
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No. 6, 2013

157 | P a g e
www.ijasca.thesai.org

Exploiting the Role of Hardware Prefetchers in

Multicore Processors

Hasina Khatoon

Computer & Info. Sys. Engg. Dept.

NED Univ. of Engg. & Technology

Karachi, Pakistan

Shahid Hafeez Mirza

Usman Institute of Engg. & Tech.

Karachi, Pakistan

Talat Altaf

Electrical Engg. Dept.

NED Univ. of Engg. & Tech.

Karachi, Pakistan

Abstract—The processor-memory speed gap referred to as

memory wall, has become much wider in multi core processors

due to a number of cores sharing the processor-memory

interface. In addition to other cache optimization techniques, the

mechanism of prefetching instructions and data has been used

effectively to close the processor-memory speed gap and lower

the memory wall. A number of issues have emerged when

prefetching is used aggressively in multicore processors. The

results presented in this paper are an indicator of the problems

that need to be taken into consideration while using prefetching

as a default technique. This paper also quantifies the amount of

degradation that applications face with the aggressive use of

prefetching. Another aspect that is investigated is the

performance of multicore processors using a multiprogram

workload as compared to a single program workload while

varying the configuration of the built-in hardware prefetchers.

Parallel workloads are also investigated to estimate the speedup

and the effect of hardware prefetchers.

This paper is the outcome of work that forms a part of the

PhD research project currently in progress at NED University of

Engineering and Technology, Karachi.

Keywords—Multicore; prefetchers; prefetch-sensitive; memory

wall; aggressive prefetching; multiprogram workload; parallel

workload.

I. INTRODUCTION

Multicore processors are the mainstream processors of
today with the number of cores increasing at a fast pace. A
number of issues have emerged in these processors that are
becoming more acute with the increasing number of cores. A
large body of publications has accumulated in the last decade
that has summarized these issues. Some of the challenges are
presented in [1]. One of the main issues that directly impacts
application performance is the large processor-memory speed
gap referred to as memory wall by Wulf and Mckee [2] and
elaborated by Weidendorfer [3]. Recent researches have
sought solution to this problem through on-chip cache
hierarchy [4] and novel architectural features like NUCA
cache [5]. Other solutions include R-NUCA [6], Victim
Replication [7], and Pressure-Aware Associative Block
Placement [8]. A detailed summary of the publications related
to the memory wall problem is presented in [9].

One of common solution to the memory wall problem is
prefetching of instructions and data at every level of memory
hierarchy. Prefetching is a latency hiding technique that access
instructions and data from the next level of memory hierarchy
before the demand for it is actually raised by the processor.

Prefetching was almost always beneficial in single core
processors, even though there were some useless prefetches.
As a result, prefetchers now form an integral part of most of
the current generation processors. In multicore processors, all
cores share chip resources that include on-chip memory
hierarchy and the processor-memory interface. If all cores
generate prefetch requests in addition to demand requests, a
large amount of interference takes place causing contention for
resources. This prefetcher caused contention may result in
performance degradation in multicore processors, especially if
prefetchers are used aggressively. Therefore, there is a need to
investigate the effectiveness of prefetchers in multicore
processors under different conditions and for all types of
applications. The contribution of this paper is the analysis and
quantification of the behaviour of applications in the presence
and absence of prefetchers. The derived results provide
guidelines for applications to activate prefetchers only when
they are useful.

Recent research has focused on improving data prefetching
mechanisms, especially for big data analysis and other
streaming applications. Though prefetching pose degradation
problems in multicore processors, especially when used
aggressively, they remain the most effective mechanism to
avoid stalls that are caused due to long latency accesses and
contention based delays. This necessitates enhancements in the
prefetcher designs that adapt to congestion and dynamically
adjust their aggressiveness. Chen et al. in their publications
[10, 11] have proposed storage efficient data prefetching
mechanisms and power efficient feedback controlled adaptive
prefetchers that are accurate and efficient. Other recent
enhancements are discussed in Section II.

The rest of the paper is organized as follows. Section II
gives a brief overview of related work. Section III outlines the
experimental setup including test programs and specifications
of the experimental platforms. Section IV presents the results
and a brief analysis of the results and Section V concludes the
paper.

II. RELATED WORK

Since prefetching is considered to be an important latency
hiding technique, it has been used effectively in both single
core processors and single core multiprocessors. Prefetching is
performed in hardware, in software or in both. Software
prefetching is supported by prefetch instructions and requires
effort by the programmer or the compiler writer. Nataranjan et
al. [12] have explored the effectiveness of compiler directed

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

158 | P a g e
www.ijacsa.thesai.org

prefetching for large data accesses in in-order multicore
systems. Since the focus of this work is hardware prefetching,
this section shall briefly describe some of the recent
publications related to hardware prefetchers in the context of
multicore processors.

Prefetchers are beneficial due to the principle of locality,
an attribute of software. This is true most of the time in single
core architecture, but as pointed out in [13], aggressive
prefetching in multicore processors result in a large amount of
interference giving rise to performance degradation. Ebrahimi
et al. [13] have proposed more accurate prefetching with the
use of local as well as global feedback by Hierarchical
Prefetch Access Control (HPAC) to partially alleviate the
above problem. Using coordinated prefetching, the authors
compare the results of aggressive prefetching in multicore
processors with that of a single core processor. With dynamic
control of the prefetch aggressiveness using feedback directed
control, they have shown that their technique improves the
system performance by 14%.

Lee et al. [14] have identified degradation in performance
due to congestion in the interconnection network especially
due to prefetch requests in multicore processors. They have
proposed to prioritize demand traffic by using TPA (Traffic-
Aware Prioritized Arbiter) and TPT (Traffic-Aware Prefetch
Throttling) to counter the negative effects of prefetch requests.
Fukumoto et al. [15] have proposed the use of cache-to-cache
transfer to reduce the overall congestion on the memory-bus
interface.

Kamruzzaman et al. [16] have proposed a different way of
using prefetching especially for applications like the legacy
software that are inherently sequential in nature and cannot
use all cores of the CMP. They have suggested the use of
prefetch threads as helper threads to run on unused cores and
make use of the injected parallelism for prefetching code and
data. Using thread migration techniques, an overall
improvement of 31% to 63% is shown for legacy software.
The authors have concluded in their final analysis that the
technique can also be used to enhance the performance of
applications that are parallel.

Wu et al. [17] have proposed an automatic prefetch
manager that estimates the interference caused by prefetching
and adjusts the aggressiveness while programs are running.
They have shown that this dynamic management improves the
application performance and makes it more predictable.
Verma et al. [18] have evaluated the effectiveness of various
hybrid schemes of prefetching and have proposed to
adaptively reduce the number of prefetches to reduce the
interference. Lee et al. [19] identify the lack of parallelism that
exists in DRAM banks, especially in multicore processor-
based systems. They have proposed mechanisms to maximize
DRAM Bank Level Parallelism (BLP) using BLP-aware
Prefetch Issue (BAPI) with BLP-Preserving Multi core
Request Issue (BPMRI) that helps improve the application
performance with parallel servicing of requests. Ebrahimi et
al. [20] have proposed mechanisms to exploit prefetching for
shared resource management in multicore systems.

Nachiappan et al. [21] have suggested prefetch
prioritization in the interconnection network on the basis of

the potential utility of the requests in order to reduce the
negative effects of prefetching. Wu et al. [22] characterize the
performance of the LLC (Last Level Cache) management
policies in the presence and absence of hardware prefetching.
They propose Prefetch-Aware Cache Management (PACMan)
for better and predictable performance. Lee et al. [23] have
proposed prefetch-aware on-chip networks and network-aware
prefetch designs that is sensitive to network congestion.
Manikantan and Govindarajan [24] have proposed
performance-oriented prefetching enhancements that include
focused prefetching to avoid commit stalls. The authors claim
that this enhancement also improved the accuracy of
prefetching.

A number of recent publications have proposed complex
prefetching mechanisms that take into account various factors
while prefetching code and data [18, 25]. Grannaes et al. [25]
have proposed Delta Correlating Prediction Table (DCPT), a
pefetching heuristics based on the table-based design of
Reference Prediction Tables (RPT) and the delta correlating
design of Program Counter/ Delta Correlating Prefetching
(PC/DC) with some improvements. These complex
prefetching techniques have overheads that cannot be ignored
as prefetchers incur a significant burden on system resources.
Since simple prefetchers have low overheads, they are used
mostly in current generation processors. For example, the
prefetchers used in our experimental platform are simpler [26]
as compared to the prefetchers discussed in [18, 25].

III. THE EXPERIMENTAL SETUP

This section gives an account of the test programs, the
experimental platforms and the hardware prefetchers present
in these experimental platforms.

Although prefetching code and data have been
significantly effective in single core processors, some of the
recent publications have pointed out an anomaly that takes
place when prefetchers are used in multicore processors. Use
of aggressive prefetching cause interference and results in
overall degradation of performance [13], demanding an
adjustment in the prefetch strategy. In many instances, it has
been observed that applications perform better without all the
prefetchers used by default as these are built-in in all current
generation processors. The designers of most of these
processors have therefore provided mechanisms where
applications may use prefetch manipulating techniques to
selectively enable/ disable the built-in hardware prefetchers,
whenever desired. This involves manipulation of Machine
Specific Registers (MSRs) related to hardware prefetchers.
The decision to enable/ disable pefetchers is left to the
application designer. The application areas that benefit most
due to cache locality and being prefetch sensitive may
continue using the prefetchers, but these applications should
also investigate the benefits, before using it by default.

A. Test Programs

Three types of benchmark programs are used to measure
and evaluate performance with enabled/ disabled
configurations of prefetchers: SPEC 2006 [27], the parallel
Parsec Benchmark suite [28] and the concurrent matrix
multiplication program [29]. SPEC 2006 is a commonly used

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

159 | P a g e
www.ijacsa.thesai.org

benchmark for evaluation of single and multiprogram
workloads; the Parsec Benchmark suite is used to evaluate the
performance for parallel workloads and the concurrent matrix
multiplication program is used to evaluate the performance of
concurrent workloads. A brief description about the three sets
of benchmarks/ programs is given in the following
subsections.

1) SPEC 2006 Workload
The first set of experiments are conducted to evaluate the

effect on the performance of SPEC 2006 [27] benchmark
programs when run on multicore processor with various
configurations of the built-in hardware prefetchers. Since
SPEC 2006 benchmarks are not inherently parallel, multiple
copies of each benchmark are run in parallel as a
multiprogram workload to keep all cores busy and observe the
results with and without prefetchers. Most of the runs are
reportable runs [27] and the results of reference input set is
used to perform the analysis. The experiments performed on
the example platform took between 9 to 19 hours each and in
some cases, it was even higher. In case of multiprogram
workloads, the time taken was up to 31 hours for complete
execution.

2) The Parallel Benchmarks Suite
The Princeton Application Repository for Shared Memory

Computers (PARSEC) is a parallel benchmark suite that is
suitable to evaluate multicore processors [28]. It consists of 13
benchmark programs taken from several different application
domains including financial analysis, animation, data mining,
computer vision, etc. These are diverse and emerging
multithreaded workloads focusing on desktop and server
applications that are expected to be the eventual workloads for
multicore processors. The number of threads of each program
can be adjusted depending on the number of cores and the
application requirements. A detailed description of the design
and implementation of this benchmark suite is given in [30].
However, a brief description is given below.

Both current and emerging workloads from recognition,
mining and synthesis (RMS) application areas are represented
in this benchmark suite. Each of the applications has been
parallelized fulfilling the requirements of multithreaded
applications that can be run on parallel architectures like
multicore processors. Using parallelization models of
Pthreads, OpenMP and Intel TBB, these programs provide
portability for various types of platforms. Some of the
programs present in the suite are dedup, blackscholes, facesim,
fuidanimate, etc., taken from the application areas of computer
vision, data mining, visualization, media processing,
animation, financial analysis, etc. Six different input sets with
different properties are defined for each workload that can be
used with variable number of threads. Out of the input sets of
test, simdev, simsmall, simmedium, simlarge and native, the
native input set is the largest and is closest to the actual inputs.

All 13 benchmark programs are run with the native input
set using single thread and n threads, where n is chosen to be
the number of cores for each of the experiments. A more
detailed description about the use of this benchmark suite can
be found in [31].

3) Matrix multiplication program
The third test program is the parallel matrix multiplication

program. This program has been parallelized to run on
multicore processors using SPC3PM (Serial, Parallel and
Concurrent Core to Core Programming Model [29]), an
algorithm developed at NED University by Ismail et al. for
parallelization of programs. This programming model allows
the user to specify any number of cores depending on the
amount of parallelism and the available resources. More
details about the model and algorithm can be found in [29].

B. The Experimental Platforms

Most of the experiments were conducted on a platform
based on the 4-core Intel Core2 Quad processor running
OpenSUSE 11.1 Linux 2.6.27.7 operating system. The main
features of this machine are summarized in Table I as Platform
No. 2. Both integer and floating point programs of
SPECCPU2006 benchmark suite [27] and the Parsec
Benchmark suite [28] were run on this platform using various
combinations of the four built-in prefetchers per core in the
multicore processor. A detailed description of the four
prefetchers per core and a description of the Model Specific
Register (MSR) to control them are given in the Intel Software
Developers Manual [26].

Some experiments were also conducted on a 2-core and an
8-core machine to examine and validate some of the results
obtained from the main platform. The salient features of these
platforms are also listed in Table 1 as platform Nos. 1 and 3
respectively. The results of experiments conducted on
platforms 1 and 3 are used as additional data for validation and
testing of results and only a summary of the results are
presented. The platform chosen to run the third test program is
the dual-core Intel Xeon processor X5670 Series based
SR1600UR server system having 24 cores. Other salient
features of this platform are also listed in Table I as the
specifications of platform No. 4.

C. Prefetchers in the main Experimental Platform

The example platforms 1 to 3 that are used to conduct most
of the experiments in this study have four prefetchers per core,
each performing the function of prefetching a specific set of
information [26]. A brief description of the four hardware
prefetchers in the experimental platforms is given in the
following paragraph.

 The Instruction Prefetcher (IP), referred to as pf4 in
this paper, prefetches instructions in the L1 instruction-
cache based on branch prediction results.

 The Adjacent Cache Line (ACL) prefetcher, referred to
as pf2, prefetches the next matching block in a cache
block pair in to L2 cache.

 The Data Cache Unit (DCU) prefetcher, referred to as
pf3, observes and detects the number of accesses to a
specific cache block for a predetermined period of time
and prefetches the subsequent block in the L1 D-cache.

 The Data Prefetch Logic (DPL) prefetcher, referred to
as pf1, functions similar to the DCU prefetcher, except
that the blocks are prefetched in L2 cache after it
detects accesses to two successive cache blocks.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

160 | P a g e
www.ijacsa.thesai.org

TABLE I. SPECIFICATIONS OF EXPERIMENTAL PLATFORMS

Each of the four prefetchers can be selectively enabled/
disabled by putting On/Off individual bits in the Model
Specific Register (MSR) number 0x1A0h present in each core.
This register can be accessed and the corresponding bits can
be manipulated using assembly-level instructions. The tool
used to manipulate the register bits for these experiments is
msr tools [32] available as free software. In addition to
hardware prefetchers, prefetch instructions are also provided
in all current generation processors that can be used to
program prefetching of data through software prefetching. It
may be noted that the experimental platform No. 4 does not
allow selective enabling/ disabling of its hardware prefetchers.
It only allows all prefetchers to be either enabled or disabled.

The following paragraphs summarize the results of the
experiments performed after selective enabling/disabling of
prefetchers and the effect it has on the performance of
multicore processors.

IV. RESULTS AND ANALYSIS

Table II gives a summary of the experiments conducted to
deduce the following results on the main platform (platform
2). A number of experiments that were conducted on platforms
1, 3 and 4 are also discussed in this section (not given in Table
II).

A. Benchmarks and Measurement Metrics

The experiments were conducted by running all 29
SPECCPU2006 programs comprising of 12 integer
benchmarks and 17 floating-point benchmarks, all 13

programs of Parsec Benchmark suite Version 2.1 and the
concurrent matrix multiplication program. The effect of the
use of prefetch inhibiting techniques on the overall
performance of benchmark programs is illustrated through
column charts. In addition, collected data is also presented in
the form of tables that give more accurate information. Two
separate sections present the results of SPEC2006 benchmarks
as single program and multiprogram workloads. A third
section presents the results of parallel benchmarks.

Some of the terms that shall be used to explain the results
in this paper have been taken from [13] and are discussed here
briefly. An application is said to have cache locality if the
number of L2 cache hits per 1000 instructions is greater than
five. If the L2 cache miss is greater than 1 per 1000
instructions (MPKI – Miss Per Kilo Instructions), the
application is referred to as memory intensive. If the
improvement in performance when a prefetcher is used is
greater than 10% compared to no prefetching, the application
is said to be prefetch sensitive.

B. SPEC CPU 2006 Results

 Results of experiments 1 to 16 that were conducted with

various prefetcher options are presented in this section.

1) SPEC CPU 2006 as Single Program Workload
Experiments 1 to 4 and 9 to 12 were conducted by using all

SPEC programs as single program workload with various
prefetcher options.

2) SPECint as Single Program Workload
In experiments 1 to 4, use of prefetchers mostly proved to

be beneficial, because all resources were utilized by only a
single core as SPEC benchmarks are not inherently parallel.
Fig. 1 shows the performance in terms of execution time for
SPECint 2006 benchmarks executed with and without the
built-in hardware prefetchers in each of the cores. A number
of experiments were conducted using various configurations
of on-chip hardware prefetchers. Four of these experiments are
listed in Table II. The data collected from the experiments is
presented in Table III. An overall average degradation of
14.4% is observed in 10 out of 12 integer benchmarks when
the DPL (pf1) prefetcher is disabled. This is because
prefetching in L2 is more beneficial for most of the
applications. The highest degradation of 54% is observed in
libquantum benchmark. Since this benchmark consists of a
library of software that simulates a quantum computer, it is
expected to be prefetch sensitive and benefits most from any
kind of prefetching mechanism. The other benchmark
programs that are prefetch sensitive are mcf, sjeng and
xalancbmk. Two of the benchmarks, namely, hmmer and
omnetpp give better performance when the prefetcher is off,
with hmmer giving an improvement of 7.3%. This is because
hmmer is database search software that searches for a gene
sequence.

The experiments were again conducted by disabling two of
the four prefetchers and a different set of results were obtained
(experiment 3). When both DPL (pf1) and ACL (pf2)
prefetchers are disabled, there is an average degradation of
13.5% in only 3 out of 12 integer benchmarks and 9
benchmark programs show an average improvement of 8.4%.

Platform

1

Platform

2 (Main

Platform)

Platform

3

Platform

4

Processor Intel

Core
TM

 2

Duo CPU

@ 2.2 GHz

Intel

Core
TM

 2

Quad CPU

@ 2.66

GHz

Intel

Core
TM

 i7-

2600 CPU

@ 3.4 GHz

4 x Intel

Xeon

X5670@

2.93CHz

No .of

cores

2 4 8 4 x 6

Cache and System Parameters

L1 D-

Cache

(per core)

32KB,

64B, 8-

way

associative

32KB,

64B, 8-

way

associative

32KB,

64B, 8-

way

associative

6x32KB

L1 I-

Cache

(per core)

32Kb,

64B, 8-

way

associative

32KB,

64B, 8-

way

associative

32KB,

64B, 8-

way

associative

6 x 32KB

L2 Cache 2MB, 64B,

8-way

associative

4MB 64B,

16-way

associative

4x256KB,

64B, 8-

way assoc.

6 x 256

KB

L3 Cache NA NA 8MB, 64B,

16-way

assoc.

12 MB

Main

mem.

1GB 4GB 8GB 24 GB

Operating

System

OpenSUS

E 11.1

Linux

Kernel

2.6.27.7

OpenSUS

E 11.1

Linux

Kernel

2.6.27.7

OpenSUS

E 11.1

Linux

Kernel

2.6.27.7

Windows

2008

Server (64-

bit)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

161 | P a g e
www.ijacsa.thesai.org

Fig. 1 Execution time of single copy of SPECint 2006 Benchmark programs

with various prefetcher configurations

Fig. 2

0

500

1000

1500

2000

2500

E
x
e
c
u

ti
o
n

 t
im

e
 (

se
c
o
n

d
s)

all pref.ON pf1 pref. OFF

pf1+pf2 pref. OFF all pref. OFF

The highest degradation of 34.6% is observed in libquantum
program because of the reasons mentioned before. The hmmer
program shows the highest improvement of 22.6%.

When all four prefetchers are disabled (experiment 4), the
benchmarks show degradation in almost all SPECint programs
with an average degradation of about 14%, with libquantum
program suffering from the highest degradation of 84%. The
reason for this behaviour has already been mentioned before.
Only one of the programs namely, hmmer shows an
improvement of 11% when all the four prefetchers are off,
because it does not benefit from prefetching.

The results show that prefetchers are beneficial for single
SPECint programs in multicore processors. Most of the
applications benefit from prefetchers because the interference
between demand and prefetch requests is not significant as
only a single core generates prefetch and demand requests.

a) SPECfp as Single Program Workload

The results of SPECfp benchmarks are shown in Fig. 2
(experiments 9 to 12). Compared to the integer benchmarks,
only 6 out of 17 floating-point benchmarks suffer from an
average degradation of 6.1% in performance when the DPL
(pf1) prefetcher is disabled. There is only one SPECfp
benchmark that is prefetch sensitive, namely bwaves which
suffers from the highest degradation of 19.8%. bwaves is a
computational fluid dynamics software that simulates blast
waves in three dimensions. Such software tends to benefit
from prefetching. An average improvement of 6.4% is
observed in 10 out of 17 floating point benchmarks with as
high as 13.9% improvement observed in povray benchmark
program. This is an image rendering software that uses ray
tracing to visualize an object.

TABLE II. LIST OF EXPERIMENTS WITH DIFFERENT PREFETCHER

OPTIONS ON PLATFORM 2 WITH EXECUTION TIME

The ray tracing programs do not benefit from prefetching.
As a result of experiment 11, the behaviour of floating point
benchmarks remains almost the same as with one prefetcher
disabled, with only a small change that can be observed from
Fig. 2.

When all the four prefetchers are disabled, 8 out of 17
benchmark programs suffer from an average degradation of
17% with the highest degradation of 31% seen in GemsFDTD
program. This program benefits from prefetching because it is
a computational electromagnetic application that comprises
mostly of loops. All the above results indicate that there is
anomaly even when a single copy of benchmarks is run and
different applications show different behaviour with or
without the use of prefetchers. Moreover, floating point
benchmarks mostly perform better when prefetchers are
disabled selectively as compared to integer benchmarks. A
closer examination reveals that most of the SPECfp programs
are not prefetch sensitive.

Benchmark Execution

Mode

Experi-

ment No.

Prefetcher

option

Execution

Time in

seconds

SPECint

Single

Program

Workload

1 All Enabled 32400

2 DPL=Disabled 35520

3 DPL+ACL=

Disabled

31200

4 All Disabled 35280

Multi-program

workload

(4-copies)

5 All Enabled 44400

6 DPL= Disabled 43860

7 DPL+ACL =

Disabled

47040

8 All Disabled 46380

SPECfp

Single

Program

Workload

9 All Enabled 72120

10 DPL=Disabled 70140

11 DPL+ACL =

Disabled

69960

12 All Disabled 70680

Multi-program

Workload

(4-copies)

13 All Enabled 104400

14 DPL=Disabled 104520

15 DPL+ACL=

Disabled

106320

16 All Disabled 112440

PARSEC

Benchmarks

Single Thread

Workload

17 All Enabled 6840

18 DPL=Disabled 6780

19 ACL =Disabled 7020

20 IP =Disabled 6600

21 All Disabled 7560

Multiple

Thread

Workload

(4 threads)

22 All Enabled 3480

23 DPL=Disabled 3720

24 ACL=Disabled 3960

25 IP=Disabled 3360

26 All Disabled 3720

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

162 | P a g e
www.ijacsa.thesai.org

Fig. 2 Execution time of single SPECfp 2006 Benchmark programs

with different prefetcher configurations

0

500

1000

1500

2000

2500

E
x
e
c
u

ti
o
n

 T
im

e
 (

se
c
o
n

d
s)

all pref. ON pf1 pref. OFF

pf1+pf2 pref. OFF all pref. OFF

Fig. 3 Comparison of execution time of SPECint programs as single

and multiprogram workloads on an 8–core machine (Platform No, 3)

TABLE III. EXECUTION TIME OF SPEC2006 PROGRAMS AS SINGLE

PROGRAM WORKLOADS

3) SPEC CPU 2006 as Multiprogram Workload
In this section, we present the results of experiments 5 to 8

and 13 to 16, which were performed by running SPEC
programs as multiprogram workload to keep all cores busy.
Although multicore processors are more useful and powerful
for parallel workloads, most of the software that runs on these
processors today is not parallel. For all such software, the
main advantage that can be gained with multicore processors

is higher throughput. Hence, studying the behaviour of
multicore processors for multiprogrammed workload is also as
important as for parallel workloads.

It was observed during these experiments, that there is a
large increase in execution time with multiprogram workload.
This is because a large number of memory requests, including
demand and prefetch requests share the same limited
bandwidth of the processor memory interface. The amount of
memory required to run the programs also increases. In case of
mcf, one of the integer benchmarks, the program becomes very
slow and its progress almost stops on our experimental
platforms because of the heavy usage of memory. This
program is therefore not included in these measurements. For
all other programs, the interference caused by multiple
requests result in an overall degradation in performance as
compared to the single program run on multiple cores. The
execution time on the 4-core machine increases by an average
of 50% for all integer benchmarks with the highest increase of
200% in the libquantum benchmark program. In case of
floating-point benchmarks, multiprogram workload increases
the execution time by almost 74% over the single program
execution time, with the highest increase of 206% in the lbm
benchmark program. In such a scenario it would not be fair to
compare the performance of benchmarks when a single
program is run with the performance of multiprogram
workload with and without hardware prefetchers. The
comparison is therefore made when a single program is run
with and without prefetchers and when multiprogram
workload is run with and without the hardware prefetchers.

The performance further degrades when multiprogram
workload executes on an 8-core machine. The 8-core machine
is an i7-based computer and the architecture of cores is similar
to that of our main experimental platform. The gap between
the execution time of single program and multiprogram is
much wider than that of the 4-core machine. The average
degradation in performance for 8-copies of integer
benchmarks as compared to a single program run on the same
machine is 150%, with libquantum suffering from the highest
degradation of 490%. Fig. 3 shows the comparison of
execution time of each SPECint benchmark program. When
floating point benchmarks are run as multiprogram workload,

Benchmarks Execution Time (in seconds) of Benchmark

programs with selective enable/ disable of on-

chip Prefetchers

 All PFs

enabled

pf1

disabled

pf1+pf2

disabed

All PFs

disabled

Perlbench 670 728 644 712

bzip2 874 951 776 923

Gcc 652 684 601 692

mcf 679 778 686 849

gobmk 852 907 767 896

hmmer 866 803 670 768

sjeng 855 1085 895 968

libquantum 1279 1975 1722 2357

h264ref 1285 1342 1188 1296

omnetpp 682 673 633 692

astar 822 854 810 877

xalancbmk 486 540 469 531

bwaves 1124 1347 1283 1334

gamess 1995 1845 1751 1448

milc 899 907 904 1060

zeusmp 1119 1076 1073 1150

gromacs 1297 1116 1192 900

cactusADM 2263 2185 2199 2016

leslie3d 2046 2190 2165 2348

namd 914 914 915 778

dealII 752 730 728 686

soplex 704 756 811 920

povray 508 437 430 317

calculix 1938 1808 1894 1759

GemsFDTD 1768 1770 1822 2319

tonto 1274 1183 1199 967

lbm 1204 1170 1140 1197

wrf 1520 1536 1586 1763

sphinx3 1720 1685 1576 1802

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

163 | P a g e
www.ijacsa.thesai.org

the average degradation as compared to a single program is
173% with lbm suffering from the highest degradation of
above 700%. The contention for resources is much higher in
an 8-core machine because of a higher interference/ conflict
between demand and prefetch requests giving rise to higher
execution times. Similar results are obtained on a 2-core
machine where two copies of benchmarks take much longer to
execute as compared to a single program on the same
machine.

b) SPECint as Multiprogram Workload

Keeping in view the objectives mentioned in the first part
of section V.B.2 to compare multiprogram workloads
separately, Fig. 4 summarizes the performance measurements
of the benchmarks as a result of experiments 5 to 8. Table IV
presents the data that were collected from these experiments.
The increase in execution time is attributed to a number of
factors including the interference that takes place between the
demand and prefetch requests generated by all cores. The
observations from Fig. 4 are summarized in the following
paragraph.

Five out of 11 integer benchmarks suffer from an average
degradation of 1.2% if the DPL (pf1) prefetcher is disabled
(experiment 6), with the highest degradation of 2.2% observed
in h264ref benchmark. This is video compression software
that encodes video streams using two different parameter sets.
6 out of 11 integer benchmarks show an average improvement
of 4.4% with the highest improvement of 12% observed in
omnetpp benchmark. The omnetpp benchmark performs
discrete event simulation by modelling a large Ethernet
network on a campus. When both DPL (pf1) and ACL (pf2)
prefetchers are disabled (experiment 7), 9 out of 11 integer
benchmarks suffer from an average degradation of 10.7% with
sjeng suffering from the highest degradation of 16.9%. Almost
25% of integer benchmarks perform better with an average
improvement of 6.5%. When all the prefetchers are disabled, 9
out of 11 benchmark programs degrade in performance with
an average degradation of 8% and the highest degradation of
15.2% is observed in bzip2 program. bzip2 is a compression
software that benefits from pefetching. Two of the integer
benchmarks improve in performance with an average
improvement of 10.4%.

With multiprogram workload, disabling DPL prefetcher
gives a better performance for most of SPECint benchmarks.
This prefetcher belongs to L2 cache, which is interfaced to
main memory.

a) SPECfp as Multiprogram Workload

The result of SPECfp programs (experiments 13 to 16) is
illustrated in Fig. 5 with the data presented in Table IV. When
the DPL(pf1) prefetcher is disabled, the SPECfp benchmarks
show an average degradation of 3.3% in 10 out of 17
benchmarks with the highest degradation of 9% in leslie3d
benchmark. This is a computational fluid dynamics program
consisting of a large number of loops that benefit from

prefetching. There is an average improvement of 3.3% in 7 out
of 17 floating point benchmarks with the highest improvement
of 16% in milc benchmark.

Almost 71% SPECfp benchmarks suffer from an average
degradation of 4.7% when both DPL(pf1) and ACL(pf2)
prefetchers are disabled (experiment 15), with the highest
degradation of 10.5% in leslie3d benchmark. On the other
hand, 5 out of 17 benchmark programs show an average
improvement of 4.8% with the highest improvement of 17.2%
observed in milc program. SPECfp gives the best performance
improvement when the ACL(pf2) prefetcher is disabled with
an average improvement of 8.2% in all programs. The highest
improvement of 14.3% takes place in povray program, which
is a computer visualization program that renders images
through ray tracing.

TABLE IV. EXECUTION TIME OF SPEC2006 BENCHMARKS AS

MULTIPROGRAM WORKLOADS

Benchmarks

Execution Time (in seconds) of 4-copies of

Benchmark programs with selective enable/

disable of on-chip Prefetchers

All PFs

enabled

pf1

disabled

pf1+pf2

disabled

All PFs

disabled

perlbench 817 799 936 882

bzip2 1131 1144 1315 1303

gcc 948 908 953 977

gobmk 1023 1018 1159 1109

hmmer 950 957 1067 1037

sjeng 1139 1141 1331 1244

libquantum 3771 3837 4002 4003

h264ref 1566 1601 1758 1687

omnetpp 1247 1098 1094 1037

astar 1269 1212 1261 1220

xalancbmk 794 768 825 835

bwaves 2129 2244 2276 2370

gamess 2341 2359 2427 2161

milc 2304 1930 1907 1819

zeusmp 1416 1445 1516 1498

gromacs 1430 1437 1474 1303

cactusADM 2660 2658 2705 2542

leslie3d 2698 2939 2980 3654

namd 1131 1121 1137 1053

dealII 915 951 967 1011

soplex 1536 1487 1487 1631

povray 559 564 568 513

calculix 2232 2227 2221 2184

GemsFDTD 3042 2984 2971 3301

tonto 1584 1618 1633 1645

lbm 3678 3650 3653 3646

wrf 2001 2124 2120 2650

sphinx3 2713 2778 2884 3827

C. Parallel Benchmarks Results and Analysis

Three sets of experiments were conducted using the
parallel benchmarks of ‘Parsec Benchmark suite’. The first
and second set was run on platform number 2 and the third set
of experiment was run on platform 3. The results are presented
in the following paragraphs.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

164 | P a g e
www.ijacsa.thesai.org

Fig. 4 Execution time of SPECint 2006 Benchmarks as multiprogram workloads (4-copies) with different prefetcher configurations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

all pref. ON pf1 pref. OFF pf1+pf2 pref. OFF all pref. OFF

Fig. 5 Execution time of SPECfp 2006 Benchmarks as multiprogram

workload (4-copies) with different prefetcher configurations

0

1000

2000

3000

4000

5000

E
x
e
c
u

ti
o
n

 T
im

e
 (

se
c
o
n

d
s)

all pref. ON pf1 pref. OFF

pf1+pf2 pref. OFF all pref. OFF

Fig. 6 Execution time of PARSEC Benchmarks with single thread and

different prefetcher configurations

1) Parsec Benchmarks with Single Thread
Experiments 17 to 21 were performed with single thread

and various configurations of hardware prefetchers. In
experiment 18, 7 out of 13 benchmarks perform 9.5% better
on the average, with the vips benchmark giving the highest
improvement of 19.6%. The best results are obtained when
the IP prefetcher is disabled (experiment 20), giving an
average performance improvement of 5.3% in 9 out of 13
programs with the highest improvement of 20.6% in vips
benchmark program. This is a media processing application
that applies a series of transformations to an image. Other
benchmarks that perform better with IP disabled are mostly
image processing related applications. Fig. 6 gives the
comparison of execution times when all prefetchers are
enabled versus the DPL prefetcher disabled versus the IP
prefetcher disabled respectively.

2) Parsec Benchmarks with n Threads
Experiments 22 to 26 were conducted using four parallel

threads on a 4-core machine and eight parallel threads on an 8-

core

machine. As expected, there is an overall improvement in
execution time with an average speedup of 2.2 over the single
thread execution time on the 4-core machine with the highest
speedup of 2.8 in vips benchmark program. Similarly, there is
an average speedup of 3.3 over a single thread execution time
on an 8-core machine. Fig. 7 shows the comparison between
the execution times of Benchmark programs using a single and
8-threads on the 8-core machine.

The overall performance improves when prefetchers are
enabled/ disabled for each of the benchmark programs. The
best performance is achieved when the IP Prefetcher is
disabled (experiment 25), where 11 out of 13 benchmark
programs give an average improvement of 6.4% with the
highest improvement of 19.3% in streamcluster program.
This is a machine learning application that performs optimal
clustering for a stream of data points. It is a prefetch sensitive
application that benefits from pefetching into L1 cache. Fig. 8
gives the comparison of execution time of the benchmark
programs when all prefetchers are enabled versus the IP
prefetcher disabled versus all prefetchers disabled.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

165 | P a g e
www.ijacsa.thesai.org

Fig. 8 Execution time of PARSEC Benchmarks with 4-threads on the

4-core machine (Platform No. 2)

(a) (b)

Fig. 9 Execution time of Conc. Matrix Mult. program for (a) Fl. Pt. (b)
Integer

0

500

1000

1500

2000

2500

3000

3500

Time in seconds for Fl-pt. on 24-cores

pref. enabled pref. disabled

0

200

400

600

800

1000

1200
Time in seconds for int. on 24-cores

pref. enabled pref. disabled

Fig. 7 Execution time of PARSEC Benchmarks with single and 8-

thread on an 8-core machine (Platform No, 3)

D. Concurrent Matrix Multiplication

 The platform used to run this program did not allow
select-ive enabling and disabling of hardware prefetchers. This
platform only allows all the prefetchers to be enabled/
disabled. The experiments were conducted by varying the
number of matrix elements from 100x100, 1000x1000,
2000x2000 to 10000x10000 for both integer and floating point
operands and by varying the number of cores from 4, 8, 12 to
24. Some results of Matrix multiplication program for integer
and floating point operands on the 24-core platform is given in
Fig. 9 (a) and (b) respectively. There is a degradation observed
in all cases when the prefetchers are disabled with an average
degradation of 6.7% for integer operands and 5.95% for
floating point operands, indicating that the use of prefetchers
is beneficial for concurrent matrix multiplication program.

E. Observations and Analysis

The results presented in this paper give an insight into the
effectiveness of hardware prefetching, one of the most
commonly used cache optimization technique in multicore
processors. We have carried out a detailed set of experiments
to estimate the performance with and without the built-in
hardware prefetchers in multicore processors on a number of

platforms. Both multiprogrammed and parallel workloads
were used to study the effect. Two separate subsections briefly
outline the observations and analysis of multiprogrammed and
parallel workloads with various combinations of hardware
prefetchers.

1) Multiprogrammed Workload
The results indicate that the effect of prefetching varies

when an application is run as single program on a multicore
processor compared to the case when the application is run as
multiprogram workload. This is mainly because single
programs suffer from less contention and interference. In
general, most of the integer benchmarks benefit from
prefetchers, whereas most of the floating-point benchmarks
perform better without prefetchers.

Prefetching may be beneficial for applications that are
prefetch sensitive. A larger number of integer applications are
prefetch sensitive as compared to floating-point benchmarks.
Even among integer applications, very few are prefetch
sensitive, especially when run as multirpogram workloads.
This is because the benefits of prefetching are overshadowed
by the problems caused due to contention for resources and the
interference between demand and prefetch requests generated
by all cores. Some of the prefetches may also be useless.
Prefetch to L1 cache by all cores cause redundant prefetches
as multiple copies of the same block reside in multiple L1
caches. This also results in waste of cache space. In addition,
all applications do not benefit from prefetching and do not
exhibit the same behaviour for all types of prefetching.
Database applications, image rendering through ray tracing,
data mining applications and some image processing
applications are some of the example areas that perform better
with selective disabling of prefetchers.

The floating point benchmarks demonstrate a different
behaviour pattern as compared to integer benchmarks. Most of
these benchmarks perform better without prefetchers,
especially when ACL prefetcher is disabled.

Another aspect that was explored was the performance of
multicore processors for multiprogram workload. There is a
significant increase in execution time as compared to single
program workload. The average increase is 50% for a 4-core
machine (4-copies) and 150% for an 8-core machine (8-
copies) for SPECint benchmarks. Similar results are obtained
for SPECfp benchmarks. The main reason attributed to this
behaviour is the large amount of contention for resources,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

166 | P a g e
www.ijacsa.thesai.org

which increases with the increasing number of cores. The
proposed solution to this problem is that there should be a
proportional increase in resources with the increase in the
number of cores. This includes memory capacity, bandwidth
of the interface between processor and memory and other
components of the computer, as in case of conventional
mutiprocessors. This is not what is observed from the
architecture of multicore-based computers. Even though it
may be possible to write fully parallel software that
concurrently uses all cores of a multicore processor, the
performance may not be as good as expected because of the
above-mentioned reasons.

2) Parallel Workload
Since most of emerging applications for multicore

processors are parallel workloads, the results obtained from
these experiments are significant. When all prefetchers are
enabled, average speedup of 4-threads execution is 2.2 over
single thread execution (experiments 17 and 22). The speedup
improves for most of the applications when the hardware
prefetchers are manipulated. For example, the highest speedup
of 3.1 is obtained when all prefetchers are disabled and vips
program is run with four threads on the four-core machine
(experiment 26). The main reason for this improvement is that
there is less contention and interference among threads when
prefetchers are disabled. The prefetch sensitive parallel
benchmarks degrade in performance when hardware preftchers
are disabled. For example, freqmine degrades in performance
when prefetchers are disabled. This is a data mining
application that identifies frequently occurring patterns in
transaction databases. Fig. 8 gives an insight about other
programs in this benchmark suite.

The use of prefetchers is beneficial for matrix
multiplication program. The performance is better with
prefetchers enabled because this is a data intensive application
where the data access pattern is regular and predictable.
Prefetching is considered to be suitable for such applications.
The performance improves proportionately with the increase
in the number of threads/ cores.

V. CONCLUSIONS

The role of hardware prefetchers have been exploited to
examine their effectiveness in multicore processors with the
goal of improving the overall system performance. Due to
heavy sharing of on-chip resources including cache memory,
there is degradation in performance when prefetchers are used
aggressively, especially with multiprogram and parallel
workloads.

The prefetchers need to be selectively enabled/ disabled
depending upon the nature of the application and the type of
prefetching. The selective use of prefetchers can control the
interference of prefetch requests which interfere with demand
requests due to extensive sharing of bandwidth at all levels of
memory hierarchy and to the cache pollution caused due to
useless prefetches. This results in better overall performance,
thus effectively reducing the processor memory speed gap and
lowering the memory wall.

Test results based on single program workload,
concurrently running multiprogram workloads and parallel

workloads confirm that appropriate enabling/ disabling of
prefetchers can be used by application programmers to
improve the execution time of programs. Experimental results
indicate that database applications, image rendering
applications, animation and some data mining applications
perform better when prefetchers are disabled selectively.

REFERENCES

[1] J. Parkhurst, J. Darringer, B. Grundmann, “From Single Core to Multi-

Core: Preparing for a new exponential”, Proc. of ICCAD, 2006, p. 67-72

[2] W. A. Wulf, S.A. McKee, “Hitting the Memory Wall – Implications of

the Obvious”, ACM SIGARCH Computer Architecture News, 1995. p.
20-24

[3] J. Weidendorfer, “Understanding Memory Access Bottlenecks on

Multicore”, Mini Symposium – Scalability and Usability of HPC
Programming Tools, ParCo2007, FZ Julich

[4] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, D. Newell, “Exploring the

Cache Design Space for Large Scale CMPs”, ACM SIGARCH
Computer Architecture News, 2007, Volume 33, Issue 4: 24-33

[5] C. Kim, D. Burger, S. W. Keckler, “NUCA: A Non-Uniform Cache

Access Architecture for Wire-Delay Dominated On-Chip Caches”, IEEE
Micro, November/December 2003. p. 99-107

[6] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, “Near-Optimal

Cache Block Placement with Reactive Non-uniform Cache
Architecture”, IEEE Micro, January/February (2010), p. 20-28

[7] M. Zhang, K. Asanović, “Victim Replication: Maximizing Capacity

while Hiding Wire Delay in Tiled Chip Multiprocessors”, Proceedings
of the 32

nd
 International Symposium on Computer Architecture (ICSA-

32), 2005. p. 336-345

[8] M. Hammoud, S. Cho, R. G. Melhem, “A Dynamic Pressure-Aware

Associative Placement Strategy for Large Scale Chip Multiprocessors”,
IEEE Computer Architecture Letters, Volume 9, No.1: January-June,

2010: 29-32

[9] H. Khatoon, S. H. Mirza, “Improving Memory Performance Using
Cache Optimizations in Chip Multiprocessors”, Sindh University

Research Journal (SURJ), Volume 43, Number 1A, June 2011: 43-50

[10] Y. Chen, H. Zhu, H. Jin, X. Sun, “Algorithm-level Feedback-controlled
Adaptive data Prefetcher: Accelerating data access for high-performance

processors”, Parallel Computing 38(2012) 533-551

[11] Y. Chen, H. Zhu, H. Jin, X. Sun, “Storage-Efficient Data Prefetching for
High Performance Computing”, adfa, p.1, Springer-Verlag Berlin, 2012

[12] R. Nataranjan, V. Mekkat, W. C. Hsu. A. Zhai,” Effectiveness of

Compiler Directed Prefetching on Data Mining benchmarks”, Journal of
Circuits, Systems and Computers, Vol. 21, No.2, 2012, 23 pages.

[13] E. Ebrahimi, O. Mutlu, C. J. Lee, Y. N. Patt, “Coordinated Control of

Multiple Prefetchers in Multi-Core Systems”, Proceedings of the 42nd
International Symposium on Micro-architecture (MICRO), Dec.2009,

New York. p. 327-336

[14] J. Lee, M. Shin, H. Kim, J. Kim, J. Huh, “Exploiting Mutual Awareness

between Prefetchers and On-chip Networks in Multi-cores”, 2011
International Conference on Parallel Architectures and Compilation

Techniques (PACT 2011). p. 177-178

[15] N. Fukumoto, T. Mihara, K. Inoue, K. Murakami, “Analyzing the
Impact of Data Prefetching on Chip MultiProcessors”, Proceedings of

13
th
 Asia-Pacific Computer Systems Architecture Conference, 2008. p.

1-8

[16] M. Kamruzzaman, S. Swanson, D. M. Tullsen, “Inter-core Prefetching

for Multicore Processors Using Migrating Helper Threads”, Proceedings
of ASPLOS 2011, ACM. p. 393-404

[17] C. J. Wu, M. Martonosi, “Characterization and Dynamic Mitigation of

Intra-Application Cache Interference”, Proceedings of IEEE
International Symposium on Performance Analysis of System &

Software (ISPASS 2011). p. 2-11

[18] S. Verma, D. M. Koppelman, L. Peng, “Efficient Prefetching with
Hybrid Schemes and Use of Program Feedback to Adjust Prefetcher

Aggressiveness”, Journal of Instruction-Level Parallelism 13 (2011): 1-
14

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.6, 2013

167 | P a g e
www.ijacsa.thesai.org

[19] C. J. Lee, V. Narasiman, O. Mutlu, Y. N. Patt, “Improving Memory

Bank-Level Parallelism in the Presence of Prefetching”, Proceedings of
42

nd
 IEEE/ACM International Symposium on Micro-architecture

(MICRO 2009), p. 327-336

[20] E. Ebrahimi, C. J. Lee, O. Mutlu, Y. N. Patt, “Prefetch-Aware Shared-

Resource Management for Multi-Core Systems”, Proc.of ISCA,2011

[21] N. C. Nachiappan, A. K. Mishra, M. Kandemir, A. Sivasubramanium, O.
Mutlu, C. R. Das, “Application-aware Prefetch Prioritization in On-Chip

Networks”, Proceedings of PACT, 2012

[22] C. J. Wu, A Jaleel, M. Martonosi, S.C. Steely Jr.,J. Emer, “PACMan:
Prefetch-aware Cache Management for High Performance Computing”,

MICRO 2011

[23] J. Lee, H. Kim, M. Shin, J. Kim. J. Huh, “Mutually Aware Prefetch and
On-chip Network Designs for Multi-cores”, IEEE Transactions on

Computers, Preprint, 26 April 2013.

[24] R. Manikantan, R. Govindarajan, “ Performance-oriented Prefetch
Enhancements Using Commit Stalls”, Journal of Instruction-level

Parallelism 13(2011) 1-28

[25] M. Grannaes, M. Jahre, L. Natvig, “Storage Efficient Hardware
Prefetching using Delta-Correlating Prediction Tables”, Journal of

Instruction-Level Parallelism 13 (2011)

[26] Order Number 325462-040US. Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Combined Volumes: 1, 2A, 2B, 2C, 3A,
3B and 3C. October 2011

[27] SPECCPU2006 Standard Performance Evaluation Corporation. Details
can be found at the web site http://www.spec.org/

[28] PARSEC (Princeton Application Repository for Shared-Memory

Computers) website: address follows. Parsec v 2.1 Benchmark suite
from the following website:

[29] M. A. Ismail, S. H. Mirza, T. Altaf, “Concurrent Matrix Multiplication

on Multi-Core Processors”, International Journal of Computer Science
and Security (IJCSS), Volume (5): Issue (2): 2011, p. 208-220

[30] C. Bienia, “Benchmarking Modern Multiprocessors”, PhD Thesis,

Department of Computer Science, Princeton University, January 2011

[31] M. Bhadauria, V. Weaver, S. Mckee, “Understanding PARSEC
Performance on Contemporary CMPs”, Proceedings of 2009 IEEE

International Symposium on Workload Characterization, p. 98-107

[32] msr tools and documentation from any of the following web sites

 sourceforge.net/projects/msr

www.kernel.org/pub/linux/utils/cpu/msr_tools

Downloaded in April 2012

http://parsec.cs.princeton.edu downloaded in April 2012

http://www.kernel.org/pub/linux/utils/cpu/msr_tools
http://parsec.cs.princeton.edu/

