
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

117 | P a g e

www.ijacsa.thesai.org

Fig.1. Screen shot of the Blender user interface

A Framework for Creating a Distributed Rendering

Environment on the Compute Clusters

Ali Sheharyar

IT Research Computing

Texas A&M University at Qatar

Doha, Qatar

Othmane Bouhali

Science Program and IT Research Computing

Texas A&M University at Qatar

Doha, Qatar

Abstract—This paper discusses the deployment of existing

render farm manager in a typical compute cluster environment

such as a university. Usually, both a render farm and a compute

cluster use different queue managers and assume total control

over the physical resources. But, taking out the physical

resources from an existing compute cluster in a university-like

environment whose primary use of the cluster is to run numerical

simulations may not be possible. It can potentially reduce the

overall resource utilization in a situation where compute tasks

are more than rendering tasks. Moreover, it can increase the

system administration cost. In this paper, a framework has been

proposed that creates a dynamic distributed rendering

environment on top of the compute clusters using existing render

farm managers without requiring the physical separation of the

resources.

Keywords—distributed; rendering; animation; render farm;

cluster

I. INTRODUCTION

A. Background

Rendering is a process of generating one or more digital
image(s) from a model or a collection of models, characterized
as a virtual scene. A virtual scene is described in a scene file
that contains the information such as geometry, textures, lights,
etc. It is modelled in a 3D modelling application. Most
commonly used modelling applications are Blender [1],
Autodesk 3D Studio Max [2] and Autodesk Maya [3]. All
modelling applications have a user interface with a drawing
area where users can create a variety of geometrical objects,
manipulate them in various ways, apply textures, and even
animate etc. Fig. 1 shows the user interface of Blender 3D
modelling application [1]. A virtual scene is then given to the
renderer that generates a set of high quality images later to be
used to produce the final animation. Some of the most popular
renderers are mental ray [4], V-Ray [5] and Blender [1].

Rendering is a compute-intensive and time-consuming
process. Rendering time for an individual frame may vary from
a few seconds to several hours. The rendering time depends on
scene complexity, degree of realism (shadows, lights etc.) and
output resolution. For example, a short animation project may
be two-minutes in length, but at 30 frames per second (fps), it
contains 3,600 frames. An average rendering time for a fairly
simple frame can be approximately 2 minutes, resulting in a
total of 120 hours. Fortunately, rendering is a highly
parallelizable task as rendering of individual frames does not
depend on any other frame. In order to reduce the total

rendering time, rendering of individual frames can be
distributed to a group of computers on the network. An
animation studio, a company dedicated to production of
animated films, typically has a cluster of computers dedicated
to render the virtual scenes. This cluster of computers is called
a render farm.

B. Objectives

In a university environment, it can be complicated to do the
rendering because many researchers do not have access to a
dedicated machine for rendering [6]. They do not have access
to a rendering machine for a long time as it may become
unavailable for other research use. Moreover, they can lose
their data due to hardware failure. By creating a distributed
rendering environment, these problems can be addressed.
However, some universities have one or more compute clusters
that are normally used to perform high performance computing
tasks. Distributed rendering on a compute cluster is possible,
but it requires a lot of manual interaction with a cluster's job
scheduler and is cumbersome.

In this paper, a framework has been presented to create a
render farm-like environment on a compute cluster by using
existing render farm software. This way, researchers and
students will be presented with an interface similar to what
typically animation studios have. Moreover, it does not require
manual interaction with the cluster's job scheduler and makes
the rendering workflow smoother.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

118 | P a g e

www.ijacsa.thesai.org

C. Related Work

There has been some work on doing the image rendering on
the cluster and on grids [7]. In this section, related work is
briefly presented.

Huajin and Bing [8] discuss the design and implementation
of a render farm manager based on OpenPBS. OpenPBS is a
resource managers used for compute clusters. They have
proposed to extend the OpenPBS functionality in order to
facilitate the render job management. They maintain a state
table to hold the render jobs status. They implement a new
command "qsubr" to submit the job and another command
"qstatr" to monitor the render jobs. They also provide a web-
based interface in order to facilitate the job submission and
monitoring.

Gooding et al. [6] talk about implementation of distributed
rendering on diverse platforms rather than a single cluster.
They consider utilizing all available resources such as recycled
computers, community clusters and even TeraGrid [9]. One
benefit of this approach is that it gives access to diverse
computing resources, but on the other hand it requires
significant changes in the infrastructure. They require adding a
couple of new servers to host the software for job submission
and distribution to render machines. They also need a new
central storage system because it is essential for the network
distribution of the render job's resources (textures etc.) so that
all render nodes could access it and save the output back. It is
obvious that it requires a change in networking infrastructure.
They offer only command line interface for job submission and
support, only RenderMan rendering engine [10].

Anthony et al. [11] propose a framework of distributed
rendering over Grid by following two different approaches.
One approach is to setup the portal through which a user can
submit a rendering job on-demand and download the rendered
images from the remote server at a later time. Another
approach is to submit the job to the Grid through a GUI plug-in
within the 3D modelling software where every rendered image
will be sent back individually to the client concurrently. Both
of these approaches require significant effort for
implementation. They also talk about compression methods
that are beyond the scope of this paper.

All of these approaches focus on implementing the render
farm manager (or job manager). They provide users a way to
interface to submit and control the render jobs in the form of
command line using SSH, online web portal and/or plug-in
within 3D modelling software. In summary, they need a
significant amount of time and resources to implement all the
nitty-gritties of various software components. In the next
section, a new approach will be proposed.

This paper is divided in to several sections. Section II and
III give an overview of render farms and compute clusters
respectively. Section IV describes the current approaches and
proposed approach to render the computer animation in
distributed computing environments. Section V presents the
experimental results and, finally, section VI and VII presents
the conclusion and future work respectively.

II. RENDER FARM

A render farm is a cluster of computers connected to a
shared storage dedicated to render the compute-generated
imagery. Usually, a render farm has one master (or head)
machine (or node) and multiple slave machines. The head node
runs the job scheduler that manages the allocation of resources
on slave machines to jobs submitted by users (artists). Fig. 2
shows the client/server architecture of a render farm. In the
diagram, Render Head Node runs the server software of render
farm manager, whereas, Render Slave Node runs the client
software.

A typical rendering workflow (see Fig. 3) can be described
in the following steps:

1) Artists create the virtual scenes on their workstations.

2) Artists store their virtual scene files, textures etc. on

the shared storage.

3) Artists submit rendering jobs to the queue manager, a

software package running on the head node.

4) Queue manager divides the job into independent tasks

and distributes them to slave machines. A task could be

rendering of one full image, a few images, or even a sub-

section (tile) of an image. A job may have to wait in the queue

depending on its priority and load on the render farm.

5) Slave machines read the virtual scene and associated

data from the shared storage.

6) Slaves render the virtual scene and save the resulting

image(s) back on the file server.

….

Render

Head Node

Render

Slave Node
Render

Slave Node

Render

Slave Node

Render Farm Manager
(DrQueue, Qube, etc)

Renderer
(Blender, mental ray etc)

Fig.2. Render farm architecture

Fig.3. Rendering workflow

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

119 | P a g e

www.ijacsa.thesai.org

7) User is notified of job completion or errors, if any.
A render queue manager (also known as render farm

manager or job scheduler), typically a client-server package
facilitates the communication between the slaves and master.
The head node runs the server component whereas all slave
nodes run the client component of the render queue manager;
although some queue managers have no central manager. Some
common features of queue managers are prioritization of
queue, management of software licenses, and algorithms to
optimize the throughput in the farm. Software licensing
handled by the queue manager might involve dynamic
allocation of available CPUs or even cores within CPUs.

III. COMPUTE CLUSTER

A compute cluster is a group of computers linked with each
other through a fast local area network. Clusters are used
mainly for computational purposes rather than handling the IO-
oriented operations such as databases or web services. For
instance, a cluster might support weather forecast simulation or
flow dynamics simulation of a plane wing.

A typical compute cluster comprises one head node and
multiple compute (or slave) nodes. All clusters run a resource
management software package that accepts jobs from users.
They preserve them until they are run, run the jobs, and deliver

the output back to user. Fig. 4 shows the architecture of a
compute cluster. Compute Head Node runs the server software
of the resource manager, whereas, Compute Slave Node runs
client software.

A typical workflow to execute a job on a cluster is
described below:

1) User prepares the job file that contains some

parameters and path to the executable or script to run. For

instance, the amount of memory and number of CPU cores

required are specified.

2) User submits the job file to the job scheduler.

Submission is done usually over SSH terminal but some job

schedulers also offer the web interface for job submission.

3) Scheduler puts the job in to appropriate queue.

4) When the job's turn comes, scheduler allocates the

resources and starts the execution of executable/script

specified in job description on the allocated slave node.

5) When job finishes its execution, the output and error

log is saved to disk. The scheduler can terminate a job if its

execution time exceeds a predefined amount of time.

6) User is notified of job completion.

IV. RENDERING ON A COMPUTE CLUSTER

 It is clear that both render farms and compute clusters have
similar architecture. Both of them contain one master machine
(or head node) and one or more slave machines. Both run a
resource manager software package and both have similar
workflows. A render farm can be considered as a special kind
of compute cluster that uses resource manager and other
software (renderers) specific to rendering the computer-
generated imagery.

This section focuses on running the render-farm ecosystem
over a compute cluster. First, current approaches to solve this
problem and their limitations have been described. Then, a new
approach has been proposed that not only can present existing
and familiar interfaces to users but also requires less
implementation effort.

A. Proposed Cluster-based Rendering Framework

As mentioned above, all of existing work [6][8][11] have
focused on developing all components of rendering job
management and scheduling from scratch. However, this paper
proposes a new approach using existing open-source or
commercial render farm managers, meeting the requirements
mentioned later, and using the compute cluster's resource with
minimal or no change in existing setup.

Recall from earlier sections that a render farm manager has
client/server architecture. The server software (r-server) runs
on the head node whereas the client component (r-client) runs
on slave nodes. The key difference between existing
approaches and the proposed approach is that current
approaches schedule the render jobs submitted by users directly
to the cluster or grids and manage their state and execution
process themselves. However, the new approach proposes to
schedule the client-component of the render farm manager
rather than the render jobs directly. The server component can
either run on the cluster's head node (compute head node)
along with cluster's existing job manager or a new server
machine (render head node) that can be added to the existing
environment. The render head node also runs a software
module called Rendering on Cluster Meta Scheduler (RCMS)
(see Fig. 5).

The RCMS scheduling module queries the render farm
manager and dynamically adjusts the number of active r-client
jobs. Each r-client job appears to the r-server as a render slave
node. The number of active r-client jobs depends on the current

Compute

Slave Node
Compute

Slave Node

Compute

Head Node

Job Scheduler
(PBS etc)

Compute Application
(Matlab, Ansys etc)

Compute

Slave Node
….

Fig.4. Compute cluster architecture

Render Farm Management Software

Cluster Resource Management

Software

In
te

rfa
c
e

 (R
C

M
S

)

Fig.5. Interface between render farm manager and cluster resource
manager

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

120 | P a g e

www.ijacsa.thesai.org

load of the compute cluster and the number of render jobs in
queue. If there are pending render jobs, RCMS can submit new
r-client jobs to the compute cluster. It also kills the active r-
client jobs if there is no render job in queue and releases the
resources to make them available for compute jobs. It
maintains a state table to keep track of r-client jobs submitted
to the cluster (see Fig. 6).

The RCMS module should be able to talk to render farm
manager and cluster resource manager in order to keep the
rendering system running effectively. Interfacing with cluster
managers is trivial because most of cluster managers support at
least command line interface for job submission etc. On the
other hand, not all render farm managers are compatible with
this framework. There is a set of requirements that a render
farm has to meet in order to be compatible with the proposed
framework. These requirements are described in the following
sub-section.

B. Render Farm Manager Compatibility Requirements

There are several open-source and commercial render farm
managers available. But, in order to be compatible with
proposed distributed rendering on cluster framework, it should
meet the following requirements:

1) Job control API: Render farm manager should

support a set of calls to query the information about the render

jobs submitted by users. This interface can be either command-

line programs or API of any programming language such as

Python, Ruby, C/C++ etc.

2) Failsafe rendering: The render farm manager should

be able to detect failed or incomplete rendered images. As an r-

slave job can run only for a fixed amount of time. After that, the

cluster job manager will terminate it. It is important that the

render farm manager should detect the incomplete rendered

images and reschedule them.

3) Automatic client recognition: The server should

automatically detect active clients on slave nodes. Clients

should send so-called heartbeats to the server, so that the

server will automatically know their existence. It is required as

clients are expected to be active dynamically over a set of

compute nodes in the cluster.

4) Supervisor required: Some render farm managers do

not need the server component to manage the resources.

However, the proposed approach requires that render farm

management software has a supervisor to centrally control the

jobs and resources.

Table 1 shows some of the popular render farm managers
along with some features. As it is clear that Smedge and Spider
are not compatible with the proposed framework because they
do not support either supervisor and/or job control API.

Cluster Resource Manager Compatibility Requirements

All major cluster resource managers like PBS and LSF
support at least SSH over command-line interface for user
interaction. Some resource managers also support online web-
interface.

Proposed distributed rendering framework requires that the
cluster resource manager should have support for the following
operations via command-line:

1) Job submission: A cluster manager should support job

submission via command line. RCMS will prepare a job file

that will specify the desired resources like number of cores,

memory and execution time.

2) Query jobs: It should support querying the currently

active jobs by their names. RCMS will use its own naming

scheme in order to identify the r-client jobs.

3) Job deletion: As r-client jobs on cluster will be

dynamically deleted in order to release the cluster resources to

be used for other computation tasks, it is necessary that cluster

resource manager support this feature.

Compute

Slave Node
Compute

Slave Node

Compute

Head Node

Render

Head Node

Render
Farm Client

Render
Farm Client

RCMS
State

Table

Fig.6. Render farm integration with the compute cluster

TABLE I. RENDER QUEUE MANAGEMENT SOFTWARE

Name Supported 3D Applications
Supervisor
Required?

Job Control
API

DrQueue
Blender, Maya, mental ray,
Pixie, command-line tools Yes Yes

Qube!

Maya, mental ray, SoftImage,
RenderMan, Shake, command-

line tools Yes Yes

Smedge
3ds max, After Effects, Maya,

mental ray, SoftImage No Yes

Spider Maya No No

RenderPal

3ds max, Blender, Cinema 4D,
Houdini, Maya, mental ray,

SoftImage
Yes Yes

ButterflyNetR
ender (BNR)

All major applications and
command-line tools Yes Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

121 | P a g e

www.ijacsa.thesai.org

Fig. 7. A 3D virtual scene modeled in Maya

V. EXPERIMENTAL RESULTS

As a proof of concept, a prototype of proposed distributed
rendering framework is implemented and benchmarked. In this
section, the benchmark results are presented. The prototype
uses PipelineFX Qube [12] as render farm manager and PBS
[13] for cluster resource management. It is implemented in
Python language. The compute cluster (named Suqoor) at
Texas A&M University at Qatar [14] has been used as a test
environment. Out of ten available licenses for Qube, one is
consumed by Qube Supervisor that manages all render jobs and
remaining nine licenses are used by Qube workers. Each
worker requires one license. A virtual scene (see Fig. 7) that
comes with Autodesk Maya [3], a 3D modelling application, is
used for the benchmarking. This scene has a 30-second long
animation that comprises of 720 frames at 24 frames per
second. For performance comparison, the same animation has
been rendered (software rendering) on Suqoor and three other
workstations as well. Software rendering refers to a rendering
process that is unassisted by any specialized graphics hardware
(such as graphics processing units or GPUs). Hardware
rendering, utilizing the graphics hardware for rendering, cannot
be performed on Suqoor due to lack of graphics hardware.
However, performance of hardware rendering on workstations
have also been compared to software rendering on Suqoor.

Table 2 summarizes the hardware specification of the
workstations and single compute node of the compute cluster
(Suqoor). Note that two of the workstations have the same
hardware specification (Dell 690) but have different operating
systems. One has Windows XP x64 and other has Cent OS 6.

Fig. 8 shows the average rendering time per frame on a
single node (8 cores) of Suqoor and other workstations. Note
that rendering time on a single compute node of cluster having
8 cores (25.22s) and HP Z800 workstation having 12 cores
(25.86s) differs just by a fraction of a second. It has also been
observed that rendering on Windows XP is almost 2.76 times
slower than CentOS Linux on the same hardware
configuration.

Fig. 9 shows the average rendering time per frame by using
1, 4, 7 and 9 compute nodes, respectively. Due to the limited
number of available Qube licenses (10), the experiment could
not be performed with more than 9 compute nodes.

TABLE II. HARDWARE AND SOFTWARE SPECIFICATION OF TEST PLATFORMS

Machine Dell 690 Suqoor (single node) HP Z800

CPU 2x Intel Clovertown X5355 @ 2.66
Ghz

2x Intel Harpertown E5462 @ 2.80
GHz

2x Intel Westmere-EP X5650 @
2.66 GHz

Cores (per CPU) 4 4 6

Threads (per CPU) 4 4 12

L2 Cache (per CPU) 8 MB 12 MB 12 MB

CPU Launch Date Q4'06 Q4'07 Q1'10

Memory 16 GB 32 GB 16 GB

Operating System(s) Win XP 64-bit/Cent OS 6

(64-bit)

SuSE Linux Enterprise Server 10

(64-bit)

Red Hat Enterprise Linux 5

(64-bit)

GPU Quadro FX 4600 None Quadro Plex 6000

Fig. 8. Average rendering time per frame (software rendering)

Fig. 9. Average rendering time per frame versus number of cluster

nodes (software rendering)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

122 | P a g e

www.ijacsa.thesai.org

Fig. 10 shows the number of rendered frames and
aggregated rendering time spent by each compute node. It
shows how the Qube supervisor has distributed the render jobs
across compute nodes. With an average distribution of 80
frames per node, it is apparent that work distribution is almost
equal.

Fig. 11 shows the average rendering times per frame with
respect to each compute node. The variation in the result can be
characterized to the variation in the 3D model complexity from
different view angles.

Fig. 12 shows the rendering time of all frames. Remember
that there are 720 frames in the animation. It is observed that
workstations render the frames one after the other by utilizing
multiple CPU cores for single-frame rendering. On the other
hand, Suqoor renders multiple frames on individual compute
nodes. The numbers of active frames depend on the number of
available cores on the compute nodes by assigning each core to

an individual frame. Due to this, rendering time of individual
frames is higher on Suqoor than other workstations.

Fig. 13 shows the performance speed-up with respect to
other platforms. For instance, a cluster with nine compute
nodes performs nearly 51 times better than the Dell 690
workstation with Windows, nearly 18 times better than the Dell
690 workstation with Linux, and nearly 9 times better than the
HP Z800 workstation.

Fig. 14 compares the performance of software rendering on
Suqoor to hardware rendering on other workstations. This plot
shows how fast hardware rendering is on other workstations
with respect to Suqoor. Remember that Suqoor does not
support hardware rendering. It is observed that hardware
rendering, especially on Linux workstations, is remarkably
faster than software. The performance gap is drastically
reduced by using more nodes on the cluster.

Fig. 10. Number of frames rendered and accumulated time spent

Fig. 11. Average rendering times per frame with respect to compute

nodes

Fig. 12. Rendering time of individual frames (software rendering)

Fig. 13. Speed up with cluster (software rendering)

Fig. 14. Software rendering on cluster versus hardware rendering on

Windows and Linux workstations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 4, No. 6, 2013

123 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

This paper has presented a framework that creates a
distributed rendering environment on a general-purpose
compute cluster by using an existing render farm management
application. It can be used to create the rendering environment
similar to that of an animation studio in a university
environment where users do not have exclusive access to the
computers to perform time-consuming image renderings. The
prototype of the proposed framework, using Qube! for render
farm management and PBS for compute cluster management,
has been implemented. The experimental results show that the
compute cluster reduces the rendering time significantly in case
of software rendering. Moreover, by using the existing render
farm manager, the overall rendering workflow becomes
efficient.

VII. FUTURE WORK

One thing, where compute cluster lacks behind is the
hardware rendering that is due to the absence of GPUs in the
compute nodes. Texas A&M University at Qatar is soon
expected to acquire a larger cluster that will also have GPUs in
several compute nodes. For the future work, the same
experiment will be repeated on the new cluster and
performance of the hardware rendering will be analyzed. The
new cluster is expected to outperform the workstation by a
large margin.

References

[1] Blender, http://www.blender.org

[2] Autodesk 3D Studio Max, http://www.autodesk.com

[3] Autodesk Maya, http://www.autodesk.com

[4] Mentay ray, http://www.mentalimages.com/products/mental-ray.html

[5] V-Ray, http://chaosgroup.com/en/2/index.html

[6] Gooding, S. Lee, Laura Arns, Preston Smith, and Jenett Tillotson.
"Implementation of a distributed rendering environment for the
TeraGrid." In Challenges of Large Applications in Distributed
Environments, 2006 IEEE, pp. 13-21. IEEE, 2006.

[7] Grid Computing, http://en.wikipedia.org/wiki/Grid_computing

[8] Jing, Huajun, and Bin Gong. "The design and implementation of Render
Farm Manager based on OpenPBS." In Computer-Aided Industrial
Design and Conceptual Design, 2008. CAID/CD 2008. 9th International
Conference on, pp. 1056-1059. IEEE, 2008.

[9] TeraGrid, http://www.teragrid.org

[10] RenderMan, http://renderman.pixar.com

[11] Chong, Anthony, Alexei Sourin, and Konstantin Levinski. "Grid-based
computer animation rendering." In Proceedings of the 4th international
conference on Computer graphics and interactive techniques in
Australasia and Southeast Asia, pp. 39-47. ACM, 2006.

[12] Pipeline FX Qube!, http://www.pipelinefx.com

[13] PBS Guide, http://hpc.sissa.it/pbs

[14] High Performance Computing at Texas A&M University at Qatar,
http://technology.qatar.tamu.edu/rc/2000.aspx

