different formats. Most integration and information exchange 
efforts involve many existing systems, agreeing to a standard 
often means someone has to change his/her current 
implementation, which creates obstacles and makes the 
standard development and enforcement extremely difficult [7]. 

Interchange Data Standardization (IS) 
Data exchange systems can sometimes agree on the data to 

be exchanged, i.e., standardizing a set of concepts as well as 
their interchange formats. The underlying systems do not need 
to store the data according to the standard; it suffices as long 
as each data sender generates the data according to the 
standard. That is, this approach requires that each system have 
conversions between its local data and an interchange standard 
used for exchanging data with other systems. Thus, each 
system still maintains its own autonomy. This is different from 
the global data standardization, where all systems must store 
data according to a global standard. With N systems 
exchanging information, the Interchange Standardization 
approach requires 2N conversions. The IS approach is a 
significant improvement over the brute-force approach that 
might need to implement conversions between every pair of 
systems [9]. Although this approach has certain advantages, it 
also has several serious limitations [2]. From which, all parties 
should reach an agreement on the data definition and data 
format. Reaching such an agreement can be a costly and time-
consuming process besides; any change to the interchange 
standard affects all systems and the existing conversion 
programs. Lastly, the approach can involve many unnecessary 
data conversions 

B. Ontology-Based Data Integration Approaches 

Most of the shortcomings in the previous traditional 
approaches can be overcome by using ontology-based systems 
.We explain the most popular ontology-based systems for data 
integration, which are SCROL and COIN with respect to the 
role and use of ontologies.  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 4, No.4, 2013 

95 | P a g e  
www.ijacsa.thesai.org 

SCROL is a global schema approach that uses an ontology 
to explicitly categorize and represent predetermined types of 
semantic heterogeneity [6]. It is based on the use of a common 
ontology, which specifies a vocabulary to describe and 
interpret shared information among its users. It is similar to 
the federated schema approach. However, an ontology-based 
domain model captures much richer semantics and covers a 
much broader range of knowledge within a target domain. But 
it uses a fully specified ontology to explicitly categorize and 
represent predetermined types of semantic heterogeneity. 
SCROL assumes that the underlying information sources are 
structured data that may reside in the structurally organized 
text files or database systems. However, the unprecedented 
growth of Internet technologies has made vast amounts of 
resources instantly accessible to various users via the World 
Wide Web (WWW) [6]. 

COIN Project was initiated in 1991 with the goal of 
achieving semantics interoperability among heterogeneous 
information sources. The main elements of this architecture 
are wrappers, context axioms, elevation axioms, a domain 
model, context mediators, an optimizer and an executioner. A 
domain model in COIN is a collection of primitive types and 
semantic types (similar to type in the object-oriented 
paradigm), which defines the application domain 
corresponding to the data sources that are to be integrated 
COIN introduces a new definition for describing things in the 
world. It states that the truth of a statement can only be 
understood with reference to a given context. The context 
information can be obtained by examining the data 
environment of each data source [11]. 

The problem of semantic interoperability is not new, and 
people have tried to achieve semantic interoperability in the 
past using various approaches. Traditional approaches have 
sometimes been reasonably successful in limited applications, 
but have proven either very costly to use, hard to scale to 
larger applications, or both. Traditional approaches have 
certain drawbacks that make them inappropriate for 
integrating information from a large number of data sources. 
Existing ontology-based approaches for semantic 
interoperability also have not been sufficiently effective 
because there is no systematic methodology to follow, no 
concert methodology for building ontologies and all existing 
ontology-based not able  to reconcile all types of semantic 
conflicts.  

III. SCR ARCHITECTURE 

The Semantic Conflicts Reconciliation (SCR) framework 
is considered as ontology based system aims to solve semantic 
data level conflicts among different sources and receivers in a 
systematic methodology. SCR is based on domain specific 
ontology to create user queries. The user can browse the 
merged ontology and selects specific terms and conditions to 
create global query. There is no need for the user to be aware 
of terms in databases in order to query them.  The selected 
terms are mapped to the corresponding terms in each data 
source to decompose the global query to a set of sub naïve 
queries. The decomposed sub-queries are converted to well-
formed sub-queries before sending it to the suitable database. 
Finally the SCR combine and resend the well-formed query 

results after reconciling the detected conflicts to the users 
according to the required contexts. 

SCR consists of two phases, the knowledge representation 

phase and the interpretation mediation service phase [8]. 

 

A. Knowledge Representation 

The knowledge representation phase consists of the 
following components: 

 Ontology Extraction: Extract local ontology from each 
database. 

 Global Ontology: Merge all local ontologies to 
construct a global one that contains all major concepts 
and the relationships between them. 

 Contexts: Explicitly describing the sources and 
receivers assumptions about data. 

 Mapping: Linking between the constructed merged 
ontology and the corresponding terms in each data 
source in order to produce the semantic catalog. 

Fig.2. Knowledge representation phase[8]. 

Database to Ontology Extraction: 
In the Ontology extraction step, we have multiple 

databases to extract a local ontology from each one. A local 
ontology contains all database information like tables, 
columns, relations, constraints. Moreover, it contains 
intentional definitions to represent higher level of abstraction 
than traditional data models. 

The local ontology represents a relational database tables 
as concept and columns as slots of the concept. The local 
ontologies are represented in a formal standard language 
called OWL (Ontology Web Language).  

Creating local ontology for each database saves them 
independent. Any changes in the schema or relations can be 
added easily to its local ontology. The local ontology includes 
only the metadata and additional semantics; however, the 
database instances or members still in the data sources 
separated from its ontology. 

Global Ontology Construction: 
Our framework is based on the hybrid ontology approach 

in which we create local ontology for each data source and a 
global ontology which is considered a reference for all local 
ontologies involved in the integration process. 
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The Merging process aims to create one global (merged) 
ontology that contains multiple local ontologies contents. It 
contains all the knowledge of the initial ontologies [5].in order 
to create a merged ontology, the corresponding objects will be 
matched from two or more local ontologies. Subsequently, 
suitable matching algorithm should choose. Matching is the 
core of the merging process to make one vantage point of view 
from multiple ontologies, where some concepts and slots will 
be represented as a new concept and new slots, or some slots 
may be merged and follow another concept. We can say that, 
there is a new structure that will be created in the merged 
ontology. This structure does not affect the information 
sources, because each local ontology is independent. Creating 
a standard formal model (merged ontology) makes query 
multiple databases satisfy the user requirements at the 
semantic level.  

The SCR framework uses PROMPT tool to matching and 
merging local ontologies. PROMPT is a semi-automatic tool. 
It is protégé plug in. It guides the expert by providing 
suggestions. PROMPT provides suggestions about merging 
and copying classes. Figure 3 explains the PROMPT 
algorithm [4]. PROMPT takes two ontologies as input and 
guide the user to create a merged ontology as output. IT 
generates a list of suggestions based on the choose matching 
algorithm. Our Framework uses PROMPT lexical matching 
algorithm. 

 

 

Fig.3. The Flow of PROMPT Algorithm [4]. 

According to Noy and Musen [4] about PROMPT 
evaluation, human experts follow 90% of PROMPT 
suggestions. During the merging process, PROMPT suggested 
74% of the total knowledge_ base operations that the user 
invoked. PROMPT s able to perform a large number of 
merging operations on its own (or with simple "approval" of a 
human expert). Thus, it can save the expert’s time and efforts. 

Explicitly define contexts 
The proposed framework assigns contexts descriptions 

about data items in each source using the following two steps. 

Adding annotation: Adding annotation properties 
(modifiers) to the global ontology slots to denote their 
contexts. We consider annotation properties as special 
properties that affect the interpretation of data values. 

Value assignment: Assign values that explicitly describe 
the semantics of data in different aspects for each annotation 
properties created in the previous step.  

We can associate more than one annotation property to the 
same. We can easily add, remove and change the assigned 
values in the ontology whenever the context changed in the 
sources over time. 

Mapping global ontology to multiple databases: 
We developed a semi automatic mapping tool used to map 

the merged ontology to multiple databases. The main purpose 
of the proposed mapping tool is to find and match between 
semantically similar terms in the global query with the 
corresponding terms in the data sources of the integrated 
system. The output of the mapping process is the semantic 
catalog.   

 
 

The mapping process in our proposed mapping tool follows 

the following steps: 

 The mapping process started by creating a database 
with two tables, to save the mapping data in the first 
table, and saving the metadata of the database system 
in the second table.  This process is done once when 
the mapping process is started.  

 The expert selects the first database in the 
heterogeneous integrated sources to link its schema 
(intentional relation) with the terms in the global 
ontology. 

 When the user selects database from a list of all 
databases that existed, then all tables in the selected 
database will be listed. Then, press to select columns, 
all columns in the selected table will be listed and 
saved in the table created in the first step along with the 
correspondence terms in the global ontology. All the 
primary keys, foreign keys, and referenced tables for 
each table in the selected database are automatically 
retrieved and saved in the second created table as 
metadata, to use it in query processing.  

B. Interpretation Mediation Service 

Knowledge representation phase is not enough to solve 
semantic conflicts among data sources and receivers. The 
second phase in our proposed system is the interpretation 
mediation service in which the user interacts with the system 
through graphical user interface (GUI). With the Interpretation 
Mediation Service support the user no longer concerned about 
context differences and how contexts evolve. 

The SCR framework architecture, consisting of the 
following four main components. 

 System interface 

 Query preprocessor 

 SQL generator 

 Converter (query engine) 
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Fig.4. Architecture of the SCR Framework. 

System Interface 
We cannot suppose that users have intimate knowledge 

about data sources being queried especially when the number 
of these sources are big. Users should remain isolated from 
semantic conflicts problems and no need to learn one of the 
ontology query languages to formulate his query. User 
interacts with the system through graphical user interface 
(GUI). The GUI displays the global ontology terms to 
facilitate finding the global query terms easily and quickly. 
User browses the global ontology to select specific terms for 
his query.  

Query preprocessor 
Query preprocessor receives the global query terms and 

semantic catalog as input and produce blocks of user’s data 
based on the selected items from the system interface. Each 
block represents a query but without any language format. 
Once the user selects terms and conditions from the system the 
query preprocessor does the following actions. 

 Query preprocessor utilizes semantic catalog (mapping 
file) to retrieve the database name, table name and 
columns names that mapped to the selected terms and 
conditions in the user query. 

 The query preprocessor reorganizes the retrieved data 
from the previous step into blocks according to the 
database name. Each block represents a query but it 
does not present in any language format. 

SQL Generator 
SQL generator turns the query blocks received from the 

query preprocessor into SQL queries and directs them to the 
converter. It uses the semantic catalog (metadata) to translate 
the previous blocks into SQL correct syntax. In order to 
transform the blocks to correct syntax, the generator adds 
select, from and where clauses. In addition, if the query needs 
to retrieve instances from more than one table the primary 
keys, foreign keys and referenced tables of the integrated 
databases may be added from the semantic catalog metadata 
file as well. 

Converter (query engine) 
We consider converter as a query engine that takes SQL 

queries from the SQL generator and the user context as input. 
Converter connects to the merged (global) ontology to retrieve 
and compare annotations in order to transform the user naïve 
query (that ignores differences in assumptions between 
sources) into a well-formed query that respects differences 

among sources and receivers contexts. The query engine 
rewrites the user query into a mediated query (multiple sub-
queries) with a set of instructions and functions in order to 
reconcile the semantic conflicts. 

The Converter detects and reconciles semantic conflicts 
between sources and receivers according to the following two 
stages: 

First stage: before sending the SQL queries to the suitable 
data source, the query engine connects to the merged ontology 
and compares the annotation values between the global query 
contexts and the data sources contexts that are involved in the 
global query. The query engine detects and reconciles the 
conflicts at the query time then directs each SQL query to the 
suitable database.  

 Second stage: the query engine compares the annotation 

values of each item in the sources involved in the global query 

with the user required context . 

Whether in the first or the second stage, the converter connects 

to a set of conversion functions defined in order to convert 

between contexts and satisfy the user expectations about 

results. 

The general form of the conversion function can be as follows:   

 

Fig.5. General form of the conversion functions[8]. 

Conversion functions represent the conversions among all 
annotation property values or contexts described in the merged 
ontology. In the SCR system, there is no relation between the 
number of sources or receivers and the number of conversion 
functions. Conversion functions in SCR system are 
parameterized Component conversion that is defined for each 
modifier in the ontology. These functions can convert between 
all values of a modifier automatically (e.g., a conversion that 
reconciles between currencies of price modifier). 

IV. SCR  SOFTWARE SYSTEM DESCRIPTION 

We developed the SCR software system for demonstrating 
the feasibility and the features of our approach. It helps the 
user to query integrated sources with minimal efforts using 
Query-by-Example language (QBE). As a result, the user 
needs only to know little information about the global 
ontology terms.  

A. Naive to well-formed query conversion 

Consider the following scenario in order to describe how 
the SCR system transforms the user naïve query into a well-
formed query. 

 

Illustrative example (Airline Reservation Scenario) 
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Consider the example where a comprehensive travel 
system involving multiple airlines, and car rental services. 
Assume we have two data sources and each source has its own 
contexts. The User can find the most suitable and best 
cheapest airline booking along with the cheapest car rental 
prices through the different car rental providers available.  The 
airline reservation scenario displays prices and airline 
information from different airlines data sources given 
departure and destination locations and dates. We show 
snapshots from this scenario in Figure 6 and Figure 7. As 
shown there are many conflicts between the sources contexts 
in addition to the user different contexts or assumptions about 
data. 

Fig.6.  Data assumptions in source1 (Airline1) 

 

Fig.7. Data Assumptions in Source2 (Airline2) 

 

Fig.8. Ancillary Tables 

According to Firat [1] we mentioned that there are three 
dimensions of semantic heterogeneity: contextual, ontological 
and temporal. Now we describe how our proposed framework 
(SCR) can reconcile these conflicts.  

Suppose the user submit the following global query1 to the 
SCR system in order to know the available airlines along with 
their prices. 

Fig.9. Global query1 

1. The GUI displays the global ontology terms to facilitate 

finding the global query terms easily and quickly. User 

browses the global ontology to selects specific terms and 

conditions for query1 as shown in Figure 9.  

 

2. Query preprocessor utilizes semantic catalog (mapping 

file) to retrieve the semantic mapped data for global query1 

that consists of database name, table name and columns 

names that mapped to each selected term and condition in 

the user global query1 and reorganizes the retrieved data 

into blocks according to the database name. 
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3. SQL Generator uses the semantic catalog (metadata) to 

translate the previous created blocks received from the 

query preprocessor into SQL correct syntax. 

4. The created queries are named a naïve queries, because the 

direct execution of them would not respect the semantic 

conflicts and would most likely return empty or 

semantically incorrect answers. If the created queries from 

the global query1 submitted to Airline1 and Airline2 

databases without any mediation (conversion) would return 

empty results from source1 and semantically incorrect 

result set from source2. 

5. Before sending the queries to the suitable data source the 

query engine connects to the merged ontology and 

compares the annotation values between the global query 

context (Figure 10 ) and the data sources contexts (Figure 6 

and Figure 7) that involved in global query1. 

Fig.10. The Global Query Context 

6. The SCR query engine detects the following  semantic 

conflicts  

Contextual Heterogeneity: As we mentioned before, 
Contextual heterogeneity occurs when different systems 
(sender/receiver) make different assumptions about the 
representation of the same concept) so there will be two or 
more not identical representations of the same thing. Such as 
in query 1 there are different representation of date format 
(UK vs. US Date Format) and locations (city name vs. airport 
code). The query engine detects two Contextual conflicts 
between the created SQL query contexts (Figure 10) and 
source 1 contexts: 

Date is expressed in US style (mm/dd/yyyy) in source 1 
(Airline) and in Uk style (dd/mm/ yyyy) in the query context. 
This type of conflict can be solved in the mediation step using 
direct conversion from UK to US . 

Cities represented as three letters airport code in source 1 
(Airline) and as city full names in the query context. This type 
of conflict requires auxiliary tables in order to reconcile them 
as shown in Figure 8. 

7. The converter connects to the conversion functions in order 

to reconcile the previous contextual conflicts at the query 

time by mediated queries then directs each query to the 

suitable database.  

City name conflicts were dynamically reconciled, with the 
help of Airport_codes table that is used as ancillary table to 
convert from full city names to airport codes. 

Date conflicts were statically reconciled by converting date 
values from Uk style (dd/mm/ yyyy) to US style 
(mm/dd/yyyy) using the direct conversion operation.  

 

8. Now If queries after the previous conversion submitted to 

the suitable database would return semantically incorrect 

results from source 1 (Figure 6) and from source 2 (Figure 

7) because the retrieved results not respect the user 

expectations (user required context). 

 

 

 

 

 

Fig.11.  Source1 Semantically Incorrect Results of Query1 
 

 

 

 
 

 

 

Fig.12.       Source2 Semantically Incorrect Results of Query1 
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9. After directing each query to the suitable data source, then 

query engine compares the annotation values of each item 

in the sources with the user required contexts. 

 In global query 1 our user selects to display the query     
results in the default context.  

 

Query1 Semantic Conflicts (Airline1): 

The query engine detects two contextual conflicts between 
the user contexts (default) and source1 contexts  

Contextual conflict in the price concept, currency modifier 
value in source1 is USD context but in EGP in the user 
context. Such conflict detected and reconciled through the 
mediated query. Date is expressed in US style (mm/dd/yyyy) 
in source1 (Airline) but our user expects it as UK style 
(dd/mm/ yyyy). 

The previous contextual conflicts reconciled on the query 
time by the converter through the mediated queries. Figure 13 
shows a Trace of reconciling source 1 detected contextual 
semantic conflict as follow. 

 

Fig.13. Trace of reconciling source1 contextual semantic conflict  

Query 1 Semantic Conflicts (Airline 2): 

The query engine detects semantic mismatches among 

contexts caused by the implicit assumptions. The implicit 

assumptions not only differ between the two sources, but also 

changed in the same source from one context to another over 

time as shown in the airline_temporal table in Figure 7.  

The user expects the price always be in EGP and with taxes 

included. While in source 2 ( airline_temporal table) the price 

is in EUR and excluding taxes if departing date <= 01/08/2012 

and changed the currency from EUR to AED and price 

includes taxes if departing date > 01/08/2012  , Such conflicts 

lead us to the third dimension of semantic heterogeneity which 

is the temporal dimension). 

 

A. Reconciling Temporal Semantic Heterogeneity: 

 

Temporal semantic heterogeneities are related to both 

contextual and ontological heterogeneities and occur in 

situation where the semantics between data sources, even in 

the same data source, change over time [11]. Both the 

representational and the ontological assumptions can be static 

and do not change over time within an interested time period, 

in which case time is not of concern (same previous examples) 

or, the assumptions can change over time, and the resulting 

heterogeneity is temporal. When the implicit assumptions 

change over time, data corresponding to different time periods 

are subject to different interpretations. Based on the previous 

definition we have two categories of temporal heterogeneity, 

temporal representational (contextual) heterogeneity and 

temporal ontological heterogeneity. 

 

It’s challenging to deal with data if it’s meaning changes 

overtime. These challenges will be more difficult if we want to 

handle the changes through the integration of multiple 

heterogeneous sources. We describe the implicit assumptions 

about data elements in temporal concepts by similar way of 

describing non temporal concepts by adding annotations 

(modifiers) in the merged ontology for each term.  

We identify the following approach to explicitly describe the 

temporal assumptions in the knowledge representation phase 

and reconciling the temporal semantic conflicts through the 

interpretation mediation service phase. 

Proposed Approach for Representing Temporal Contexts  

Temporal assumptions approach: Describing each data 

element (attribute) in a data source that has assumptions 

change over time with different ontological concepts at 

different times. So we convert temporal assumptions to set of 

static assumptions within an interested time period. 

Fig.14. Temporal Assumptions Approach 

In query 1 we explain the representation of temporal contexts 

in the ontology according to our proposed approach as shown 

in Figure 14. 

 

Reconciling Temporal Representational Conflicts of Query1 

In temporal representational assumptions the same attribute 

may be represented differently at different times of a data 

source according to our previous approach. 

In order to resolve the temporal contextual conflict between 

our user context of query 1 and the source 2 context of 

airline_temporal table as shown in Figure 7.  We explicitly 

describe the price data element in the ontology by two 

contexts instead of describing each attribute by one modifier 

context as in atemporal concepts. In query 1 the user expects 

the currency always be in EGP. While in source 2 ( 

USD 

 

 

 

EUR 

 

 

AED 
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airline_temporal table  ) the currency is in EUR if departing 

date <= “01/08/2012” and changed from EUR to AED  when 

departing date > “01/08/2012”.In Source 2 we link the price 

attribute with C_Before context if the value of  Departing_date 

attribute <= “01/08/2012”and with C_After context if the 

value of  Departing_date attribute >“01/08/2012” 

In C_Before context: modifier currency has a value of “EUR” 

In C_After context: modifier currency has a value of “AED” 

Reconciling Temporal Ontological Conflicts of Query2 

In temporal ontological assumptions the ontological concept 

represented by an attribute may change over time. In 

airline_temporal table of source 2, Price on and before 

“01/08/2012” includes taxes, afterwards it excludes taxes .In 

figure 7 we have two different assumptions (interpretation) for 

Price (including and excluding taxes). According to our 

proposed approach we create a more general concept in the 

ontology that includes both variations as a special cases based 

on the value of the modifier limit. 

In T_Inclusion context:  Price (+tax) 

In T_Exclusion context: Price (nominal). 

Fig.15.             Temporal Ontological Representation 

SCR query engine able to handle terms in the ontology that 
can be expressed based on explicitly define contexts of other 
terms or adjusting the value of one context to another after 
assigning the required equations with each context 
(reconciling equational semantic conflicts). 

In source 2 there is an equational conflict between 
T_Inclusion context and  T_Exclusion context so we use the 
conversion functions associated with each context in the 
mediated queries in order to reconciling such a conflict. 

 

 To reconcile the previous temporal semantic conflicts 
the converter checks the value of modifier limit in the 
ontology and the corresponding currency and price 
modifiers values in order to compare them with the 
user required context. 

 In C_Before context : modifier currency  has a value of 
“EUR” 

 In C_After context: modifier currency  has a value of 
“AED” 

 In T_Inclusion context :  Price (+tax) 

 In T_Exclusion context: Price (nominal). 

Fig.16. Query1 Final Results 

Figure 17 shows trace of reconciling the detected temporal 

semantic conflicts in Airline2 as follow.  

 

Fig.17. Trace of reconciling temporal semantic conflicts in Airlin2 

V. CONCLUSION 

We developed an ontology-based approach, in which all 
data semantics explicitly described in the knowledge 
representation phase and automatically taken into account by 
Interpretation Mediation Services phase, conflicts detected and 
resolved automatically at the query runtime. Unlike the 
traditional approaches there is no need for any changes for the 
sources involved in the integration process even if these 
sources with time-varying semantics, each source should only 
explicitly records its semantic assumptions in addition to a 
small number of conversion functions, which are used by the 
converter for automatically make required conversions. The 
SCR preserve local autonomy for each data source to change 
and maintain independently. Data sources still independent 
from the integration process that is mean we can retrieve up to 
date data and smoothly update the data in each data source 
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without affecting the integration process. The SCR framework 
provides a systematic methodology for explicitly describing 
assumptions through the knowledge representation phase. 
Changes in sources contexts can be accommodated by 
modifying annotation values without affecting both the global 
ontology and the conversion functions (no hand-code needs to 
be maintained).The proposed SCR framework assumes that 
the underlying information sources are structured data, testing 
our proposed approach for detecting and reconciling semantic 
conflicts using semi-structured data such as web pages is 
required to identify new challenging issues. We have 
demonstrated the capability of the SCR framework using 
simple illustrative example. It is interesting to ensure 
interoperability and knowledge-based information sharing in 
real world environments of fertile fields like bioinformatics, 
digital libraries and GIS systems in order to test the feasibility 
of our approach.  
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