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Abstract—The processor-memory speed gap referred to as 

memory wall, has become much wider in multi core processors 

due to a number of cores sharing the processor-memory 

interface. In addition to other cache optimization techniques, the 

mechanism of prefetching instructions and data has been used 

effectively to close the processor-memory speed gap and lower 

the memory wall. A number of issues have emerged when 

prefetching is used aggressively in multicore processors. The 

results presented in this paper are an indicator of the problems 

that need to be taken into consideration while using prefetching 

as a default technique. This paper also quantifies the amount of 

degradation that applications face with the aggressive use of 

prefetching. Another aspect that is investigated is the 

performance of multicore processors using a multiprogram 

workload as compared to a single program workload while 

varying the configuration of the built-in hardware prefetchers. 

Parallel workloads are also investigated to estimate the speedup 

and the effect of hardware prefetchers.   

This paper is the outcome of work that forms a part of the 

PhD research project currently in progress at NED University of 

Engineering and Technology, Karachi.  
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I. INTRODUCTION 

Multicore processors are the mainstream processors of 
today with the number of cores increasing at a fast pace. A 
number of issues have emerged in these processors that are 
becoming more acute with the increasing number of cores. A 
large body of publications has accumulated in the last decade 
that has summarized these issues. Some of the challenges are 
presented in [1]. One of the main issues that directly impacts 
application performance is the large processor-memory speed 
gap referred to as memory wall by Wulf and Mckee [2] and 
elaborated by Weidendorfer [3]. Recent researches have 
sought solution to this problem through on-chip cache 
hierarchy [4] and novel architectural features like NUCA 
cache [5]. Other solutions include R-NUCA [6], Victim 
Replication [7], and Pressure-Aware Associative Block 
Placement [8]. A detailed summary of the publications related 
to the memory wall problem is presented in [9]. 

One of common solution to the memory wall problem is 
prefetching of instructions and data at every level of memory 
hierarchy. Prefetching is a latency hiding technique that access 
instructions and data from the next level of memory hierarchy 
before the demand for it is actually raised by the processor. 

Prefetching was almost always beneficial in single core 
processors, even though there were some useless prefetches. 
As a result, prefetchers now form an integral part of most of 
the current generation processors. In multicore processors, all 
cores share chip resources that include on-chip memory 
hierarchy and the processor-memory interface. If all cores 
generate prefetch requests in addition to demand requests, a 
large amount of interference takes place causing contention for 
resources. This prefetcher caused contention may result in 
performance degradation in multicore processors, especially if 
prefetchers are used aggressively. Therefore, there is a need to 
investigate the effectiveness of prefetchers in multicore 
processors under different conditions and for all types of 
applications. The contribution of this paper is the analysis and 
quantification of the behaviour of applications in the presence 
and absence of prefetchers. The derived results provide 
guidelines for applications to activate prefetchers only when 
they are useful.  

Recent research has focused on improving data prefetching 
mechanisms, especially for big data analysis and other 
streaming applications. Though prefetching pose degradation 
problems in multicore processors, especially when used 
aggressively, they remain the most effective mechanism to 
avoid stalls that are caused due to long latency accesses and 
contention based delays. This necessitates enhancements in the 
prefetcher designs that adapt to congestion and dynamically 
adjust their aggressiveness. Chen et al. in their publications 
[10, 11] have proposed storage efficient data prefetching 
mechanisms and power efficient feedback controlled adaptive 
prefetchers that are accurate and efficient. Other recent 
enhancements are discussed in Section II.         

The rest of the paper is organized as follows. Section II 
gives a brief overview of related work. Section III outlines the 
experimental setup including test programs and specifications 
of the experimental platforms. Section IV presents the results 
and a brief analysis of the results and Section V concludes the 
paper. 

II. RELATED WORK 

Since prefetching is considered to be an important latency 
hiding technique, it has been used effectively in both single 
core processors and single core multiprocessors. Prefetching is 
performed in hardware, in software or in both. Software 
prefetching is supported by prefetch instructions and requires 
effort by the programmer or the compiler writer. Nataranjan et 
al. [12] have explored the effectiveness of compiler directed 
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prefetching for large data accesses in in-order multicore 
systems. Since the focus of this work is hardware prefetching, 
this section shall briefly describe some of the recent 
publications related to hardware prefetchers in the context of 
multicore processors. 

Prefetchers are beneficial due to the principle of locality, 
an attribute of software. This is true most of the time in single 
core architecture, but as pointed out in [13], aggressive 
prefetching in multicore processors result in a large amount of 
interference giving rise to performance degradation. Ebrahimi 
et al. [13] have proposed more accurate prefetching with the 
use of local as well as global feedback by Hierarchical 
Prefetch Access Control (HPAC) to partially alleviate the 
above problem. Using coordinated prefetching, the authors 
compare the results of aggressive prefetching in multicore 
processors with that of a single core processor. With dynamic 
control of the prefetch aggressiveness using feedback directed 
control, they have shown that their technique improves the 
system performance by 14%. 

Lee et al. [14] have identified degradation in performance 
due to congestion in the interconnection network especially 
due to prefetch requests in multicore processors. They have 
proposed to prioritize demand traffic by using TPA (Traffic-
Aware Prioritized Arbiter) and TPT (Traffic-Aware Prefetch 
Throttling) to counter the negative effects of prefetch requests. 
Fukumoto et al. [15] have proposed the use of cache-to-cache 
transfer to reduce the overall congestion on the memory-bus 
interface.  

Kamruzzaman et al. [16] have proposed a different way of 
using prefetching especially for applications like the legacy 
software that are inherently sequential in nature and cannot 
use all cores of the CMP. They have suggested the use of 
prefetch threads as helper threads to run on unused cores and 
make use of the injected parallelism for prefetching code and 
data. Using thread migration techniques, an overall 
improvement of 31% to 63% is shown for legacy software. 
The authors have concluded in their final analysis that the 
technique can also be used to enhance the performance of 
applications that are parallel.  

Wu et al. [17] have proposed an automatic prefetch 
manager that estimates the interference caused by prefetching 
and adjusts the aggressiveness while programs are running. 
They have shown that this dynamic management improves the 
application performance and makes it more predictable. 
Verma et al. [18] have evaluated the effectiveness of various 
hybrid schemes of prefetching and have proposed to 
adaptively reduce the number of prefetches to reduce the 
interference. Lee et al. [19] identify the lack of parallelism that 
exists in DRAM banks, especially in multicore processor-
based systems. They have proposed mechanisms to maximize 
DRAM Bank Level Parallelism (BLP) using BLP-aware 
Prefetch Issue (BAPI) with BLP-Preserving Multi core 
Request Issue (BPMRI) that helps improve the application 
performance with parallel servicing of requests. Ebrahimi et 
al. [20] have proposed mechanisms to exploit prefetching for 
shared resource management in multicore systems.  

Nachiappan et al. [21] have suggested prefetch 
prioritization in the interconnection network on the basis of 

the potential utility of the requests in order to reduce the 
negative effects of prefetching. Wu et al. [22] characterize the 
performance of the LLC (Last Level Cache) management 
policies in the presence and absence of hardware prefetching. 
They propose Prefetch-Aware Cache Management (PACMan) 
for better and predictable performance. Lee et al. [23] have 
proposed prefetch-aware on-chip networks and network-aware 
prefetch designs that is sensitive to network congestion. 
Manikantan and Govindarajan [24] have proposed 
performance-oriented prefetching enhancements that include 
focused prefetching to avoid commit stalls. The authors claim 
that this enhancement also improved the accuracy of 
prefetching.   

A number of recent publications have proposed complex 
prefetching mechanisms that take into account various factors 
while prefetching code and data [18, 25]. Grannaes et al. [25] 
have proposed Delta Correlating Prediction Table (DCPT), a 
pefetching heuristics based on the table-based design of 
Reference Prediction Tables (RPT) and the delta correlating 
design of Program Counter/ Delta Correlating Prefetching 
(PC/DC) with some improvements. These complex 
prefetching techniques have overheads that cannot be ignored 
as prefetchers incur a significant burden on system resources. 
Since simple prefetchers have low overheads, they are used 
mostly in current generation processors. For example, the 
prefetchers used in our experimental platform are simpler [26] 
as compared to the prefetchers discussed in [18, 25]. 

III. THE EXPERIMENTAL SETUP 

This section gives an account of the test programs, the 
experimental platforms and the hardware prefetchers present 
in these experimental platforms. 

Although prefetching code and data have been 
significantly effective in single core processors, some of the 
recent publications have pointed out an anomaly that takes 
place when prefetchers are used in multicore processors. Use 
of aggressive prefetching cause interference and results in 
overall degradation of performance [13], demanding an 
adjustment in the prefetch strategy. In many instances, it has 
been observed that applications perform better without all the 
prefetchers used by default as these are built-in in all current 
generation processors. The designers of most of these 
processors have therefore provided mechanisms where 
applications may use prefetch manipulating techniques to 
selectively enable/ disable the built-in hardware prefetchers, 
whenever desired. This involves manipulation of Machine 
Specific Registers (MSRs) related to hardware prefetchers. 
The decision to enable/ disable pefetchers is left to the 
application designer. The application areas that benefit most 
due to cache locality and being prefetch sensitive may 
continue using the prefetchers, but these applications should 
also investigate the benefits, before using it by default.  

A. Test Programs 

Three types of benchmark programs are used to measure 
and evaluate performance with enabled/ disabled 
configurations of prefetchers: SPEC 2006 [27], the parallel 
Parsec Benchmark suite [28] and the concurrent matrix 
multiplication program [29]. SPEC 2006 is a commonly used 
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benchmark for evaluation of single and multiprogram 
workloads; the Parsec Benchmark suite is used to evaluate the 
performance for parallel workloads and the concurrent matrix 
multiplication program is used to evaluate the performance of 
concurrent workloads. A brief description about the three sets 
of benchmarks/ programs is given in the following 
subsections. 

1) SPEC 2006 Workload  
The first set of experiments are conducted to evaluate the 

effect on the performance of SPEC 2006 [27] benchmark 
programs when run on multicore processor with various 
configurations of the built-in hardware prefetchers. Since 
SPEC 2006 benchmarks are not inherently parallel, multiple 
copies of each benchmark are run in parallel as a 
multiprogram workload to keep all cores busy and observe the 
results with and without prefetchers. Most of the runs are 
reportable runs [27] and the results of reference input set is 
used to perform the analysis. The experiments performed on 
the example platform took between 9 to 19 hours each and in 
some cases, it was even higher. In case of multiprogram 
workloads, the time taken was up to 31 hours for complete 
execution.  

2) The Parallel Benchmarks Suite 
The Princeton Application Repository for Shared Memory 

Computers (PARSEC) is a parallel benchmark suite that is 
suitable to evaluate multicore processors [28]. It consists of 13 
benchmark programs taken from several different application 
domains including financial analysis, animation, data mining, 
computer vision, etc. These are diverse and emerging 
multithreaded workloads focusing on desktop and server 
applications that are expected to be the eventual workloads for 
multicore processors. The number of threads of each program 
can be adjusted depending on the number of cores and the 
application requirements. A detailed description of the design 
and implementation of this benchmark suite is given in [30]. 
However, a brief description is given below. 

Both current and emerging workloads from recognition, 
mining and synthesis (RMS) application areas are represented 
in this benchmark suite. Each of the applications has been 
parallelized fulfilling the requirements of multithreaded 
applications that can be run on parallel architectures like 
multicore processors. Using parallelization models of 
Pthreads, OpenMP and Intel TBB, these programs provide 
portability for various types of platforms. Some of the 
programs present in the suite are dedup, blackscholes, facesim, 
fuidanimate, etc., taken from the application areas of computer 
vision, data mining, visualization, media processing, 
animation, financial analysis, etc. Six different input sets with 
different properties are defined for each workload that can be 
used with variable number of threads. Out of the input sets of 
test, simdev, simsmall, simmedium, simlarge and native, the 
native input set is the largest and is closest to the actual inputs. 

All 13 benchmark programs are run with the native input 
set using single thread and n threads, where n is chosen to be 
the number of cores for each of the experiments. A more 
detailed description about the use of this benchmark suite can 
be found in [31].   

3) Matrix multiplication program 
The third test program is the parallel matrix multiplication 

program. This program has been parallelized to run on 
multicore processors using SPC3PM (Serial, Parallel and 
Concurrent Core to Core Programming Model [29]), an 
algorithm developed at NED University by Ismail et al. for 
parallelization of programs. This programming model allows 
the user to specify any number of cores depending on the 
amount of parallelism and the available resources. More 
details about the model and algorithm can be found in [29].   

B. The Experimental Platforms  

Most of the experiments were conducted on a platform 
based on the 4-core Intel Core2 Quad processor running 
OpenSUSE 11.1 Linux 2.6.27.7 operating system. The main 
features of this machine are summarized in Table I as Platform 
No. 2. Both integer and floating point programs of 
SPECCPU2006 benchmark suite [27] and the Parsec 
Benchmark suite [28] were run on this platform using various 
combinations of the four built-in prefetchers per core in the 
multicore processor. A detailed description of the four 
prefetchers per core and a description of the Model Specific 
Register (MSR) to control them are given in the Intel Software 
Developers Manual [26].  

Some experiments were also conducted on a 2-core and an 
8-core machine to examine and validate some of the results 
obtained from the main platform. The salient features of these 
platforms are also listed in Table 1 as platform Nos. 1 and 3 
respectively. The results of experiments conducted on 
platforms 1 and 3 are used as additional data for validation and 
testing of results and only a summary of the results are 
presented. The platform chosen to run the third test program is 
the dual-core Intel Xeon processor X5670 Series based 
SR1600UR server system having 24 cores. Other salient 
features of this platform are also listed in Table I as the 
specifications of platform No. 4.  

C. Prefetchers in the main Experimental Platform 

The example platforms 1 to 3 that are used to conduct most 
of the experiments in this study have four prefetchers per core, 
each performing the function of prefetching a specific set of 
information [26]. A brief description of the  four  hardware 
prefetchers in the experimental platforms is given in the 
following paragraph. 

 The Instruction Prefetcher (IP), referred to as pf4 in 
this paper, prefetches instructions in the L1 instruction-
cache based on branch prediction results.  

 The Adjacent Cache Line (ACL) prefetcher, referred to 
as pf2, prefetches the next matching block in a cache 
block pair in to L2 cache.  

 The Data Cache Unit (DCU) prefetcher, referred to as 
pf3, observes and detects the number of accesses to a 
specific cache block for a predetermined period of time 
and prefetches the subsequent block in the L1 D-cache. 

 The Data Prefetch Logic (DPL) prefetcher, referred to 
as pf1, functions similar to the DCU prefetcher, except 
that the blocks are prefetched in L2 cache after it 
detects accesses to two successive cache blocks.  
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TABLE I.  SPECIFICATIONS OF EXPERIMENTAL PLATFORMS 

Each of the four prefetchers can be selectively enabled/ 
disabled by putting On/Off individual bits in the Model 
Specific Register (MSR) number 0x1A0h present in each core. 
This register can be accessed and the corresponding bits can 
be manipulated using assembly-level instructions. The tool 
used to manipulate the register bits for these experiments is 
msr tools [32] available as free software. In addition to 
hardware prefetchers, prefetch instructions are also provided 
in all current generation processors that can be used to 
program prefetching of data through software prefetching. It 
may be noted that the experimental platform No. 4 does not 
allow selective enabling/ disabling of its hardware prefetchers. 
It only allows all prefetchers to be either enabled or disabled.  

The following paragraphs summarize the results of the 
experiments performed after selective enabling/disabling of 
prefetchers and the effect it has on the performance of 
multicore processors. 

IV. RESULTS AND ANALYSIS 

Table II gives a summary of the experiments conducted to 
deduce the following results on the main platform (platform 
2). A number of experiments that were conducted on platforms 
1, 3 and 4 are also discussed in this section (not given in Table 
II). 

A. Benchmarks and Measurement Metrics  

The experiments were conducted by running all 29 
SPECCPU2006 programs comprising of 12 integer 
benchmarks and 17 floating-point benchmarks, all 13 

programs of Parsec Benchmark suite Version 2.1 and the 
concurrent matrix multiplication program. The effect of the 
use of prefetch inhibiting techniques on the overall 
performance of benchmark programs is illustrated through 
column charts. In addition, collected data is also presented in 
the form of tables that give more accurate information. Two 
separate sections present the results of SPEC2006 benchmarks 
as single program and multiprogram workloads. A third 
section presents the results of parallel benchmarks. 

Some of the terms that shall be used to explain the results 
in this paper have been taken from [13] and are discussed here 
briefly.  An application is said to have cache locality if the 
number of L2 cache hits per 1000 instructions is greater than 
five. If the L2 cache miss is greater than 1 per 1000 
instructions (MPKI – Miss Per Kilo Instructions), the 
application is referred to as memory intensive. If the   
improvement in performance when a prefetcher is used is 
greater than 10% compared to no prefetching, the application 
is said to be prefetch sensitive.  

B. SPEC CPU 2006 Results 

 Results of experiments 1 to 16 that were conducted with 

various prefetcher options are presented in this section. 

1) SPEC CPU 2006 as Single Program Workload  
Experiments 1 to 4 and 9 to 12 were conducted by using all 

SPEC programs as single program workload with various 
prefetcher options.  

2) SPECint as Single Program Workload 
In experiments 1 to 4, use of prefetchers mostly proved to 

be beneficial, because all resources were utilized by only a 
single core as SPEC benchmarks are not inherently parallel. 
Fig. 1 shows the performance in terms of execution time for 
SPECint 2006 benchmarks executed with and without the 
built-in hardware prefetchers in each of the cores. A number 
of experiments were conducted using various configurations 
of on-chip hardware prefetchers. Four of these experiments are 
listed in Table II. The data collected from the experiments is 
presented in Table III. An overall average degradation of 
14.4% is observed in 10 out of 12 integer benchmarks when 
the DPL (pf1) prefetcher is disabled. This is because 
prefetching in L2 is more beneficial for most of the 
applications. The highest degradation of 54% is observed in 
libquantum benchmark. Since this benchmark consists of a 
library of software that simulates a quantum computer, it is 
expected to be prefetch sensitive and benefits most from any 
kind of prefetching mechanism. The other benchmark 
programs that are prefetch sensitive are mcf, sjeng and 
xalancbmk. Two of the benchmarks, namely, hmmer and 
omnetpp give better performance when the prefetcher is off, 
with hmmer giving an improvement of 7.3%. This is because 
hmmer is database search software that searches for a gene 
sequence.  

The experiments were again conducted by disabling two of 
the four prefetchers and a different set of results were obtained 
(experiment 3). When both DPL (pf1) and ACL (pf2) 
prefetchers are disabled, there is an average degradation of 
13.5% in only 3 out of 12 integer benchmarks and 9 
benchmark programs show an average improvement of 8.4%. 

 
Platform 

1 

Platform 

2 (Main 

Platform) 

Platform 

3 

Platform 

4 

Processor Intel 

Core
TM

 2 

Duo CPU 

@ 2.2 GHz  

Intel 

Core
TM

 2 

Quad CPU 

@ 2.66 

GHz 

Intel 

Core
TM

  i7-

2600 CPU 

@ 3.4 GHz 

4 x Intel 

Xeon 

X5670@ 

2.93CHz 

No .of  

cores 

2 4 8 4 x 6 

Cache and System Parameters 

L1 D-

Cache 

(per core) 

32KB, 

64B, 8-

way 

associative 

32KB, 

64B, 8-

way 

associative 

32KB, 

64B, 8-

way 

associative 

6x32KB 

L1 I-

Cache 

(per core) 

32Kb, 

64B, 8-

way 

associative 

32KB, 

64B, 8-

way 

associative 

32KB, 

64B, 8-

way 

associative 

6 x 32KB 

L2 Cache 2MB, 64B, 

8-way 

associative 

4MB 64B, 

16-way 

associative 

4x256KB, 

64B, 8-

way assoc. 

6 x 256 

KB 

L3 Cache NA NA 8MB, 64B, 

16-way 

assoc. 

12 MB 

Main 

mem. 

1GB 4GB 8GB 24 GB 

Operating 

System 

OpenSUS

E 11.1 

Linux 

Kernel 

2.6.27.7 

OpenSUS

E 11.1 

Linux 

Kernel 

2.6.27.7 

OpenSUS

E 11.1 

Linux 

Kernel 

2.6.27.7  

Windows 

2008 

Server (64-

bit) 
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Fig. 1 Execution time of single copy of SPECint 2006 Benchmark programs 

with various prefetcher configurations 
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The highest degradation of 34.6% is observed in libquantum 
program because of the reasons mentioned before. The hmmer 
program shows the highest improvement of 22.6%. 

When all four prefetchers are disabled (experiment 4), the 
benchmarks show degradation in almost all SPECint programs 
with an average degradation of about 14%, with libquantum 
program suffering from the highest degradation of 84%. The 
reason for this behaviour has already been mentioned before. 
Only one of the programs namely, hmmer shows an 
improvement of 11% when all the four prefetchers are off,  
because it does not benefit from prefetching. 

The results show that prefetchers are beneficial for single 
SPECint programs in multicore processors. Most of the 
applications benefit from prefetchers because the interference 
between demand and prefetch requests is not significant as 
only a single core generates prefetch and demand requests. 

a) SPECfp as Single Program Workload 

The results of SPECfp benchmarks are shown in Fig. 2 
(experiments 9 to 12). Compared to the integer benchmarks, 
only 6 out of 17 floating-point benchmarks suffer from an 
average degradation of 6.1% in performance when the DPL 
(pf1) prefetcher is disabled. There is only one SPECfp 
benchmark that is prefetch sensitive, namely bwaves which 
suffers from the highest degradation of 19.8%. bwaves is a 
computational fluid dynamics software that simulates blast 
waves in three dimensions. Such software tends to benefit 
from prefetching. An average improvement of 6.4% is 
observed in 10 out of 17 floating point benchmarks with as 
high as 13.9% improvement observed in povray benchmark 
program. This is an image rendering software that uses ray 
tracing to visualize an object. 

TABLE II.  LIST OF EXPERIMENTS WITH DIFFERENT PREFETCHER 

OPTIONS ON PLATFORM 2 WITH EXECUTION TIME 

The ray tracing programs do not benefit from prefetching. 
As a result of experiment 11, the behaviour of floating point 
benchmarks remains almost the same as with one prefetcher 
disabled, with only a small change that can be observed from 
Fig. 2. 

When all the four prefetchers are disabled, 8 out of 17 
benchmark programs suffer from an average degradation of 
17% with the highest degradation of 31% seen in GemsFDTD 
program. This program benefits from prefetching because it is 
a computational electromagnetic application that comprises 
mostly of loops. All the above results indicate that there is 
anomaly even when a single copy of benchmarks is run and 
different applications show different behaviour with or 
without the use of prefetchers. Moreover, floating point 
benchmarks mostly perform better when prefetchers are 
disabled selectively as compared to integer benchmarks. A 
closer examination reveals that most of the SPECfp programs 
are not prefetch sensitive. 

Benchmark Execution 

Mode 

Experi-

ment No. 

Prefetcher 

option 

Execution 

Time in 

seconds 

SPECint 

Single 

Program 

Workload 

1 All Enabled 32400 

2 DPL=Disabled 35520 

3 DPL+ACL= 

Disabled 

31200 

4 All Disabled 35280 

Multi-program 

workload  

(4-copies) 

5 All Enabled 44400 

6 DPL= Disabled 43860 

7 DPL+ACL = 

Disabled 

47040 

8 All Disabled 46380 

SPECfp 

Single 

Program 

Workload 

9  All Enabled 72120 

10 DPL=Disabled 70140 

11 DPL+ACL = 

Disabled 

69960 

12 All Disabled 70680 

Multi-program 

Workload  

(4-copies) 

13 All Enabled 104400 

14 DPL=Disabled 104520 

15 DPL+ACL= 

Disabled 

106320 

16 All Disabled 112440 

PARSEC 

Benchmarks 

Single Thread 

Workload  

17 All Enabled 6840 

18 DPL=Disabled 6780 

19 ACL =Disabled 7020 

20 IP =Disabled 6600 

21 All Disabled 7560 

Multiple 

Thread 

Workload  

(4 threads) 

22 All Enabled 3480 

23 DPL=Disabled 3720 

24 ACL=Disabled 3960 

25 IP=Disabled 3360 

26 All Disabled 3720 
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Fig. 2 Execution time of single SPECfp 2006 Benchmark programs 

with different prefetcher configurations 
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Fig. 3 Comparison of execution time of SPECint programs as single 

and multiprogram workloads on an 8–core machine (Platform No, 3) 

 

TABLE III.  EXECUTION TIME OF SPEC2006 PROGRAMS AS SINGLE 

PROGRAM WORKLOADS  

 

3) SPEC CPU 2006 as Multiprogram Workload  
In this section, we present the results of experiments 5 to 8 

and 13 to 16, which were performed by running SPEC 
programs as multiprogram workload to keep all cores busy. 
Although multicore processors are more useful and powerful 
for parallel workloads, most of the software that runs on these 
processors today is not parallel. For all such software, the 
main advantage that can be gained with multicore processors 

is higher throughput. Hence, studying the behaviour of 
multicore processors for multiprogrammed workload is also as 
important as for parallel workloads.  

It was observed during these experiments, that there is a 
large increase in execution time with multiprogram workload. 
This is because a large number of memory requests, including 
demand and prefetch requests share the same limited 
bandwidth of the processor memory interface. The amount of 
memory required to run the programs also increases. In case of 
mcf, one of the integer benchmarks, the program becomes very 
slow and its progress almost stops on our experimental 
platforms because of the heavy usage of memory. This 
program is therefore not included in these measurements. For 
all other programs, the interference caused by multiple 
requests result in an overall degradation in performance as 
compared to the single program run on multiple cores. The 
execution time on the 4-core machine increases by an average 
of 50% for all integer benchmarks with the highest increase of 
200% in the libquantum benchmark program. In case of 
floating-point benchmarks, multiprogram workload increases 
the execution time by almost 74% over the single program 
execution time, with the highest increase of 206% in the lbm 
benchmark program. In such a scenario it would not be fair to 
compare the performance of benchmarks when a single 
program is run with the performance of multiprogram 
workload with and without hardware prefetchers. The 
comparison is therefore made when a single program is run 
with and without prefetchers and when multiprogram 
workload is run with and without the hardware prefetchers. 

The performance further degrades when multiprogram 
workload executes on an 8-core machine. The 8-core machine 
is an i7-based computer and the architecture of cores is similar 
to that of our main experimental platform. The gap between 
the execution time of single program and multiprogram is 
much wider than that of the 4-core machine. The average 
degradation in performance for 8-copies of integer 
benchmarks as compared to a single program run on the same 
machine is 150%, with libquantum suffering from the highest 
degradation of 490%. Fig. 3 shows the comparison of 
execution time of each SPECint benchmark program. When 
floating point benchmarks are run as multiprogram workload, 

Benchmarks Execution Time (in seconds) of Benchmark 

programs with selective enable/ disable of on-

chip Prefetchers 

 All  PFs 

enabled 

pf1 

disabled 

pf1+pf2 

disabed 

All PFs 

disabled 

Perlbench 670 728 644 712 

bzip2 874 951 776 923 

Gcc 652 684 601 692 

mcf 679 778 686 849 

gobmk 852 907 767 896 

hmmer 866 803 670 768 

sjeng 855 1085 895 968 

libquantum 1279 1975 1722 2357 

h264ref 1285 1342 1188 1296 

omnetpp 682 673 633 692 

astar 822 854 810 877 

xalancbmk 486 540 469 531 

bwaves 1124 1347 1283 1334 

gamess 1995 1845 1751 1448 

milc 899 907 904 1060 

zeusmp 1119 1076 1073 1150 

gromacs 1297 1116 1192 900 

cactusADM 2263 2185 2199 2016 

leslie3d 2046 2190 2165 2348 

namd 914 914 915 778 

dealII 752 730 728 686 

soplex 704 756 811 920 

povray 508 437 430 317 

calculix 1938 1808 1894 1759 

GemsFDTD 1768 1770 1822 2319 

tonto 1274 1183 1199 967 

lbm 1204 1170 1140 1197 

wrf 1520 1536 1586 1763 

sphinx3 1720 1685 1576 1802 
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the average degradation as compared to a single program is 
173% with lbm suffering from the highest degradation of 
above 700%. The contention for resources is much higher in 
an 8-core machine because of a higher interference/ conflict 
between demand and prefetch requests giving rise to higher 
execution times. Similar results are obtained on a 2-core 
machine where two copies of benchmarks take much longer to 
execute as compared to a single program on the same 
machine. 

b) SPECint as Multiprogram Workload 

Keeping in view the objectives mentioned in the first part 
of section V.B.2 to compare multiprogram workloads 
separately, Fig. 4 summarizes the performance measurements 
of the benchmarks as a result of experiments 5 to 8. Table IV 
presents the data that were collected from these experiments. 
The increase in execution time is attributed to a number of 
factors including the interference that takes place between the 
demand and prefetch requests generated by all cores. The 
observations from Fig. 4 are summarized in the following 
paragraph. 

Five out of 11 integer benchmarks suffer from an average 
degradation of 1.2% if the DPL (pf1) prefetcher is disabled 
(experiment 6), with the highest degradation of 2.2% observed 
in h264ref benchmark. This is video compression software 
that encodes video streams using two different parameter sets. 
6 out of 11 integer benchmarks show an average improvement 
of 4.4% with the highest improvement of 12% observed in 
omnetpp benchmark. The omnetpp benchmark performs 
discrete event simulation by modelling a large Ethernet 
network on a campus. When both DPL (pf1) and ACL (pf2) 
prefetchers are disabled (experiment 7), 9 out of 11 integer 
benchmarks suffer from an average degradation of 10.7% with 
sjeng suffering from the highest degradation of 16.9%. Almost 
25% of integer benchmarks perform better with an average 
improvement of 6.5%. When all the prefetchers are disabled, 9 
out of 11 benchmark programs degrade in performance with 
an average degradation of 8% and the highest degradation of 
15.2% is observed in bzip2 program. bzip2 is a compression 
software that benefits from pefetching. Two of the integer 
benchmarks improve in performance with an average 
improvement of 10.4%.  

With multiprogram workload, disabling DPL prefetcher 
gives a better performance for most of SPECint benchmarks. 
This prefetcher belongs to L2 cache, which is interfaced to 
main memory. 

a) SPECfp as Multiprogram Workload 

The result of SPECfp programs (experiments 13 to 16) is 
illustrated in Fig. 5 with the data presented in Table IV. When 
the DPL(pf1) prefetcher is disabled, the SPECfp benchmarks 
show an average degradation of 3.3% in 10 out of 17 
benchmarks with the highest degradation of 9% in leslie3d 
benchmark.  This is a computational fluid dynamics program 
consisting of a large number of loops that benefit from 

prefetching. There is an average improvement of 3.3% in 7 out 
of 17 floating point benchmarks with the highest improvement 
of 16% in milc benchmark.  

Almost 71%  SPECfp benchmarks suffer from an average 
degradation of 4.7% when both DPL(pf1) and ACL(pf2) 
prefetchers are disabled (experiment 15), with the highest 
degradation of 10.5% in leslie3d benchmark. On the other 
hand, 5 out of 17 benchmark programs show an average 
improvement of 4.8% with the highest improvement of 17.2% 
observed in milc program. SPECfp gives the best performance 
improvement when the ACL(pf2) prefetcher is disabled with 
an average improvement of 8.2% in all programs. The highest 
improvement of 14.3% takes place in povray program, which 
is a computer visualization program that renders images 
through ray tracing. 

TABLE IV.  EXECUTION TIME OF SPEC2006 BENCHMARKS AS 

MULTIPROGRAM WORKLOADS 

Benchmarks 

Execution Time (in seconds) of 4-copies of 

Benchmark programs with selective enable/ 

disable of on-chip Prefetchers 

All PFs 

enabled 

pf1 

disabled 

pf1+pf2 

disabled 

All PFs 

disabled 

perlbench 817 799 936 882 

bzip2 1131 1144 1315 1303 

gcc 948 908 953 977 

gobmk 1023 1018 1159 1109 

hmmer 950 957 1067 1037 

sjeng 1139 1141 1331 1244 

libquantum 3771 3837 4002 4003 

h264ref 1566 1601 1758 1687 

omnetpp 1247 1098 1094 1037 

astar 1269 1212 1261 1220 

xalancbmk 794 768 825 835 

bwaves 2129 2244 2276 2370 

gamess 2341 2359 2427 2161 

milc 2304 1930 1907 1819 

zeusmp 1416 1445 1516 1498 

gromacs 1430 1437 1474 1303 

cactusADM 2660 2658 2705 2542 

leslie3d 2698 2939 2980 3654 

namd 1131 1121 1137 1053 

dealII  915 951 967 1011 

soplex 1536 1487 1487 1631 

povray 559 564 568 513 

calculix 2232 2227 2221 2184 

GemsFDTD 3042 2984 2971 3301 

tonto 1584 1618 1633 1645 

lbm 3678 3650 3653 3646 

wrf 2001 2124 2120 2650 

sphinx3 2713 2778 2884 3827 

C. Parallel Benchmarks Results and Analysis   

Three sets of experiments were conducted using the 
parallel benchmarks of ‘Parsec Benchmark suite’. The first 
and second set was run on platform number 2 and the third set 
of experiment was run on platform 3. The results are presented 
in the following paragraphs. 
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Fig. 4 Execution time of SPECint 2006 Benchmarks as multiprogram workloads (4-copies) with different prefetcher configurations 
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Fig. 5 Execution time of SPECfp 2006 Benchmarks as multiprogram 

workload (4-copies) with different prefetcher configurations 
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Fig. 6 Execution time of PARSEC Benchmarks with single thread and 

different prefetcher configurations 

 

 

1) Parsec Benchmarks with Single Thread 
Experiments 17 to 21 were performed with single thread 

and various configurations of hardware prefetchers. In 
experiment 18, 7 out of 13 benchmarks perform 9.5% better 
on the average, with the vips benchmark giving the highest 
improvement of 19.6%.  The best results are obtained when 
the IP prefetcher is disabled (experiment 20), giving an 
average performance improvement of 5.3% in 9 out of 13 
programs with the highest improvement of 20.6% in vips 
benchmark program. This is a media processing application 
that applies a series of transformations to an image. Other 
benchmarks that perform better with IP disabled are mostly 
image processing related applications. Fig. 6 gives the 
comparison of execution times when all prefetchers are 
enabled versus the DPL prefetcher disabled versus the IP 
prefetcher disabled respectively.  

2) Parsec Benchmarks with n Threads 
Experiments 22 to 26 were conducted using four parallel 

threads on a 4-core machine and eight parallel threads on an 8-

core 

machine.  As expected, there is an overall improvement in 
execution time with an average speedup of 2.2 over the single 
thread execution time on the 4-core machine with the highest 
speedup of 2.8 in vips benchmark program. Similarly, there is 
an average speedup of 3.3 over a single thread execution time 
on an 8-core machine. Fig. 7 shows the comparison between 
the execution times of Benchmark programs using a single and 
8-threads on the 8-core machine.   

The overall performance improves when prefetchers are 
enabled/ disabled for each of the benchmark programs. The 
best performance is achieved when the IP Prefetcher is 
disabled (experiment 25), where 11 out of 13 benchmark 
programs give an average improvement of 6.4% with the 
highest improvement of 19.3%  in streamcluster program. 
This is a machine learning application that performs optimal 
clustering for a stream of data points. It is a prefetch sensitive 
application that benefits from pefetching into L1 cache. Fig. 8 
gives the comparison of execution time of the benchmark 
programs when all prefetchers are enabled versus the IP 
prefetcher disabled versus all prefetchers disabled. 
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Fig. 8 Execution time of PARSEC Benchmarks with 4-threads on the 

4-core machine (Platform No. 2) 
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Fig. 9 Execution time of Conc. Matrix Mult. program for (a) Fl. Pt. (b) 
Integer 

 

 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Time in seconds for Fl-pt. on 24-cores 

pref. enabled pref. disabled 

0 

200 

400 

600 

800 

1000 

1200 
Time in seconds for int. on 24-cores 

pref. enabled pref. disabled 

 
Fig. 7 Execution time of PARSEC Benchmarks with single and 8-

thread on an 8-core machine (Platform No, 3) 

 

D. Concurrent Matrix Multiplication 

 The platform used to run this program did not allow 
select-ive enabling and disabling of hardware prefetchers. This 
platform only allows all the prefetchers to be enabled/ 
disabled. The experiments were conducted by varying the 
number of matrix elements from 100x100, 1000x1000, 
2000x2000 to 10000x10000 for both integer and floating point 
operands and by varying the number of cores from 4, 8, 12 to 
24. Some results of Matrix multiplication program for integer 
and floating point operands on the 24-core platform is given in 
Fig. 9 (a) and (b) respectively. There is a degradation observed 
in all cases when the prefetchers are disabled with an average 
degradation of 6.7% for integer operands and 5.95% for 
floating point operands, indicating that the use of prefetchers 
is beneficial for concurrent matrix multiplication program. 

E. Observations and Analysis 

The results presented in this paper give an insight into the 
effectiveness of hardware prefetching, one of the most 
commonly used cache optimization technique in multicore 
processors. We have carried out a detailed set of experiments 
to estimate the performance with and without the built-in 
hardware prefetchers in multicore processors on a number of 

platforms. Both multiprogrammed and parallel workloads 
were used to study the effect. Two separate subsections briefly 
outline the observations and analysis of multiprogrammed and 
parallel workloads with various combinations of hardware 
prefetchers. 

1) Multiprogrammed Workload 
The results indicate that the effect of prefetching varies 

when an application is run as single program on a multicore 
processor compared to the case when the application is run as 
multiprogram workload. This is mainly because single 
programs suffer from less contention and interference. In 
general, most of the integer benchmarks benefit from 
prefetchers, whereas most of the floating-point benchmarks 
perform better without prefetchers. 

Prefetching may be beneficial for applications that are 
prefetch sensitive. A larger number of integer applications are 
prefetch sensitive as compared to floating-point benchmarks. 
Even among integer applications, very few are prefetch 
sensitive, especially when run as multirpogram workloads. 
This is because the benefits of prefetching are overshadowed 
by the problems caused due to contention for resources and the 
interference between demand and prefetch requests generated 
by all cores. Some of the prefetches may also be useless. 
Prefetch to L1 cache by all cores cause redundant prefetches 
as multiple copies of the same block reside in multiple L1 
caches. This also results in waste of cache space. In addition, 
all applications do not benefit from prefetching and do not 
exhibit the same behaviour for all types of prefetching. 
Database applications, image rendering through ray tracing, 
data mining applications and some image processing 
applications are some of the example areas that perform better 
with selective disabling of prefetchers.  

The floating point benchmarks demonstrate a different 
behaviour pattern as compared to integer benchmarks. Most of 
these benchmarks perform better without prefetchers, 
especially when ACL prefetcher is disabled. 

Another aspect that was explored was the performance of 
multicore processors for multiprogram workload. There is a 
significant increase in execution time as compared to single 
program workload. The average increase is 50% for a 4-core 
machine (4-copies) and 150% for an 8-core machine (8-
copies) for SPECint benchmarks. Similar results are obtained 
for SPECfp benchmarks. The main reason attributed to this 
behaviour is the large amount of contention for resources, 
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which increases with the increasing number of cores. The 
proposed solution to this problem is that there should be a 
proportional increase in resources with the increase in the 
number of cores. This includes memory capacity, bandwidth 
of the interface between processor and memory and other 
components of the computer, as in case of conventional 
mutiprocessors. This is not what is observed from the 
architecture of multicore-based computers. Even though it 
may be possible to write fully parallel software that 
concurrently uses all cores of a multicore processor, the 
performance may not be as good as expected because of the 
above-mentioned reasons.  

2) Parallel Workload 
Since most of emerging applications for multicore 

processors are parallel workloads, the results obtained from 
these experiments are significant. When all prefetchers are 
enabled, average speedup of 4-threads execution is 2.2 over 
single thread execution (experiments 17 and 22).  The speedup 
improves for most of the applications when the hardware 
prefetchers are manipulated. For example, the highest speedup 
of 3.1 is obtained when all prefetchers are disabled and vips 
program is run with four threads on the four-core machine 
(experiment 26). The main reason for this improvement is that 
there is less contention and interference among threads when 
prefetchers are disabled. The prefetch sensitive parallel 
benchmarks degrade in performance when hardware preftchers 
are disabled. For example, freqmine degrades in performance 
when prefetchers are disabled. This is a data mining 
application that identifies frequently occurring patterns in 
transaction databases. Fig. 8 gives an insight about other 
programs in this benchmark suite. 

The use of prefetchers is beneficial for matrix 
multiplication program. The performance is better with 
prefetchers enabled because this is a data intensive application 
where the data access pattern is regular and predictable. 
Prefetching is considered to be suitable for such applications. 
The performance improves proportionately with the increase 
in the number of threads/ cores.  

V. CONCLUSIONS  

The role of hardware prefetchers have been exploited to 
examine their effectiveness in multicore processors with the 
goal of improving the overall system performance. Due to 
heavy sharing of on-chip resources including cache memory, 
there is degradation in performance when prefetchers are used 
aggressively, especially with multiprogram and parallel 
workloads.  

The prefetchers need to be selectively enabled/ disabled 
depending upon the nature of the application and the type of 
prefetching. The selective use of prefetchers can control the 
interference of prefetch requests which interfere with demand 
requests due to extensive sharing of bandwidth at all levels of 
memory hierarchy and to the cache pollution caused due to 
useless prefetches. This results in better overall performance, 
thus effectively reducing the processor memory speed gap and 
lowering the memory wall. 

Test results based on single program workload, 
concurrently running multiprogram workloads and parallel 

workloads confirm that appropriate enabling/ disabling of 
prefetchers can be used by application programmers to 
improve the execution time of programs. Experimental results 
indicate that database applications, image rendering 
applications, animation and some data mining applications 
perform better when prefetchers are disabled selectively.   
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