
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 4, No.5, 2013 

59 | P a g e  
www.ijacsa.thesai.org 

DCaaS: Data Consistency as a Service for Managing 

Data Uncertainty on the Clouds 

Islam Elgedawy 

Computer Engineering Department,  

Middle East Technical University, 

 Northern Cyprus Campus,  

Guzelyurt, Mersin 10, Turkey. 
  

 
Abstract—Ensuring data correctness over partitioned 

distributed database systems is a classical problem. Classical 

solutions proposed to solve this problem are mainly adopting 

locking or blocking techniques. These techniques are not suitable 

for cloud environments as they produce terrible response times; 

due to the long latency and faultiness of wide area network 

connections among cloud datacenters. One way to improve 

performance is to restrict access of users-bases to specific 

datacenters and avoid data sharing between datacenters.  

However, conflicts might appear when data is replicated between 

datacenters; nevertheless change propagation timeliness is not 

guaranteed. Such problems created data uncertainty on cloud 

environments. Managing data uncertainty is one of the main 

obstacles for supporting global distributed transactions on the 

clouds. To overcome this problem, this paper proposes an quota-

based approach for managing data uncertainty on the clouds that 

guarantees global data correctness without global locking or 

blocking. To decouple service developers from the hassles of 

managing data uncertainty, we propose to use a new platform 

service (i.e. Data Consistency as a Service (DCaaS)) to 

encapsulate the proposed approach. DCaaS service also ensures 

SaaS services cloud portability, as it works as a cloud adapter 

between SaaS service instances. Experiments show that proposed 

approach realized by the DCaaS service provides much better 

response time when compared with classical locking and blocking 
techniques. 
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I. INTRODUCTION  

Clouds are the next-generation datacenters virtualized 
through hypervisor technologies, where cloud-vendors can 
dynamically provision their virtualized nodes on demand to 
their customers according to the specified service level 
agreements [3]. Cloud computing is the computing paradigm 
that enables the whole solution stack (from hardware to 
software) to be delivered as services over the internet. Such 
services are classified into three basic classes: Software as a 
service (SaaS), Platform as a Service (PaaS), and 
Infrastructure as a Service (IaaS) [3]. SaaS services are 
applications that customers need. PaaS services are services 
needed to deploy and deliver SaaS services such as database 
and middleware services. IaaS services are services needed to 
specify the required virtualized computer infrastructure such 
as disk and memory requirements.   

Real-life cloud environments usually constituted from a 
collection of datacenters connected via a Wide Area Network 
(WAN). A datacenter is constituted from thousands of 
machines connected via a LAN (i.e. local area network) 
forming what is known as a cloudlet (i.e. a small cloud).  
Latency in WANs is much bigger than latency in LANs. This 
difference in latency distribution inside cloud environments 
created a non-homogenous timing model for the cloud. For 
example, latency between two machines inside a datacenter is 
in the range of 100 msec; while latency between two machines 
connected via WAN is in the range of 1000 msec (i.e. when 
machines are in different continents). Such latency difference 
makes the WAN connections as the main bottleneck in cloud 
environments. Hence, existing classical concurrency control 
and transaction management approaches (such as ones 
discussed in [7] [9]) are not suitable for cloud environments, 
as they opt to accommodate the slowest latency inside the 
cloud environment, which badly hurts services performance.  
To overcome this problem, many approaches have appeared 
[4][5][6][8][20][22][24] proposing a restricted version of 
cloud computing, in which requests of users with similar 
latency values (known as a user-base) are directed to the 
closest datacenter such that no data sharing between 
datacenters is allowed. However, data could be replicated later 
between datacenters storages as a background process to keep 
databases eventually synchronized and to create multiple 
copies of the database for backup purposes [12]. We define 
such computing model as “cloudlet computing”. A cloudlet is 
a small cloud, so it is similar to cloud in terms of offered 
services; however it differs in restricting its physical scope 
into only one datacenter. Cloudlet computing only supports 
what is known as a mini-transactions [20], which are 
transactions restricted to a single datacenter to guarantee good 
performance [4][5][6][8][20][24]. On the other hand, cloudlet 
computing cannot support global transactions (such as in flight 
reservation and banking), as global data correctness is not 
guaranteed due to lack of global control. In other words, 
cloudlet computing paradigm ensures local correctness of the 
data within the cloudlet but cannot ensure global correctness 
of the data (among all cloudlets), as conflicts might appear 
when data is replicated between cloudlets due to lack of global 
control. Furthermore, there is no guarantee for change 
propagation timeliness as updates propagation depends on 
many different factors such WAN latency and replication 
schedule of cloud vendor. Hence, data uncertainty becomes a 
very important characteristic on the clouds and must be 
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managed by applications as cloud data stores management 
systems cannot overcome such problem [13]. However, 
managing data uncertainty in service code is not an easy task, 
as it requires services to be designed in a different way to deal 
with missing or multiple values of data objects. Actually, 
managing data uncertainty is one of the main obstacles for 
writing transactional applications on the clouds [3]. We argue 
that service developers should be totally decoupled from 
managing data uncertainty in their code to improve service 
maintainability, portability and reusability, nevertheless 
reducing service development efforts and time. We argue that 
we need to create a new breed of database management 
services (such as transaction management, data access, and 
data replication) that take into consideration the data 
uncertainty resulting from the cloud non-homogenous timing 
model. Unlike the classical centralized database management 
systems, such new breed of database management services 
must be totally decoupled and must ensure good performance, 
high availability, and high scalability of services as well as 
global data correctness, which enables us to easily support 
global distributed transactions. This paper proposes our first 
initiative towards achieving these goals. Hence we summarize 
the contributions of the paper as follows: 

 

1) First, we propose to use a new middleware platform 

service for handling data consistency and data uncertainty 

issues (i.e. Data Consistency as a Service (DCaaS)) on behalf 

of service developers, hence service code will be totally 

decoupled from data uncertainty management code leading to 

faster maintainable SaaS service development. SaaS 

developers will not write SQL statements in their SaaS service 

code to access data; instead they will write invocations for the 

DCaaS service APIs operations to access their data. 

Furthermore, DCaaS service ensures service cloud 

portability, as it also decouples SaaS services from directly 

accessing PaaS services operations; hence no SaaS service 

code will change if the cloud vendor is changed. The only 

required change is in the interface between the DCaaS and the 

PaaS services, which could be handled easily using service 

adapters [28].  

2) Second, we propose to use a multi-level data 

consistency approach for handling SaaS services data objects 

to enhance service performance. As maintaining strong data 

consistency is a costly process [15], we argue that it should be 

only used for objects that their correctness is crucial for 

services correctness, while for less important data we could 

go for weaker consistency notions such as eventual or session 

consistency [23].  Service developers will dynamically define 

their consistency requirements according to their business 

logic in a form of a Data Consistency Plan (DCP), and then 

submit such plan to the DCaaS service, which will make sure 

such consistency requirements are fulfilled during data access 

operations. Currently, we support three levels of data 

consistency strong, eventual, and session that service 

providers choose from to define the required DCP; more 

details are given in Section 4.  

 

3) Third, we propose a quota-based approach for 

ensuring global data correctness among cloudlets. The 

proposed approach applies inventory management principles 

to ensure fulfillment of users requests, that it requires service 

providers to divide crucial objects capacity among cloudlets 

by specifying a quota for each cloudlet such that DCaaS 

services makes sure no cloudlet user request consume more 

than the allocated quota. Hence, when data is replicated 

between cloudlets no conflicts could arise. When a given 

DCaaS service instance requires more than assigned quota 

due to high volume of requests, it could contact other DCaaS 

instances to borrow extra quota. If quota borrowing process 

fails the request is rejected. To achieve such goals, we provide 

different protocols for quota borrowing, object stabilization, 

and DCaaS fault tolerance to ensure protocols liveness and 

safety properties, more details are given in Sections 4, 5 and 

6.  
Experiments show that proposed DCaaS service adopting 

the proposed data consistency approach provides much better 
response time when compared with classical locking and 
blocking techniques. The rest of the paper is organized as 
follows. Section 2 provides a brief background and discusses 
related work. Section 3 provides solution model and 
assumptions. Section 4 introduces the quota-based approach 
proposed for ensuring data global correctness. Section 5 
discusses different management issues of data consistency 
plan and proposes the adopted object stabilization protocol. 
Section 6 discusses various design aspects of the proposed 
DCaaS service such as required APIs and DCaaS recovery. 
Section 7 provides some basic comparative simulation 
experiments for proposed approaches, and finally Section 8 
concludes the paper. This paper is the extended version of the 
paper proposed in [27]. 

II. BACKGROUND AND RELATED WORK 

Ensuring data consistency over partitioned distributed 
database system is a classical problem that attracted many 
researchers.  Data replication is one of the methods used for 
sharing data between database instances; in which multiple 
copies of the shared data are stored with the SaaS service 
instances [7][9][12]. Such copies (replicas) are frequently 
updated by broadcasting changes to all instances. However, 
this is not an easy step, as correctness of the data must be 
maintained. One important aspect of replicated data 
correctness is mutual consistency, in which all copies of the 
same logical data must agree on exactly one current value for 
the data items without violating the logic of the executed 
transaction. Furthermore, the problem becomes more 
complicated, when a failure occurs (e.g. due to network failure 
or server failure) as the correctness of the shared replicated 
data could be compromised via uncoordinated updates. 
Classical solutions proposed to solve this problem are mainly 
adopting locking or blocking techniques to ensure data 
correctness. Good surveys for such approaches could be found 
in [7] [9]. Such classical approaches adopt a pessimistic 
strategy that assumes conflicts occur frequently. Hence, they 
suspend all other instances from working (via locking or 
blocking) when a given instance needs to do some updates for 
the shared data. These techniques provide very bad 
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performance when applied on cloud environments [5] [6] [11] 
[15] [22], as they tend to create considerably high overhead 
over the slow faulty WAN connections due to exchanged 
synchronization messages and performed reconciliation 
transactions, which of course badly hurts services availability 
and customers’ response times.  CAP theorem [11] clearly 
states that there is a tradeoff between Data consistency, 
service availability and partition tolerance. This means asking 
for high availability and consistent data would imply that we 
cannot tolerate network partitioning. In cloud environments, 
data is partitioned over multiple machines to provide high 
scalability, and as networks between these machines could 
simply fail, this means partitioning (data and networks) is 
crucial for cloud environments. Hence, cloud vendors opt to 
choose between availability and consistency.  Recent 
approaches (such as Google's BigTable [4], Yahoo PUNTS[5], 
Amazon's Dynamo [8], G-store [6] and Apache Cassandra 
[24])  proposed to go for  weaker forms of consistency on the 
clouds  such as eventual consistency [20], in which they trade 
consistency for availability, that all service instances are 
allowed to work normally without any suspension and process 
their transactions locally. This is known as the optimistic 
strategy; as it assumes conflict occur rarely. However, when a 
conflict is detected undo transactions and/or compensating 
transactions should be performed by the services, also in some 
cases some data versions could be lost. Going for weaker 
forms of consistency requires developers to design programs 
in new ways that can tolerate such data inconsistencies 
according to business logic. This could be done via writing 
correcting transactions or using data time stamps to decide 
between multiple versions of the data as in [21].       Solution 
proposed in this paper compromise between the optimistic and 
pessimistic approaches such that it maintains local correctness 
within a cloudlet using pessimistic approaches and ensures 
data global correctness between cloudlets by using a quota-
based approach that adopts lazy replication approaches as in 
optimistic approaches to ensure availability and scalability.  

III.  SOLUTION MODEL AND ASSUMPTIONS 

In this paper, we assume cloud vendors provide a PaaS 
service for accessing the SaaS database (that is a tenant in the 
physical cloud database).  Objects of the SaaS database are 
stored as simple key-value data format. SaaS database could 
be partitioned among different cloudlets; hence we require 
cloudlets PaaS services to provide a lazy replication 
mechanism (as a background process) to replicate their data 
changes. A PaaS service could be accessed by one or more 
DCaaS services simultaneously; hence we require a PaaS 
service to provide a local concurrency protocol mechanism 
between DCaaS instances accessing it.   Each SaaS instance 
handles a given user-base of SaaS customers. Each cloudlet 
could create multiple SaaS, DCaaS, and PaaS service 
instances to increase availability, throughput, and enhance 
response times, as depicted in Figure 1. Hence we require each 
DCaaS instance to keep reference to other DCaaS instances 
created inside and outside its cloudlet.       We model DCaaS 
service instances as peers and they can communicate with 
each other in a P2P manner.  We require all the 
communications between SaaS, DCaaS, PaaS services to be 
done in an asynchronous mode, as the clouds timing model is 

non-homogeneous. Hence, fast services will not wait for slow 
services responses and could process other requests. We 
require a state machine to implementation be installed at each 
DCaaS instance to realize proposed protocols, the exchanged 
messages between state-machines are calls for DCaaS API 
operations. 

Fig. 1. aS, DCaaS, PaaS single cloudlet deployment 

IV. QOUTA-BASED  DATA CONSISTENCY APPROACH 

Work in [13] clearly indicates that data uncertainty must 
be managed in distributed transactions in order to meet real 
life requirements. Management of data uncertainty is not a 
new problem.  Actually, in business, handling data uncertainty 
is a fact of life and many solutions have been adopted by 
businesses for managing such uncertainty such as reserved 
inventory, allocations against credit lines, and budgeting. We 
propose to handle uncertainty for data objects using similar 
business strategies. For example, inventory management is 
primarily about specifying the shape and percentage of 
stocked goods required at different locations within a facility 
or within many locations of a supply network. Inventory 
management is the process of efficiently overseeing the 
constant flow of units into and out of an existing inventory. 
This process usually involves controlling the transfer in of 
units in order to prevent the inventory from becoming too 
high, or dwindling to levels that could put the operation of the 
company into jeopardy. Hence, we argue we could use the 
same process for managing transactions accessing objects on 
distributed data stores such that the data store act as 
inventories, the objects act as the goods, and the users’ 
requests act as the consuming demand. For example, an airline 
reservation service could have its database partitioned among 
many cloudlets (i.e. inventories). Instead of globally locking 
flight data object whenever a booking operation is made, we 
will allocate a quota of seats (i.e. goods)  for each cloudlet 
such that each cloudlet locally handles its incoming users 
requests (i.e. demand) and its DCaaS service instances make 
sure it does not exceed the allocated quota. When such 
condition is fulfilled, no data conflicts (i.e. different bookings 
for the same seat) could appear when replication occurs 
between cloudlets. A cloudlet ensures the correctness of its 
transactions using its own concurrency control approach using 
any locking or blocking technique. This approach will not hurt 
performance as latency inside cloudlets is small (i.e. within 
the range of 100ms), which still provide acceptable response 
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time [20].  Another example, in banking, if we need to access 
a given account, instead of locking the account object, we 
could allocate a budget for each cloudlet to manage its 
incoming withdrawal and deposit requests.  

To ensure global data consistency, we require each SaaS 
service provider to define a capacity quota for its strong 
consistency data objects for each cloudlet; then provides such 
information to the corresponding DCaaS service instances via 
a DCP. DCaaS makes sure that none of incoming users 
requests to consume more than the allocated objects quotas. In 
case of one request requires capacity more than allocated 
quota, the involved DCaaS service instance tries to borrow 
quota from other DCaaS instances. In case of success, it 
accepts the request and processes it, otherwise it rejects it. A 
DCaaS service instance could borrow from instances located 
in its cloudlet, or from instances in other cloudlets. As 
borrowing from outside cloudlets requires communications via 
WAN connection, hence only requests requiring extra quota 
will be affected. We argue that quota should be distributed 
between cloudlets in a manner that minimizes the borrowing 
rate, that quotas should be proportional to the volume of the 
cloudlets users-bases such that cloudlet with bigger volume 
should take a bigger quota.  We perform the quota borrowing 
process adopting a simple protocol depicted in Figure 2.  

Fig. 2. Stages of Quota Borrowing Protocol 

The quota borrowing protocol works as follows. The 
DCaaS service instance requesting the quota sends its request 
first to DCaaS instances in its cloudlet with the required of 
borrow amount. Each DCaaS service instance received the 
quota borrow request replies back with the quota amount it 
can transfer. This amount ranges from zero to the required 
amount. The leader collects all quota transfer responses and 
acknowledges other DCaaS instances with the amounts it will 
take. Once DCaaS instances receive such acknowledgment it 
updates its share of quota with the acknowledged amount. 
Such protocol requires a state machine to be installed at each 
DCaaS instance, exchanged messages between state-machines 
are calls for DCaaS API operations; more details about DCaaS 
APIs will be given in Section 6.  The easiest quota distribution 
strategy is to equally divide the object capacity among 
cloudlets. However, the proper quota distribution strategy 
should be based on thorough demand forecast analysis. In case  
a service provider makes a mistake in allocating the quotas, 
DCaaS service instances will automatically redistribute the 
quotas among themselves when requests arrives via the quota 
borrowing process. The price of wrong quota allocation is 
longer response times due to the slow quota borrowing 
process (if WAN connections are used). However, once quota 

borrowing process is finished, response times dramatically 
improve, as all incoming requests will be handled locally 
inside the cloudlet, as shown in Section 7. 

V. SERVICE DCP MANAGEMENT 

Our solution divides the responsibility of managing data 
uncertainty between the service provider and the DCaaS 
service. It decouples the definition of the data management 
strategy from its implementation. The proposed solution 
requires SaaS service providers to specify the required 
strategy, while the DCaaS service work on implementing and 
executing this strategy. A SaaS service provider specifies its 
strategy by defining a Data Consistency Plan (DCP) for its 
SaaS service then submits such DCP to the DCaaS service to 
implement it. DCP specifies the required consistency level for 
each data object and its corresponding object stabilization 
method. Service providers could change their DCP at run time 
without changing their service code. For each data access, 
DCaaS service checks the required consistency level defined 
in the DCP; then invokes the corresponding data access 
procedure. This section discusses different management 
aspects of SaaS data consistency plan. First it introduces the 
supported data consistency levels and provides a formal 
definition for a DCP. Then it describes DCP change 
management process. Finally, it shows the adopted object 
stabilization protocol as well as the supported stabilization 
methods in case of conflicts.  

A.  DCP Definition and Creation  

Currently, we support three levels of data consistency (i.e. 
Strong, Eventual, and Session).  Strong consistency implies 
that the global correctness of the data object is maintained 
such that any SaaS instance accessing the object is actually 
reading its up-to-date correct value. Eventual consistency 
implies that object correctness is locally maintained (i.e. 
within a cloudlet) but not globally (i.e. between all cloudlets). 
However, if there are no global conflicts between cloudlets, 
and no more new updates are made to the object, eventually 
all database accesses will return the same last updated value, 
as cloud vendors perform a lazy replication process between 
cloudlets to synchronize their DBs [12].  Session consistency 
implies that the SaaS instances read its own writes only. This 
means object data will be maintained only at the DCaaS 
service instance cache and does not go to the PaaS service for 
storage. Hence, those data will be lost after the session 
terminates. We require each SaaS provider to define a DCP 
for its service; hence each SaaS service instance will follow 
the same service DCP. A DCP indicates the required 
consistency level for each data object. Also it indicates the 
required stabilization method to be applied in case of object 
values divergence. DCP also specifies the cloudlet quota for 
strong consistency objects. We formally define a DCP as a set 
of Object Access Patterns (OAP) that DCP = {OAP(i)}, where 
an OAP(i) = < i, c, s, q>, i  is the data object reference, c is the 
required consistency level, s is the required stabilization 
method, and q  is the cloudlet quota distribution plan and it is 
defined as a set of cloudlet quota allocations, that q= 
{<Cloudlet reference , CloudletQuota >}. As the number of 
cloudlets is always small, the size of such quota list is not a 
problem.  We support different stabilization methods, more 
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details about object stabilization will be provided later.  We 
require each data object to have only one OAP. For example, a 
SaaS provider for a flight reservation service X, which require 
access for two data objects Customer and Flight, The 
corresponding DCP could be defined as DCP(X)= {<Customer, 
Eventual, Thomas, {}>, <Flight, Strong, Exact, {<1,50>, <2, 
200>} >}. This means the consistency of the customer object 
is eventual and Thomas write rule (i.e. last write wins) will be 
applied in case of conflicts, while the consistency of the flight 
object is strong, and history method will applied in case of 
conflicts. It also shows that we have two cloudlets, the first 
cloudlet has a quota of 50, and the second one has a quota of 
200.  As we can see the given DCP definition is working at the 
object level, however we could extend the definition to work 
on the attribute level, by defining DCP as a set of Attributes 
Access Patterns (AAP) that DCP = {AAP(I , j)} , where an 
AAP(I,j) = < i, j, c, s, q>, i   is the data object reference, j  is the 
attribute reference, c is the required consistency level,  s is the 
required stabilization method, and q  is a set of allocated 
cloudlets quota. For example, a DCP over flight attributes 
could be defined as {<Flight, PlaneModel, Eventual, Thomas. 
{}>, <Flight, Capacity, Strong, Max, {<1, 50>, <2, 200>}>}. We 
do not require specific granularity level for the DCP 
definition; we leave this choice to SaaS providers to decide. If 
the SaaS providers choose an object level or a higher level, 
DCP size could be small and fits nicely in memory but 
performance could be affected due to local concurrency 
control locks. However, if they choose the attribute level, the 
DCP size could be big; hence DCP could not fit into memory 
and require storage. Of course, this is a classical optimization 
problem a SaaS provider has to solve. Once quick solution is 
to compress DCPs using any query-aware compression 
technique (such as one in [26]) to avoid DCP storage. Another 
approach to minimize the DCP size is to assume default values 
for unspecified objects and attributes. We use eventual 
consistency as the default consistency level, and Thomas rule 
as the default stabilization method. It is important to note that 
in this paper, we require DCP to have only one access pattern 
for each object/attribute.  However, in future work we are 
planning to relax this condition to allow a given object to have 
different access patterns that DCaaS could choose from in a 
context-based manner (i.e. choice could be based on the 
executed SaaS operation, PaaS response time, Users SLAs). 

B.  DCP Change Management  

    To provide flexibility for SaaS providers, we provide 
them with the option to change their DCPs at run time 
whenever they like and the DCaaS service will do the 
necessary adjustments to fulfill the new requirements. The 
DCaaS service contains different components to handle 
different consistency requirements (refer to Figure 4). It is 
important to note that change in DCP does not require change 
in the SaaS service data access code, as DCP change occurs 
through a specific DCP APIs, while the data access occurs via 
invocations for different API operations, more details about 
DCaaS APIs will be given in section 6.    

As we do not allow different access patterns for the same 
data object, whenever DCaaS service instance receives a 
request for DCP change, it automatically becomes the DCaaS 
instances leader and notifies the other DCaaS service instances 

with the DCP change and make sure it is executed at all 
instances.  For consistency level upgrade request from session 
to eventual, the DCaaS instance leader updates the 
corresponding DCP entry, then stores the object value written 
in its cache into the data store via the PaaS service, and then 
notifies other instances and waits for their acknowledgments. 
If all instances replied, it considers the request is fulfilled. In 
case of missing or slow acknowledgment,  the leader tries 
back after certain timeout window, if an instance still not 
replying,  the leader consider it as a failed node and store the 
change request for later when it recovers, more details about 
DCaaS recovery will be given later.  For consistency level 
upgrade request from session/eventual to strong, the DCaaS 
instance leader updates the corresponding DCP entry, and then 
starts to stabilize the object values in all cloudlets as 
correctness of such values were not maintained before the 
upgrade request. This is done by broadcasting a stabilization 
request for all DCaaS instances. We have different strategies 
for stabilizing different object values that differ in their costs, 
more details are given later in Section 5.3. Once the leader 
stabilizes the object value, it computes the DCaaS instances 
quotas then sends for each DCaaS instance the new object 
value and its allocated quota, more details about quota 
computation are given in Section 6.  For consistency level 
downgrade request from strong to eventual, the DCaaS 
instance leader updates the corresponding DCP entry to stop 
quota checks, as now only local correctness is required. For 
consistency level downgrade request strong/ eventual to 
session, the DCaaS instance leader updates the corresponding 
DCP entry, and then creates an entry in its cache for the object 
and stop storing object updates into the data store as all 
updates has to in the cache only. In both cases, DCaaS leader 
notifies other DCaaS instances with the change and waits for 
their acknowledgement.  

C.  Objects Stabilization  

     When a given DCaaS instance receives a request for 
consistency upgrade to strong consistency, it requires 
stabilizing the object value, as every DCaaS instance could 
have a different value. Our stabilization protocol is very 
simple. First, we assign the DCaaS instance receiving the 
change request as the leader who will orchestrate the change. 
Other DCaaS instances will be the followers. The leader sends 
a stabilization request messages to all DCaaS instances and 
waits for their response.  

Each DCaaS instance must reply back to the leader with 
the current value of the object using a stabilization response 
message. The leader collects all values and computes the new 
object value by applying the stabilization method defined in 
the DCP. Finally, the leader sends to each DCaaS instance a 
stabilization command message to propagate the computed 
value and monitor instances acknowledgments. Once a DCaaS 
instance receives a stabilization command, it updates the 
object value and its DCP and replies with an update 
acknowledgement. Of course, implementation of such 
protocol requires a state machine to be installed at each 
DCaaS instance, exchanged messages between state-machines 
are calls for DCaaS API operations; more details about DCaaS 
APIs will be given in Section 6.  Figure 3 summarizes the 
steps of the stabilization protocol.  
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Fig. 3. Stages of Object Stabilization Protocol 

Figure 3 shows the different stages of the protocol. To 
simplify the diagram we assumed propagation delays between 
DCaaS instants are constant. However, in real life, 
propagation delays are different. Such stabilization process is 
a very costly process as it involves communication over WAN 
connections. Hence, we advise SaaS providers to avoid 
frequent consistency upgrades. We assume all exchanged 
messages are asynchronous.    We propose different types of 
stabilization methods in order to provide SaaS providers with 
the flexibility to choose the most suitable ones for their 
business logic. Each data object will have its own stabilization 
method defined in the DCP. To stabilize an object, we propose 
to use different methods for stabilization varying in 
complexity, cost, and correctness. 1) Exact method. 2) 
Thomas write rule. 3) Basic uncertainty filters: Min, Max, 
Avg, and Sum. 4) Customized uncertainty filter. The exact 
method guarantees the correctness of the data object value. 
However, it is the most expensive method and we do not 
recommend it for SaaS providers due to the huge amount of 
communication and computation involved. The exact method 
requires keeping track of transaction history at each DCaaS 
instances, then sending these histories to the leader to find a 
global order for all transactions. Then the leader has to 
execute these transactions to compute the new value, and then 
distribute the new history and new value to other DCaaS 
instances. Of course, finding such global transaction order is a 
very expensive task as it could require many transactions 
rollbacks over all DCaaS instances. Hence, SaaS providers 
should use this method only for objects that is extremely 
crucial for their business logic. The Thomas write rule is one 
of the most famous methods in conflict resolution. It simply 
returns the value with the most recent time stamp. Hence, each 
DCaaS instance should send the leader the object value with 
its corresponding time stamp. The leader simply chooses the 
most recent one. The problem with this approach if real time is 
used is to have global clock synchronization, which is not 
feasible. However, there are many solutions proposed in 
distributed computing area for this problem such as use of 
lamport clock [16]. To avoid the headache of global clock 
synchronization, we provide the option to use basic 
uncertainty filter that are used in the area of probabilistic 
databases [1] [2]. That DCaaS follower sends only the values, 
and the leader applies one of the basic probabilistic basic 
functions (such as Min, Max, Avg, Median, and Sum) to get 
the new object value. Finally, we provide the SaaS providers 
to provide their own customized uncertainty filters if they did 
not like to use basic ones. 

VI. DATA CONSISTENCY AS A SERVICE  

DCaaS service is basically proposed to decouple SaaS 
developers from managing data uncertainty aspects in their 
services code.  SaaS developers will not write SQL statements 
in their SaaS service code to access data; instead they will 
write invocations for the DCaaS service APIs operations to 
access their data. Also DCaaS service decouples SaaS 
developers from PaaS services, hence it ensures SaaS clouds 
portability as no changes will occur to the SaaS service code if 
we change cloud vendors, the only change will be in the 
DCaaS service interface with the PaaS service, which could be 
managed by service adapters [28].  DCaaS takes the 
consistency requirements of a given SaaS service as a DCP, 
and then automatically implements and executes the given 
DCP for each data access. SaaS developers have the flexibility 
to change their consistency requirements on run time without 
changing their SaaS service code. This section briefly 
discusses various design aspects of DCaaS service.   First, it 
discusses the DCaaS structure and configuration, and then it 
describes the different DCaaS APIs, and finally it illustrates 
adopted protocols for DCaaS service recovery.  

A.  DCaaS Structure and Configuration 

    As we support three different levels of data consistency, 
DCaaS service should have implementations for approaches 
realizing the adopted data consistency levels.  To decouple 
DCaaS service code from the realizing approaches 
implementations, we encapsulate each data consistency 
approach as a component service to be invoked by the DCaaS 
service. We can think of the DCaaS service as the orchestrator 
for these service components. For example, a developer could 
invoke a DCaaS write operation to update a value of an object 
(e.g. DCaaS.Write (X,1). Listing 1 depicts a sketch for a 
DCaaS service write operation. DCaaS should invoke the 
write operation version corresponding to the required data 
consistency level.  

 

Listing 1: A sketch for DCaaS Write operation 
int  Write  (DataObject X, ObjectValue V) 
{ 
    Consistency Level    L = GetConsistencyLevel(X); 
          Switch (L) 

                 {Case Strong :  status= Strong-Write (X, V); 
Case Eventual: status= Eventual -Write (X, V); 
Case Session: status= Session -Write (X, V); 
//… 

                   } 
            return (Status); 
 } 

 
Each component service communicates with the PaaS 

service to perform the required operations on the data store, as 
in Figure 4.  The DCaaS service is not necessary to be located 
on the same machine of its service components or the PaaS 
service. We require that each cloudlet to have at least one 
SaaS service instance, one DCaaS service instance and one 
PaaS service instance. 
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Fig. 4. SaaS, DCaaS, PaaS interactions 

    A cloudlet management system could clone SaaS and 

DCaaS service instances to improve performance, however, 

we require a certain configuration protocol to be followed 

whenever a new DCaaS service instance is created in order to 

ensure DCaaS functional correctness. When a DCaaS service 

instance is created, it will not be in the active state unless the 
configuration process is finalized. This configuration process 

could be done manually or automatically. In the manual mode, 

after a SaaS provider creates a DCaaS instance at each 

cloudlet, it provides each DCaaS instance with the 

corresponding DCP as well as a list of other DCaaS service 

instances (i.e. we define it as the peer list). Once a DCP is 

loaded, the DCaaS service instance creates a list of Strong 

Consistency Objects Quotas (i.e. SCOQ = {<Object 

Reference, InstanceObjectQuota>}) to keep track of its quota. 

This is done by copying DCP strong object entries into the list 

and setting InstanceObjectQuota to the quota of its cloudlet 
(i.e. CloudletQuota defined in the DCP). In case a cloudlet has 

only one DCaaS service instance, InstanceObjectQuota will 

be equal to CloudletQuota. However, if the cloudlet has 

multiple DCaaS instances, The CloudletQuota should be equal 

to the sum of all InstanceObjectQuota belonging to its DCaaS 

service instances. In the automated mode, the SaaS providers 

provides only one DCaaS instance with the DCP and the peer 

list, and this DCaaS service automatically contacts the other 

DCaaS Service instances in the peer list to upload the required 

DCP and the given peer list by invoking specific DCaaS APIs. 

Again, once each DCaaS loads its DCP, it creates its local 

SCOQ list. Once a DCaaS instance has its DCP, peer list, and 
SCOQ list ready, it becomes now in the ready state. When a 

new DCaaS instance is added to the DCaaS peer network, the 

cloudlet quota of strong consistency objects specified in the 

DCP has to be redistributed among all DCaaS service 

instances inside this cloudlet, and then each DCaaS service 

instance should update its SCOQ list with the new quota 

values. This is done via a join DCaaS instance protocol, in 

which a new DCaaS service instance sends to the current 

cloudlet leader a join request. If there is no current leader, the 

new instance sends the join request to any existing DCaaS 

service instance, which will become the leader. We adopted 
this simple leader selection approach to avoid doing leader 

election process. Once a leader receives the join request and 

makes sure the new instance is authentic and not malicious 

(security aspects are out of the scope of this paper), it adds it 

to its peer list and updates its SCOQ list by dividing the 

cloudlet quota of each object by the number of instances in the 

new peer list, then sends add instance request to all DCaaS 

instance in its old peer list. Once a DCaaS instance receives 

the update peer list request, it adds the new node to its peer list 

and updates its SCOQ list by dividing the cloudlet quota of 

each object by the number of instances in the new peer list, 

and then acknowledges the leader. Once the leader receives all 

acknowledgments, it replies back to the new instance with the 
join accepted message and provides it with the peer list and 

the DCP, from which the new instance will compute its SCOQ 

list.  Figure 5 summarizes the steps of the join protocol. 

Fig. 5. Stages of DCaaS Instance Join Protocol 

Once each DCaaS instance computes its new SCOQ list, it 
becomes in the ready state and could process user requests. It 
is important to note that DCaaS instances check first if the 
required instance to be added is not in their peer list before 
they do the SCOQ list computation, otherwise they keep the 
old SCOQ list, as no changes are occurred.  This is important 
issue to make sure the join requests from the recovered 
instances or new instances are idempotent. DCaaS instance 
recovery is discussed in the later in this section. 

B. DCaaS APIs 

  DCaaS service API should support operations required 
for different service interactions. For example, it should 
support data access operations, operations for objects 
stabilization, operations for DCP management and quota 
redistribution, operations for peer list management, and 
operations for quota borrow and transfer. For data access 
APIs, DCaaS service implements a simple API interface for 
reading and writing operations. The read operation API is 
Read (DataObject X), while the write operation API is write 

(DataObject X, ObjectValue V).      For managing data 
consistency plans, DCaaS service should provide DCP 
management APIs such as LoadDCP(DCP p), 
ModifyConsistencyLevel(DataObject X, ConsistencyLevel L), 
ModifyCloudletQuota(DataObject X, CloudletReference R, 
Quota Q).  LoadDCP is used to load a DCP when a DCaaS 
service is created, while ModifyConsistencyLevel, is used to 
modify a given data object consistency level. 
ModifyCloudletQuota  is used to modify a given cloudlet 
quota.  For peer list management, we should have APIs such 
as LoadPeerList(List L) to upload a peer list when DCaas is 
created,  UpdatePeerList(UpdateType T, UpdateDetails D)  to 
update peer list contents.  For quota redistribution protocol, 
we should have APIs such as JoinRequest (Instance I) to 
request to join the current DCaaS peer network, UpdateAck 
(Instance I) to inform leader with updates confirmation, and 
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joinAck(DCP P, PeerList R) to acknowledge the acceptance of a 
new DCaaS instance. For stabilization Protocol, we should 
have APIs such as StabReq(Object x) to request stabilization 
of a given object, StabRes(Object x) to respond with the object 
value, and StabCom(Object x) to enforce a common object 
value, and finally StabAck(Object x) to acknowledge object 
stabilization.  For quota borrowing protocol, we should have 
APIs such as QBrwReq(Object x, Amount y) to request 
borrowing a certain amount of quota, QuotaTransfer(Object x, 
Amount y) to transfer certain amount of quota to another 
DCaaS instance, and QuotaTrAck(Object x, Amount y) to 
acknowledge the quota transfer process.  For leader election 
protocol, we should have APIs such as LeaderReq(Instance I) 
to nominate a leader, LeaderAcK(DCP P, PeerList R)  to accept 
a leader nomination, Synch(DCP P, PeerList R) to synchronize 
DCaaS instances, and SynchAck  to acknowledge the success 
of the synchronization process. Of course all DCaaS APIs will 
be under proper security management; however security is out 
of the scope of this paper. 

C.  DCaaS Recovery 

  In case of a given DCaaS instance failure. We will use 
classical DB recovery approaches using data logs for 
recovering eventual consistency objects to rollback any 
uncommitted transactions, while for session consistency 
objects, we will just fetch the last values from DB. The 
problem will be in the strong consistency objects, as the 
allocated quota for strong consistency objects has to be 
redistributed among remaining DCaaS instances. Quota 
redistribution is done when the leader or any other DCaaS 
instances noticed the failure of such DCaaS instance. Hence, it 
sends UpdatePeerList  request to all the DCaaS instances in 
the peer list, so they can remove such instance from their peer 
list and update their SCOQ list. When a DCaaS instance 
recovers from failure, it follows the join protocol in Figure 5 
to rejoin the DCaaS peer network.  It is important to note that 
join request is idempotent, hence if multiple copies of the 
same join request are somehow created, they will have the 
same effect and no problems could occur. It is also important 
to note that when a DCaaS instance receives a request for 
adding a new instance, it checks its log to see if it has a 
previous history with this instance that if there exist any 
unfinished communications or acknowledgments so that they 
can pursue it. The recovery problem becomes more 
complicated in case of a leader failure during a given protocol 
execution. In this case, DCaaS instances who still alive could 
need to elect a different leader to accomplish the required 
tasks. For example, in case of join protocol, DCaaS instances 
will send their update acknowledgments to the new instance 
directly if they notice leader failure. In this case, the new 
instance will receive multiple join acknowledgments, which 
will not cause a problem as the join acknowledgments 
operation is idempotent. However, if the new DCaaS instance 
times out for not receiving any join acknowledgement, it could 
resubmit its request to another DCaaS instance. In case of the 
leader failure during stabilization protocol (see Figure 3), if it 
failed before receiving stabilization responses, we will have 
no problems as no DCPs have changed, however if it failed 
before receiving all stabilization acknowledgments this means 
we could have a problem. As some DCaaS instances could 

have successfully received the stabilization command and 
updated their DCPs while other instances could not do such 
updates, if the leader recovers back it could pursue the 
stabilization process with the remaining DCaaS instances, 
however if the leader could not recover, this means we have a 
DCP inconsistency problem as different DCaaS instances will 
have different versions of the DCP. This problem will be 
solved after the election of a new leader that will make sure all 
DCaaS instances are using a common DCP configuration. 
Leader election occurs when one or more of the follower 
instances notice the leader failure, and broadcast the election 
request. Leader election process occurs as depicted in Figure 
6. First, a DCaaS instance broadcasts to other instances a 
request for being the leader, other instances could accept and 
respond by their (compressed) DCPs and peer lists or reject 
the request.  If majority of instances accepted, this means a 
new leader is elected, otherwise elections has to be repeated. 
Once a new leader is elected, the new leader starts 
synchronizing other DCaaS instances to have a common DCP 
and peer list. Once a DCaaS instance receives a 
synchronization request, it updates its information and 
computes its new SCOQ. Of course we could adopt different 
strategies for choosing a common DCP and a common peer 
list. The simplest strategy is choosing the most recent ones. 
Other strategies is to choose the most restrictive ones, the least 
restrictive ones, ones leading to least cost updates, etc.  

Fig. 6. Stages of Leader Election Protocol. 

In our implementation, we let the choice of the DCP 
selection strategy as one of the configuration parameters for 
DCaaS services.  Of course, there is no optimal strategy as 
each one has pros and cons. Comparison between strategies is 
out of the scope of this paper due to space limitation. In case 
of the leader failure during the quota borrowing protocol (see 
Figure 2), we will have no problems if failure occurs before 
receiving the QuotaTransfer  messages as no quota has 
actually transferred. However, if failure occurs after sending 
QuotaTrack messages, this means transferred quotas are lost. 
Again, if the leader recovered before an election request 
generation, the quotas will be recovered; otherwise quotas will 
be redistributed during the new leader election process. It is 
important to note that there is impossibility of distributed 
consensus with one faulty process [10]. Hence, fault tolerance 
algorithms should be based on majority rather than complete 
consensus. Therefore, implementations of proposed 
approaches adopt a majority of instances (as in Paxos 
algorithms [17-19]), where f is the number of expected failed 
instances. We are also extending this approach to handle SaaS 
requests in order to ensure Byzantine fault tolerance [14] for 
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SaaS services. This is achieved by allowing the  a SaaS 
service to send its requests to multiple DCaaS service 
instances, and then accept a response only when it is returned 
by majority of DCaaS instances, details of this approach is out 
of the scope of this paper. 

VII. EXPERIMENTS 

We performed basic simulation experiments using the 
cloudsim tool [25] that enables us to simulate cloud 
environments. For simplicity, we assumed that we have only 
one DCaaS instance per cloudlet; we have two identical 
cloudlets (i.e. datacenters) with WAN connection of 500ms, 
and one user-base accessing the first cloudlet with latency 
50ms. This user-base generates 1000 request per hour, and 
each request contains one read and one write operations for a 
strong consistency data object.  We simulated both cloudlets 
with 5 virtual machines each. Each virtual machine contains 
512 MB and 1KB bandwidth. Each cloudlet is build using two 
4-core processors identical servers with 10000 MIPS, 200GB 
RAM, 10 TB storage, and IMB bandwidth. We run the 
simulation for period of 1 day and computed the average, 
minimum and maximum response time for the whole user-
base. In our experiments, we compare between the pure 
locking approach (that locks record on both cloudlets for 
every request), against the proposed DCaaS service approach. 
We assumed all objects in the DCP require strong data 
consistency. However, to show the borrowing effect, we 
repeated the experiment, by adopting different global quota 
borrowing rates from outside the cloudlet, which are 0%, 10%, 
and 50%, which means are 0%, 10%, and 50% of the data 
accesses will require quota borrow operation, respectively. We 
choose to compare global quota borrowing (among cloudlets) 
rather than local quota borrowing as global quota borrowing is 
the main process that could negatively affect response time 
due to access of WAN connections. However, local quota 
borrowing process occurs internally inside the cloudlet where 
latency is small, hence it will not have a huge impact of 
response time. Experiments results are listed in Table 1.  

TABLE I.  EXPERIMENTS RESULTS 

     As we can see, when the quota is enough (i.e. 0% quota 
borrow), the DCaaS instance does not need to communicate 
with the other DCaaS instance through the WAN, as all 
requests are fulfilled within the cloudlet; hence response time 
is drastically improved (i.e. from 1600ms to 200 ms). 
However, when DCaaS needs to borrow quota from the other 
cloudlet response time starts to increase as WAN connection 
is used, for example when 50% quota borrow is required 
response time becomes 3 times worse (i.e. 600 ms). Based on 
results in Table 1, we conclude that response time increases 
when the global quota borrowing percentage increases. Hence, 

to minimize such response time, we argue that the initial quota 
distribution among cloudlets should be based on their user-
based demand rates, that cloudlet with higher demand should 
get higher percentages of the quota.  

 To show the effect of DCP adoption on performance, we 
conducted a similar experiment when the percentage of strong 
data objects in the DCP is 0%, 10%, 50%, and 100% 
respectively. We assumed that the global quota borrow 
percentage is 50% to have comparable results with Table 1. 
Experiments results are listed in Table 2.  As we can see, 
when we have no strong data objects (i.e. the 0% DCP case) 
the response time improves as no need for borrowing 
operations at all. We achieved much better performance (i.e. 
50 ms) when compared with the 0% global quota borrow case 
in Table 1 (i.e. 200 ms). This is because there is no locking is 
required to maintain local correctness.  However, when we 
started to increase the percentage of the strong data objects in 
the DCP, response time starts to increase as quota borrowing 
operations are required, which require access for WAN 
connections. Hence, we conclude that to improve 
performance, we should minimize the percentage of the strong 
data objects in the DCP. However, in case of having strong 
data objects in the DCP, the initial quota distribution between 
cloudlets should be distributed in a manner that minimizes the 
global quota borrowing rate. We argue that the quota should 
be distributed according to the cloudlet user-base demand rate.  

TABLE II.  EXPERIMENTS RESULTS 

VIII. CONCLUSION AND FUTURE WORK 

    In this paper, we argued that strong consistency 
requirements should be adopted only for data objects crucial 
for application correctness, otherwise weaker forms of data 
consistency should be adopted. Therefore, we proposed to use 
the concept of data consistency plan (DCP) to define the 
consistency requirements for SaaS services, and proposed to 
use a new platform service (i.e. Data Consistency as a Service 
(DCaaS))  for  executing such DCP plan to decouple SaaS 
developers from managing data uncertainty issues in their 
code.   We also proposed a quota-based approach for 
managing data uncertainty on eventually consistent cloud data 
stores. The proposed approach ensures global data consistency 
by distributing the capacity of strong consistency data objects 
among datacenters, and then adopts a lazy replication 
approach for synchronizing the data stores. Experiments show 
that proposed quota-based approach realized by the DCaaS 
service provides much better response time when compared 
with locking and blocking techniques.  

      Future work will be mainly focused on providing SaaS 
developers more flexibility for defining the service DCP, by 

Approach 
 

Avg 

(ms)  
Min 

(ms)  
Max 

(ms) 

DCP with 0% Strong 
Consistency Objects 

50 36 65 

DCP with 10% Strong 
Consistency Objects 

66 48 129 

DCP with 50% Strong 
Consistency Objects 

200 141 260 

DCP with 100% Strong 
Consistency Objects 

600 414 815 

Approach 
 

Avg 

(ms)  
Min 

(ms)  
Max 

(ms) 

Locking Approach 1600 1038 2242 

DCaaS with 0% Quota 

Borrow 

200 150 258 

DCaaS with 10% Quota 
Borrow 

350 249 465 

DCaaS with 50% Quota 
Borrow 

600 414 815 
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allowing an object to have different consistency levels at the 
same time; depending on the performed SaaS operations and 
customers’ SLAs. This will be achieved by having a new 
object model that adopts different uncertainty modeling and 
analysis techniques. 
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