
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

93 | P a g e
www.ijacsa.thesai.org

Semantic Conflicts Reconciliation as a Viable Solution

for Semantic Heterogeneity Problems

Walaa S. Ismail

Faculty of Computers and Information, Information Systems

Department, Helwan University

Torky I. Sultan

Faculty of Computers and Information, Information Systems

Department, Helwan University

Mona M. Nasr

Faculty of Computers and Information, Information Systems

Department, Helwan University

Ayman E. Khedr

Faculty of Computers and Information, Information Systems

Department, Helwan University

 Abstractt—Achieving semantic interoperability is a current

challenge in the field of data integration in order to bridge

semantic conflicts occurring when the participating sources and

receivers use different or implicit data assumptions. Providing a

framework that automatically detects and resolves semantic

conflicts is considered as a daunting task for many reasons, it

should preserve the local autonomy of the integrated sources, as

well as provides a standard query language for accessing the

integrated data on a global basis. Many existing traditional and

ontology-based approaches have tried to achieve semantic

interoperability, but they have certain drawbacks that make

them inappropriate for integrating data from a large number of

participating sources.

We propose semantic conflicts reconciliation (SCR)

framework, it is ontology-based system in which all data

semantics explicitly described in the knowledge representation

phase and automatically taken into account through the

interpretation mediation service phase, so conflicts detected and

resolved automatically at the query time.

Keywords—Data Integration; Heterogeneous Sources;

Interoperability; Semantic Conflicts; Context; Reconciliation

Ontology.

I. INTRODUCTION

Despite the fact that a typical large organization spends
nearly 30% of its IT budget on integration and interoperation
related efforts, many inter- and intra- organizational systems
still have poor interoperability [10]. Technologies already
exist to overcome the heterogeneity in hardware, software, and
syntax that is used in different systems (e.g., the ODBC
standard, XML based standards, web services and SOA-
Service Oriented Architectures) .While these capabilities are
essential to information integration, they do not address the
issue of heterogeneous data semantics that exist both within
and across enterprises [11].

Heterogeneity problem occurs when data sources and
receivers use different contexts (assumptions); a user submit
query and interprets the results in a certain context, which
completely different from contexts received from sources.
Implicit assumptions made in each source need to be explicitly

described and used to reconcile conflicts when data from these
systems are combined [3]. Ontology plays an important role
on making domain assumptions unambiguous or uniquely
identifies the meaning of concepts in a specific domain of
interest.

Let us assume that the comparison service covers 100
countries, each having its unique currency and each consisting
of 100 vendors. Thus, there are a total of 10,000 sources in
this example. For simplicity, let’s assume the consumer
chooses his context to be the same as one of the sources.
Although all vendors in the same country may use the same
currency for price, they may use different price definitions and
scale factors [9]. Table 1 summarizes the potential context
differences in terms of just these four semantic aspects :
currency, scale factor, price definition, and date format (for the
purpose of finding exchange rate at a given day).

TABLE I. Semantic Differences in Data Sources [9]

Thus, there could be 3600 (i.e., 100*4*3*3) different
contexts amongst these sources; e.g., one source has US
dollars for currency, scale factor being 1, price as tax and
shipping and handling included, with mm/dd/yyyy date
format; another source has Turkish liras for currency, scale
factor being 1000000, price as only tax included, with dd-mm-
yyyy date format, etc. The online comparison service needs to
implement the conversions so that the comparison can be
performed for sources in any context.

Implementing tens of thousands of data conversions is not
an easy task; but maintaining them to cope with changes in
data sources and receiver requirements over time is even more
challenging [2]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

94 | P a g e
www.ijacsa.thesai.org

According to Firat [1] there are three dimensions of
semantic heterogeneity: contextual, ontological and temporal.
Contextual heterogeneity occurs when different systems
(sender/receiver) make different assumptions about the
representation of the same concept, such as the profit of a
company can be represented in DEM (i.e., Deutschmarks) in
one system or in USD (i.e., U.S. dollars) in another, where the
currency used is the assumption. So there will be two or more
not identical representations of the same thing. Ontological
heterogeneity occurs when different meanings denoted by the
same term (e.g., whether the profit is gross profit including
taxes or net profit excluding taxes) because there is a
definitional conflicts concerning the inclusion or exclusion of

TABLE II. Temporal vs. Atemporal heterogeneity [4].tax in the profit.

Both the representational and the ontological assumptions

can be static and do not change over time within an interested
time period, in which case time is not of concern. The
resulting heterogeneity is atemporal. Conversely, the
assumptions can change over time, and the resulting
heterogeneity is temporal [4].

There should be systematic approaches in order to reconcile

semantic heterogeneity among heterogeneous sources and

receivers.

II. Existing Approaches For Achieving Semantic

Interoperability
We can resolve semantic conflicts by hand-coded

programs but on small scale only; alternative solutions are
needed as the number of systems and the complexity of each
system increase.

A. Traditional Approaches

Brute-force Data Conversions (BF)
In the Brute-force Data Conversions (BF) approach all

necessary conversions implemented with hand-coded
programs. For example, if we have N data sources and
receivers, N (N-1) such conversions need to be implemented
to convert the sources context to the receiver context. These
conversions become costly to implement and very difficult to
maintain When N is large. This is a labor-intensive process;
nearly 70% of integration costs come from the implementation
of these data conversion programs. A possible variation of the
(BF) approach is to group sources that share the same set of
semantic assumptions into one context. The approach allows
multiple sources in the same context to share the same
conversion programs, so the numbers of conversion programs
will be reduced. We refer to the original approach and this

variation as BFS and BFC, respectively [2]. These approaches
are illustrated schematically in Fig 1.

Fig.1. Traditional approaches to Semantic Interoperability [9].

Global Data Standardization (GS)
If we could develop and maintain a single data standard

that defines a set of concepts and specifies the corresponding
representation, all semantic differences would disappear and
there would be no need for data conversion. Unfortunately,
such standardization is usually infeasible in practice for
several reasons. There are legitimate needs for having
different definitions for concepts, storing and reporting data in
different formats. Most integration and information exchange
efforts involve many existing systems, agreeing to a standard
often means someone has to change his/her current
implementation, which creates obstacles and makes the
standard development and enforcement extremely difficult [7].

Interchange Data Standardization (IS)
Data exchange systems can sometimes agree on the data to

be exchanged, i.e., standardizing a set of concepts as well as
their interchange formats. The underlying systems do not need
to store the data according to the standard; it suffices as long
as each data sender generates the data according to the
standard. That is, this approach requires that each system have
conversions between its local data and an interchange standard
used for exchanging data with other systems. Thus, each
system still maintains its own autonomy. This is different from
the global data standardization, where all systems must store
data according to a global standard. With N systems
exchanging information, the Interchange Standardization
approach requires 2N conversions. The IS approach is a
significant improvement over the brute-force approach that
might need to implement conversions between every pair of
systems [9]. Although this approach has certain advantages, it
also has several serious limitations [2]. From which, all parties
should reach an agreement on the data definition and data
format. Reaching such an agreement can be a costly and time-
consuming process besides; any change to the interchange
standard affects all systems and the existing conversion
programs. Lastly, the approach can involve many unnecessary
data conversions

B. Ontology-Based Data Integration Approaches

Most of the shortcomings in the previous traditional
approaches can be overcome by using ontology-based systems
.We explain the most popular ontology-based systems for data
integration, which are SCROL and COIN with respect to the
role and use of ontologies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

95 | P a g e
www.ijacsa.thesai.org

SCROL is a global schema approach that uses an ontology
to explicitly categorize and represent predetermined types of
semantic heterogeneity [6]. It is based on the use of a common
ontology, which specifies a vocabulary to describe and
interpret shared information among its users. It is similar to
the federated schema approach. However, an ontology-based
domain model captures much richer semantics and covers a
much broader range of knowledge within a target domain. But
it uses a fully specified ontology to explicitly categorize and
represent predetermined types of semantic heterogeneity.
SCROL assumes that the underlying information sources are
structured data that may reside in the structurally organized
text files or database systems. However, the unprecedented
growth of Internet technologies has made vast amounts of
resources instantly accessible to various users via the World
Wide Web (WWW) [6].

COIN Project was initiated in 1991 with the goal of
achieving semantics interoperability among heterogeneous
information sources. The main elements of this architecture
are wrappers, context axioms, elevation axioms, a domain
model, context mediators, an optimizer and an executioner. A
domain model in COIN is a collection of primitive types and
semantic types (similar to type in the object-oriented
paradigm), which defines the application domain
corresponding to the data sources that are to be integrated
COIN introduces a new definition for describing things in the
world. It states that the truth of a statement can only be
understood with reference to a given context. The context
information can be obtained by examining the data
environment of each data source [11].

The problem of semantic interoperability is not new, and
people have tried to achieve semantic interoperability in the
past using various approaches. Traditional approaches have
sometimes been reasonably successful in limited applications,
but have proven either very costly to use, hard to scale to
larger applications, or both. Traditional approaches have
certain drawbacks that make them inappropriate for
integrating information from a large number of data sources.
Existing ontology-based approaches for semantic
interoperability also have not been sufficiently effective
because there is no systematic methodology to follow, no
concert methodology for building ontologies and all existing
ontology-based not able to reconcile all types of semantic
conflicts.

III. SCR ARCHITECTURE

The Semantic Conflicts Reconciliation (SCR) framework
is considered as ontology based system aims to solve semantic
data level conflicts among different sources and receivers in a
systematic methodology. SCR is based on domain specific
ontology to create user queries. The user can browse the
merged ontology and selects specific terms and conditions to
create global query. There is no need for the user to be aware
of terms in databases in order to query them. The selected
terms are mapped to the corresponding terms in each data
source to decompose the global query to a set of sub naïve
queries. The decomposed sub-queries are converted to well-
formed sub-queries before sending it to the suitable database.
Finally the SCR combine and resend the well-formed query

results after reconciling the detected conflicts to the users
according to the required contexts.

SCR consists of two phases, the knowledge representation

phase and the interpretation mediation service phase [8].

A. Knowledge Representation

The knowledge representation phase consists of the
following components:

 Ontology Extraction: Extract local ontology from each
database.

 Global Ontology: Merge all local ontologies to
construct a global one that contains all major concepts
and the relationships between them.

 Contexts: Explicitly describing the sources and
receivers assumptions about data.

 Mapping: Linking between the constructed merged
ontology and the corresponding terms in each data
source in order to produce the semantic catalog.

Fig.2. Knowledge representation phase[8].

Database to Ontology Extraction:
In the Ontology extraction step, we have multiple

databases to extract a local ontology from each one. A local
ontology contains all database information like tables,
columns, relations, constraints. Moreover, it contains
intentional definitions to represent higher level of abstraction
than traditional data models.

The local ontology represents a relational database tables
as concept and columns as slots of the concept. The local
ontologies are represented in a formal standard language
called OWL (Ontology Web Language).

Creating local ontology for each database saves them
independent. Any changes in the schema or relations can be
added easily to its local ontology. The local ontology includes
only the metadata and additional semantics; however, the
database instances or members still in the data sources
separated from its ontology.

Global Ontology Construction:
Our framework is based on the hybrid ontology approach

in which we create local ontology for each data source and a
global ontology which is considered a reference for all local
ontologies involved in the integration process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

96 | P a g e
www.ijacsa.thesai.org

The Merging process aims to create one global (merged)
ontology that contains multiple local ontologies contents. It
contains all the knowledge of the initial ontologies [5].in order
to create a merged ontology, the corresponding objects will be
matched from two or more local ontologies. Subsequently,
suitable matching algorithm should choose. Matching is the
core of the merging process to make one vantage point of view
from multiple ontologies, where some concepts and slots will
be represented as a new concept and new slots, or some slots
may be merged and follow another concept. We can say that,
there is a new structure that will be created in the merged
ontology. This structure does not affect the information
sources, because each local ontology is independent. Creating
a standard formal model (merged ontology) makes query
multiple databases satisfy the user requirements at the
semantic level.

The SCR framework uses PROMPT tool to matching and
merging local ontologies. PROMPT is a semi-automatic tool.
It is protégé plug in. It guides the expert by providing
suggestions. PROMPT provides suggestions about merging
and copying classes. Figure 3 explains the PROMPT
algorithm [4]. PROMPT takes two ontologies as input and
guide the user to create a merged ontology as output. IT
generates a list of suggestions based on the choose matching
algorithm. Our Framework uses PROMPT lexical matching
algorithm.

Fig.3. The Flow of PROMPT Algorithm [4].

According to Noy and Musen [4] about PROMPT
evaluation, human experts follow 90% of PROMPT
suggestions. During the merging process, PROMPT suggested
74% of the total knowledge_ base operations that the user
invoked. PROMPT s able to perform a large number of
merging operations on its own (or with simple "approval" of a
human expert). Thus, it can save the expert’s time and efforts.

Explicitly define contexts
The proposed framework assigns contexts descriptions

about data items in each source using the following two steps.

Adding annotation: Adding annotation properties
(modifiers) to the global ontology slots to denote their
contexts. We consider annotation properties as special
properties that affect the interpretation of data values.

Value assignment: Assign values that explicitly describe
the semantics of data in different aspects for each annotation
properties created in the previous step.

We can associate more than one annotation property to the
same. We can easily add, remove and change the assigned
values in the ontology whenever the context changed in the
sources over time.

Mapping global ontology to multiple databases:
We developed a semi automatic mapping tool used to map

the merged ontology to multiple databases. The main purpose
of the proposed mapping tool is to find and match between
semantically similar terms in the global query with the
corresponding terms in the data sources of the integrated
system. The output of the mapping process is the semantic
catalog.

The mapping process in our proposed mapping tool follows

the following steps:

 The mapping process started by creating a database
with two tables, to save the mapping data in the first
table, and saving the metadata of the database system
in the second table. This process is done once when
the mapping process is started.

 The expert selects the first database in the
heterogeneous integrated sources to link its schema
(intentional relation) with the terms in the global
ontology.

 When the user selects database from a list of all
databases that existed, then all tables in the selected
database will be listed. Then, press to select columns,
all columns in the selected table will be listed and
saved in the table created in the first step along with the
correspondence terms in the global ontology. All the
primary keys, foreign keys, and referenced tables for
each table in the selected database are automatically
retrieved and saved in the second created table as
metadata, to use it in query processing.

B. Interpretation Mediation Service

Knowledge representation phase is not enough to solve
semantic conflicts among data sources and receivers. The
second phase in our proposed system is the interpretation
mediation service in which the user interacts with the system
through graphical user interface (GUI). With the Interpretation
Mediation Service support the user no longer concerned about
context differences and how contexts evolve.

The SCR framework architecture, consisting of the
following four main components.

 System interface

 Query preprocessor

 SQL generator

 Converter (query engine)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

97 | P a g e
www.ijacsa.thesai.org

Fig.4. Architecture of the SCR Framework.

System Interface
We cannot suppose that users have intimate knowledge

about data sources being queried especially when the number
of these sources are big. Users should remain isolated from
semantic conflicts problems and no need to learn one of the
ontology query languages to formulate his query. User
interacts with the system through graphical user interface
(GUI). The GUI displays the global ontology terms to
facilitate finding the global query terms easily and quickly.
User browses the global ontology to select specific terms for
his query.

Query preprocessor
Query preprocessor receives the global query terms and

semantic catalog as input and produce blocks of user’s data
based on the selected items from the system interface. Each
block represents a query but without any language format.
Once the user selects terms and conditions from the system the
query preprocessor does the following actions.

 Query preprocessor utilizes semantic catalog (mapping
file) to retrieve the database name, table name and
columns names that mapped to the selected terms and
conditions in the user query.

 The query preprocessor reorganizes the retrieved data
from the previous step into blocks according to the
database name. Each block represents a query but it
does not present in any language format.

SQL Generator
SQL generator turns the query blocks received from the

query preprocessor into SQL queries and directs them to the
converter. It uses the semantic catalog (metadata) to translate
the previous blocks into SQL correct syntax. In order to
transform the blocks to correct syntax, the generator adds
select, from and where clauses. In addition, if the query needs
to retrieve instances from more than one table the primary
keys, foreign keys and referenced tables of the integrated
databases may be added from the semantic catalog metadata
file as well.

Converter (query engine)
We consider converter as a query engine that takes SQL

queries from the SQL generator and the user context as input.
Converter connects to the merged (global) ontology to retrieve
and compare annotations in order to transform the user naïve
query (that ignores differences in assumptions between
sources) into a well-formed query that respects differences

among sources and receivers contexts. The query engine
rewrites the user query into a mediated query (multiple sub-
queries) with a set of instructions and functions in order to
reconcile the semantic conflicts.

The Converter detects and reconciles semantic conflicts
between sources and receivers according to the following two
stages:

First stage: before sending the SQL queries to the suitable
data source, the query engine connects to the merged ontology
and compares the annotation values between the global query
contexts and the data sources contexts that are involved in the
global query. The query engine detects and reconciles the
conflicts at the query time then directs each SQL query to the
suitable database.

 Second stage: the query engine compares the annotation

values of each item in the sources involved in the global query

with the user required context .

Whether in the first or the second stage, the converter connects

to a set of conversion functions defined in order to convert

between contexts and satisfy the user expectations about

results.

The general form of the conversion function can be as follows:

Fig.5. General form of the conversion functions[8].

Conversion functions represent the conversions among all
annotation property values or contexts described in the merged
ontology. In the SCR system, there is no relation between the
number of sources or receivers and the number of conversion
functions. Conversion functions in SCR system are
parameterized Component conversion that is defined for each
modifier in the ontology. These functions can convert between
all values of a modifier automatically (e.g., a conversion that
reconciles between currencies of price modifier).

IV. SCR SOFTWARE SYSTEM DESCRIPTION

We developed the SCR software system for demonstrating
the feasibility and the features of our approach. It helps the
user to query integrated sources with minimal efforts using
Query-by-Example language (QBE). As a result, the user
needs only to know little information about the global
ontology terms.

A. Naive to well-formed query conversion

Consider the following scenario in order to describe how
the SCR system transforms the user naïve query into a well-
formed query.

Illustrative example (Airline Reservation Scenario)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

98 | P a g e
www.ijacsa.thesai.org

Consider the example where a comprehensive travel
system involving multiple airlines, and car rental services.
Assume we have two data sources and each source has its own
contexts. The User can find the most suitable and best
cheapest airline booking along with the cheapest car rental
prices through the different car rental providers available. The
airline reservation scenario displays prices and airline
information from different airlines data sources given
departure and destination locations and dates. We show
snapshots from this scenario in Figure 6 and Figure 7. As
shown there are many conflicts between the sources contexts
in addition to the user different contexts or assumptions about
data.

Fig.6. Data assumptions in source1 (Airline1)

Fig.7. Data Assumptions in Source2 (Airline2)

Fig.8. Ancillary Tables

According to Firat [1] we mentioned that there are three
dimensions of semantic heterogeneity: contextual, ontological
and temporal. Now we describe how our proposed framework
(SCR) can reconcile these conflicts.

Suppose the user submit the following global query1 to the
SCR system in order to know the available airlines along with
their prices.

Fig.9. Global query1

1. The GUI displays the global ontology terms to facilitate

finding the global query terms easily and quickly. User

browses the global ontology to selects specific terms and

conditions for query1 as shown in Figure 9.

2. Query preprocessor utilizes semantic catalog (mapping

file) to retrieve the semantic mapped data for global query1

that consists of database name, table name and columns

names that mapped to each selected term and condition in

the user global query1 and reorganizes the retrieved data

into blocks according to the database name.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

99 | P a g e
www.ijacsa.thesai.org

3. SQL Generator uses the semantic catalog (metadata) to

translate the previous created blocks received from the

query preprocessor into SQL correct syntax.

4. The created queries are named a naïve queries, because the

direct execution of them would not respect the semantic

conflicts and would most likely return empty or

semantically incorrect answers. If the created queries from

the global query1 submitted to Airline1 and Airline2

databases without any mediation (conversion) would return

empty results from source1 and semantically incorrect

result set from source2.

5. Before sending the queries to the suitable data source the

query engine connects to the merged ontology and

compares the annotation values between the global query

context (Figure 10) and the data sources contexts (Figure 6

and Figure 7) that involved in global query1.

Fig.10. The Global Query Context

6. The SCR query engine detects the following semantic

conflicts

Contextual Heterogeneity: As we mentioned before,
Contextual heterogeneity occurs when different systems
(sender/receiver) make different assumptions about the
representation of the same concept) so there will be two or
more not identical representations of the same thing. Such as
in query 1 there are different representation of date format
(UK vs. US Date Format) and locations (city name vs. airport
code). The query engine detects two Contextual conflicts
between the created SQL query contexts (Figure 10) and
source 1 contexts:

Date is expressed in US style (mm/dd/yyyy) in source 1
(Airline) and in Uk style (dd/mm/ yyyy) in the query context.
This type of conflict can be solved in the mediation step using
direct conversion from UK to US .

Cities represented as three letters airport code in source 1
(Airline) and as city full names in the query context. This type
of conflict requires auxiliary tables in order to reconcile them
as shown in Figure 8.

7. The converter connects to the conversion functions in order

to reconcile the previous contextual conflicts at the query

time by mediated queries then directs each query to the

suitable database.

City name conflicts were dynamically reconciled, with the
help of Airport_codes table that is used as ancillary table to
convert from full city names to airport codes.

Date conflicts were statically reconciled by converting date
values from Uk style (dd/mm/ yyyy) to US style
(mm/dd/yyyy) using the direct conversion operation.

8. Now If queries after the previous conversion submitted to

the suitable database would return semantically incorrect

results from source 1 (Figure 6) and from source 2 (Figure

7) because the retrieved results not respect the user

expectations (user required context).

Fig.11. Source1 Semantically Incorrect Results of Query1

Fig.12. Source2 Semantically Incorrect Results of Query1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

100 | P a g e
www.ijacsa.thesai.org

9. After directing each query to the suitable data source, then

query engine compares the annotation values of each item

in the sources with the user required contexts.

 In global query 1 our user selects to display the query
results in the default context.

Query1 Semantic Conflicts (Airline1):

The query engine detects two contextual conflicts between
the user contexts (default) and source1 contexts

Contextual conflict in the price concept, currency modifier
value in source1 is USD context but in EGP in the user
context. Such conflict detected and reconciled through the
mediated query. Date is expressed in US style (mm/dd/yyyy)
in source1 (Airline) but our user expects it as UK style
(dd/mm/ yyyy).

The previous contextual conflicts reconciled on the query
time by the converter through the mediated queries. Figure 13
shows a Trace of reconciling source 1 detected contextual
semantic conflict as follow.

Fig.13. Trace of reconciling source1 contextual semantic conflict

Query 1 Semantic Conflicts (Airline 2):

The query engine detects semantic mismatches among

contexts caused by the implicit assumptions. The implicit

assumptions not only differ between the two sources, but also

changed in the same source from one context to another over

time as shown in the airline_temporal table in Figure 7.

The user expects the price always be in EGP and with taxes

included. While in source 2 (airline_temporal table) the price

is in EUR and excluding taxes if departing date <= 01/08/2012

and changed the currency from EUR to AED and price

includes taxes if departing date > 01/08/2012 , Such conflicts

lead us to the third dimension of semantic heterogeneity which

is the temporal dimension).

A. Reconciling Temporal Semantic Heterogeneity:

Temporal semantic heterogeneities are related to both

contextual and ontological heterogeneities and occur in

situation where the semantics between data sources, even in

the same data source, change over time [11]. Both the

representational and the ontological assumptions can be static

and do not change over time within an interested time period,

in which case time is not of concern (same previous examples)

or, the assumptions can change over time, and the resulting

heterogeneity is temporal. When the implicit assumptions

change over time, data corresponding to different time periods

are subject to different interpretations. Based on the previous

definition we have two categories of temporal heterogeneity,

temporal representational (contextual) heterogeneity and

temporal ontological heterogeneity.

It’s challenging to deal with data if it’s meaning changes

overtime. These challenges will be more difficult if we want to

handle the changes through the integration of multiple

heterogeneous sources. We describe the implicit assumptions

about data elements in temporal concepts by similar way of

describing non temporal concepts by adding annotations

(modifiers) in the merged ontology for each term.

We identify the following approach to explicitly describe the

temporal assumptions in the knowledge representation phase

and reconciling the temporal semantic conflicts through the

interpretation mediation service phase.

Proposed Approach for Representing Temporal Contexts

Temporal assumptions approach: Describing each data

element (attribute) in a data source that has assumptions

change over time with different ontological concepts at

different times. So we convert temporal assumptions to set of

static assumptions within an interested time period.

Fig.14. Temporal Assumptions Approach

In query 1 we explain the representation of temporal contexts

in the ontology according to our proposed approach as shown

in Figure 14.

Reconciling Temporal Representational Conflicts of Query1

In temporal representational assumptions the same attribute

may be represented differently at different times of a data

source according to our previous approach.

In order to resolve the temporal contextual conflict between

our user context of query 1 and the source 2 context of

airline_temporal table as shown in Figure 7. We explicitly

describe the price data element in the ontology by two

contexts instead of describing each attribute by one modifier

context as in atemporal concepts. In query 1 the user expects

the currency always be in EGP. While in source 2 (

USD

EUR

AED

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

101 | P a g e
www.ijacsa.thesai.org

airline_temporal table) the currency is in EUR if departing

date <= “01/08/2012” and changed from EUR to AED when

departing date > “01/08/2012”.In Source 2 we link the price

attribute with C_Before context if the value of Departing_date

attribute <= “01/08/2012”and with C_After context if the

value of Departing_date attribute >“01/08/2012”

In C_Before context: modifier currency has a value of “EUR”

In C_After context: modifier currency has a value of “AED”

Reconciling Temporal Ontological Conflicts of Query2

In temporal ontological assumptions the ontological concept

represented by an attribute may change over time. In

airline_temporal table of source 2, Price on and before

“01/08/2012” includes taxes, afterwards it excludes taxes .In

figure 7 we have two different assumptions (interpretation) for

Price (including and excluding taxes). According to our

proposed approach we create a more general concept in the

ontology that includes both variations as a special cases based

on the value of the modifier limit.

In T_Inclusion context: Price (+tax)

In T_Exclusion context: Price (nominal).

Fig.15. Temporal Ontological Representation

SCR query engine able to handle terms in the ontology that
can be expressed based on explicitly define contexts of other
terms or adjusting the value of one context to another after
assigning the required equations with each context
(reconciling equational semantic conflicts).

In source 2 there is an equational conflict between
T_Inclusion context and T_Exclusion context so we use the
conversion functions associated with each context in the
mediated queries in order to reconciling such a conflict.

 To reconcile the previous temporal semantic conflicts
the converter checks the value of modifier limit in the
ontology and the corresponding currency and price
modifiers values in order to compare them with the
user required context.

 In C_Before context : modifier currency has a value of
“EUR”

 In C_After context: modifier currency has a value of
“AED”

 In T_Inclusion context : Price (+tax)

 In T_Exclusion context: Price (nominal).

Fig.16. Query1 Final Results

Figure 17 shows trace of reconciling the detected temporal

semantic conflicts in Airline2 as follow.

Fig.17. Trace of reconciling temporal semantic conflicts in Airlin2

V. CONCLUSION

We developed an ontology-based approach, in which all
data semantics explicitly described in the knowledge
representation phase and automatically taken into account by
Interpretation Mediation Services phase, conflicts detected and
resolved automatically at the query runtime. Unlike the
traditional approaches there is no need for any changes for the
sources involved in the integration process even if these
sources with time-varying semantics, each source should only
explicitly records its semantic assumptions in addition to a
small number of conversion functions, which are used by the
converter for automatically make required conversions. The
SCR preserve local autonomy for each data source to change
and maintain independently. Data sources still independent
from the integration process that is mean we can retrieve up to
date data and smoothly update the data in each data source

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No.4, 2013

102 | P a g e
www.ijacsa.thesai.org

without affecting the integration process. The SCR framework
provides a systematic methodology for explicitly describing
assumptions through the knowledge representation phase.
Changes in sources contexts can be accommodated by
modifying annotation values without affecting both the global
ontology and the conversion functions (no hand-code needs to
be maintained).The proposed SCR framework assumes that
the underlying information sources are structured data, testing
our proposed approach for detecting and reconciling semantic
conflicts using semi-structured data such as web pages is
required to identify new challenging issues. We have
demonstrated the capability of the SCR framework using
simple illustrative example. It is interesting to ensure
interoperability and knowledge-based information sharing in
real world environments of fertile fields like bioinformatics,
digital libraries and GIS systems in order to test the feasibility
of our approach.

REFERENCES

[1] Firat, A.(2003). Information Integration Using Contextual Knowledge
and Ontology Merging. Ph.D. Thesis. Massachusetts Institute of
Technology.

[2] Madnick S., Gannon T., Zhu, H., Siegel M., Moulton A., Sabbouh
M.,(2009):" Framework for the Analysis of the Adaptability,
Extensibility, and Scalability of Semantic Information Integration and
the Context Mediation Approach”, IT.

[3] Madnick, S.E., & Zhu, H. (2006) .Improving Data Quality with
Effective Use of Data Semantics. Data and Knowledge Engineering,
59(2), 460-475.

[4] Noy, N. F. and Musen, M. A., PROMPT: Algorithm and tool for
automated ontology merging and alignment, National Conference on
Artificial Intelligence - AAAI , pp. 450-455, 2000.

[5] Nyulas, M. Connor, S. Tu, DataMaster_a plug in for Relational
Databases into protégé, Stanford University, 10th international protégé
conference, 2007.

[6] Ram ,S., Park, J., Semantic Conflict Resolution Ontology (SCROL): A
Ontology for Detecting and Resolving Data and Schema-Level Semantic
Conflicts, IEEE Transactions on Knowledge and Data Engineering, v.16
n.2 , p.189-202, 2004.

[7] Rosenthal, A., Seligman, L. and Renner, S. From Semantic Integration
to Semantics Management: Case Studies and a Way Forward, ACM
SIGMOD Record, 33(4), 44-50, 2004.

[8] Sultan, T. I., Nasr, M. M. , Khedr, A. E., & Ismail , W., S. (2013) "
Semantic Conflicts Reconciliation (SCR): A Framework for Detecting
and Reconciling Data-Level Semantic Conflicts" , International Journal
of Engineering Research and Applications (IJERA),ISSN: 2248-9622 ,
Volume 3, Issue: 1, pp.766-773, India.

[9] Zhu, H., & Madnick, S. E. (2004) “Context Interchange as a Scalable
Solution to Interoperating Amongst Heterogeneous Dynamic Service”,
3rd Workshop on E-Business. Washington, D.C., 150-161.

[10] Zhu, H., (2005): Effective Information Integration and Reutilization:
Solutions to Deficiency and Legal Uncertainty, PhD Thesis,
Massachusetts Institute of Technology Cambridge, MA, USA.

[11] Zhu, H., Madnick, S., Reconciliation of temporal semantic heterogeneity
in evolving information systems", ESD-WP-2009-03, Massachusetts
Institute of Technology Cambridge, MA, USA, 2009

http://libra.msra.cn/Conference/251/aaai-national-conference-on-artificial-intelligence
http://libra.msra.cn/Conference/251/aaai-national-conference-on-artificial-intelligence

