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Abstract—An Adaptative Neuro-Fuzzy Inference System 

(ANFIS), new flexible tool, is applied to predict the cut-off 

frequencies of the symmetric and the anti-symmetric 

circumferential waves (Si and Ai, i=1,2) propagating around an 

elastic aluminum cylindrical shell of various radius ratio b/a (a: 

outer radius and b: inner radius). The time-frequency of Wigner-

Ville and the proper modes theory are used in this study to 

compare and valid the frequencies values predicted by the ANFIS 

model. The useful data, of the cut-off frequencies (ka)c, are used 

to train and to test the performances of the model. These data are 

determined from the values calculated using the proper modes 

theory of resonances and also from those determined using the 

time-frequency images of Wigner-Ville. The material density, the 

radius ratio b/a, the index i of the symmetric and the anti-

symmetric circumferential waves, and the longitudinal and 

transverse velocities of the material constituting the tube, are 

selected as the input parameters of the ANFIS model. This 

technique is able to model and to predict the cut-off frequencies, 

of the symmetric and the anti-symmetric circumferential waves, 

with a high precision, based on different estimation errors such 

as mean relative error (MRE), mean absolute error (MAE) and 

standard error (SE). A good agreement is obtained between the 

output values predicted using the propose model and those 
computed by the proper modes theory. 

Keywords—ANFIS; time-frequency; SPWV; Acoustic 

scattering, acoustic circumferential waves; cut-off 

frequency;cylindrical shell. 

I. INTRODUCTION 

In a previous studies [1, 2], we have analysed the acoustic 
signal scattered by a thin elastic tube immersed in water using 
the time-frequency representation of Wigner-Ville. The 
Wigner-Ville image obtained in these analyses allowed to 
determine the cut-off frequency, of the anti-symmetric 
circumferential waves A1 propagating around the aluminum 
cylindrical shell of different radius ratio b/a. These analyses 
permitted also to determine, form the time-frequency image, 
the thickness of elastic cylindrical shell. 

Many studies, theoretical and experimental, showed that 
acoustic resonances of a cylindrical shell are related to its 
physical and geometrical properties. Conversely, starting from 
the resonances of circumferential waves we can characterize 

material constituting a cylindrical shell the geometry of which 
is known [1-6]. 

The resonances of the symmetric and the anti-symmetric 
circumferential waves (Si and Ai, i=0, 1, 2,…: index of the mode) 
are observed on the spectrum of the acoustic pressure 
backscattered by the cylindrical shell [7]. Apart from the 
specular reflection, the backscattered pressure field results 
mainly from the interactions of different kinds of creeping 
waves that generate resonances in the spectrum. The 
resonance frequencies of the circumferential waves (Si and Ai) 
essentially depend on the radius ratio b/a. Using the proper 
modes theory, we can determine the cut-off frequencies of the 
symmetric and the anti-symmetric circumferential waves (Si 
and Ai, i=1,2) for a aluminium cylindrical shell with different 
radius ratio b/a. One of the most important points is find out 
some parameters that carry most of the information available 
from the response of the cylindrical shell. Such parameters 
may be found from the velocity dispersion of the 
circumferential waves (Si and Ai), since it is directly related to 
the geometry and to the physical properties of the shell. 

Different methods have been proposing for analyse of the 
circumferential waves propagating around the cylindrical shell 
which includes temporal analysis [7, 9], spectrum analysis [5, 
7], parametric time-frequency analysis [10-16], wavelet 
transform [19-20] and neural networks [21-22].  

The present paper is especially concerned with the soft 
computing technique such as fuzzy logic system.  The 
adaptative neuro-fuzzy inference system (ANFIS) is selected 
and applied to predict the cut-off frequencies of the symmetric 
and the anti-symmetric circumferential waves (Si and Ai, 
i=1,2,…) for cylindrical shell of various radius ratio b/a that 
cannot be measured experimentally. The cut-off frequencies 
obtained from the computed values using the proper modes are 
used as data in the ANFIS model. In experiments, the time-
frequency representation of Wigner-Ville of the acoustic 
signal backscattered by cylindrical shell is calculated. The 
ANFIS model and the Wigner-Ville technique are tools for the 
statistical analysis, making possible the construction of a 
model of behavior starting from a certain number of examples. 
The model is able to predict the cut-off frequencies of the 
symmetric and the anti-symmetric circumferential waves (Si 
and Ai, i=1, 2…) for aluminum cylindrical shell of various 
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radius ratio b/a. The radius ratios used, in this paper, are 
between 0.4 and 0.99. The cut-off frequencies values 
determined using the ANFIS model are compared with those 
determined from the time-frequency images of Wigner-Ville 
to validate the robustness of the model proposed. In this study, 
we have use three aluminum cylindrical shell of various radius 
radio b/a (0.9, 0.95 and 0.97). These examples are used to 
evaluate the performance and robustness of the ANFIS model 
and make a comparison with the analysis of time-frequency 
Wigner-Ville to determine the dimensional radius ratio of the 
cylindrical shell studied. 

II. BACKSCATTERING RESPONSE FROM A CYLINDRICAL 

SHELL 

A. Acoustic scatring by an air-filled cylindrical shell 

The analysis of acoustic signals scattered by an air-filled 
cylindrical shell immersed in water is a topic that has received 
large attention for several years [1-8]. In previous studies, the 
characterization of the scattering problem is mainly performed 
in the frequency domain. The module of the backscattered 
pressure in the faraway field, called “form function”, by the 
cylindrical shell can be derived directly from a computational 
model [7, 11].  

This module is also called a backscattered spectrum. Apart 
from the specular reflection, the backscattered pressure field 
results mainly from the interactions of different kinds of 
creeping waves that generate “resonances” in the spectrum. 
These resonances are in relation with the symmetric and anti-
symmetric circumferential waves (S0, A1, S1, S2, A2,…). 

The scattering of an infinite plane wave by an air-filled 
cylindrical shell of radii ratio b/a is investigated through the 
solution of the wave equation and the associated boundary 
conditions.  

Fig. 1 shows the cylindrical coordinate orientation and the 
direction of a plane wave incident on an infinitely long 
cylindrical shell in a fluid medium. The fluid (1) inside the 

shell has a density of 1 and propagation velocity c1. In 
general, the outer fluid (2) will be different and is described by 

the parameters  and c. The parameters for the two fluids 
outside and inside the shell are given in Table 1.  

The axis of the cylindrical shell is taken to be the z-axis of 

the cylindrical coordinate system (r, , z). Let a plane wave 
incident on an infinite cylindrical shell with air-filled cavity 
(fluid 2), be submerged in water (fluid 1), see figure 1.  

The backscattered complex pressure Pdiff by a cylindrical 
shell in a faraway field (r >> a, we have neglected the 
diffraction of waves and one receives only the part 
backscattered of the complex pressure field) is the summation 
of the incident wave, the reflective wave, surface waves tell 
shell waves  (whispering Gallery, Rayleigh, ...) and Scholte 
waves (A)  connected to the geometry of the object (figure 
2). The waves  and  are the circumferential waves. For 
these waves one distinguishes the waves A, the symmetric 
waves S0, S1, S2 and the anti-symmetric waves A1, A2. 

 
Fig.1. Geometry used for formulating the sound backscattering from a 

cylindrical shell 

The general form of the backscattered pressure field at 
normal incidence can be expressed as [7-8, 23] 

 
(1)

(1)

0

0

( )
( ) ( )

( )

n
diff n

n n

D
P P H kr

D










     (1) 

 

Where f 2  is the angular frequency, k the wave 

number with respect to the wave velocity in the external fluid 

and P0 the amplitude of the plane incident wave.  and 

 are determinants computed from the boundary 

conditions of the problem (continuity of stress and 

displacement at both interfaces). The function is the 

Hankel function of the first kind. 

The module of the backscattered complex pressure in a 
faraway field is called form function. This function is obtained 
by the relation [7-8, 23] 
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Fig.2. Mechanisms of the formation of echoes showing the specular 

reflection  and shell waves  and Scholte wave (A) . 

where is the Neumann factor (n = 1, if n= 0; n = 2, if n> 
0), k=/c is the incident wave number and c is the phase 
velocity in water. 

The physical parameters used in the calculation of the 
backscattered complex pressure are illustrated in table I. 
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TABLE I.  PHYSICAL PARAMETERS 

 Density 

 (kg/m3) 

Longitudinal 

Velocity cL (m/s) 

Transverse 

Velocity cT (m/s) 

Aluminum 

Water 

Air 

2790 

1000 

1.29 

6380 

1470 

334 

3100 

- 

- 

 
The figure 3 shows the module of the backscattered 

complex pressure in function of the reduced frequency ka 
(without unit) given by : 
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Where d=a-b is the thickness of a cylindrical shell and f is 
the frequency of resonance of a wave in Hz. 

 
The temporal signal response P(t) of a cylindrical shell is 

computed by taking the Inverse of Fourier Transform of the 
module of the backscattered complex pressure: 
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Where h() is a smoothing window. 

The succession of shell resonances (corresponding to 
frequency of resonances) in the spectrum of the figure 3 is 
connected with the propagation of acoustic circumferential 
waves: Scholte wave (A) and shell waves (S0, A1, S1, S2, A2, 
…). The temporal signal backscattered by an Aluminum 
cylindrical shell is obtained by the Inverse Transform Fourier 

 
Fig.3. Module of the backscattered complex pressure for an infinite 

aluminum cylindrical shell with air-filled cavity of radii radio b/a=0.95 

of the module of the backscattered complex pressure using 
the equation (4). The figure 4 presents this signal and shows 
the specular reflection  (large amplitude and short duration) 
and several wave packets  and  associated with different 
circumferential waves (A, S0, A1, S1, S2, A2, …). The 
observation of this signal shows a succession of components 
more or less distinct that one seeks then to identify. The 
different echoes finish by overlapping and in these conditions, 
the identifications and measures of arrival times of echoes 
(this time depends on the radii of the tube a and b) become 
difficult, perhaps impossible. This constitutes a major 

disadvantage of the temporal approach. An important feature 
of the acoustic circumferential waves is the velocity dispersion 
that leads to a time spreading of wave packets. 

 

 
Fig.4. Signal backscattered by an aluminum cylindrical shell with air-

filled cavity, b/a=0.95 (Specular reflection echo , shell waves echoes  and 
Scholte wave echo (A) ). 

B. Dispersion and cut-off frequency determined using 

the proper modes theory 

An important feature of the circumferential waves is the 
velocity of dispersion that leads to a time spreading of wave 
packets (shell of waves). In the case of the circumferential 
waves  for instance, the dispersion velocity is significant and 
the time spreading is much more important than in the case of 
. Resonances that appear on the backscattered pressure field 
are linked to the propagation of circumferential waves around 
the tube. One finds the wave of Scholte (A) and the waves of 
shell (S0, A1, S1, S2, A2).  

The group velocity of circumferential waves is estimated 
from the resonance frequencies, using the proper modes 
theory, that correspond to the circumferential waves. The 
calculation of the resonance frequencies of these waves have 
been made by the cancellation of the determinant D given by 
[8]: 
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where the 16 non-vanishing elements dij can all be 
determined from the boundary conditions of the problem, and 
they have all been listed elsewhere [2]. The resolution of the 
equation D=0 allows to determine the different proper modes 
for each type of the symmetric and the anti-symmetric 
circumferential waves (Si and Ai, i=0, 1, 2,…). Once frequencies 
of resonances are determined, we calculate the difference 
ka between two successive resonance frequencies. The group 
velocity of the symmetric and the anti-symmetric 
circumferential waves for each frequency is given by [8]: 

                  kaccg                         (6) 

where ka the gap between two successive resonances. 

The figure 5 shows the evolution of the group velocity in 
function of the (ka) for different waves. 
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   Starting from the similitude that exists between the 
circumferential waves in the case of a thin elastic tube and the 
Lamb waves in the case of a plaque of the same thickness, it is 
possible to use the classical relations on the Lamb waves to 
ascend to the value of the reduced cut-off frequency of 
circumferential waves in the case of a tube [2-5, 14-15, 24-
25]. 

In the case of a thin plaque, the cut-off frequencies of the 
symmetric and anti-symmetric Lamb waves are given by [2, 
14]: 
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Fig.5. Dispersion velocity of the different circumferential waves of an 

aluminum cylindrical shell of radii radio b/a=0.95 
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where cT and cL are transverse and longitudinal velocities 

of the material constituting the cylindrical shell. The indices s 
and a on the integers m number indicating symmetric and anti-
symmetric modes of plate vibrations respectively. 

The cut-off frequencies, of the symmetric and anti-
symmetric circumferential waves, are determined by 
exploiting the equations 3, 7 and 8 [2, 14]: 
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where ms and ma (integers numbers) are the symmetric and 
anti-symmetric modes of circumferential waves respectively. 

   For the symmetric modes S1 and S2 the cut-off frequencies 

values are calculated from the equations (11) and (12) 

respectively: 

For S1 mode: 
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For S2 mode:  
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For the anti-symmetric modes A1 and A2 the cut-off 

frequencies values are calculated from the equations (13) and 

(14) respectively: 
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For A2 mode:  
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The calculated values, using the equations (11) to (14), of 
the cut-off frequencies of the symmetric and anti-symmetric 
circumferential waves A1, S1, S2 and A2 are given in table II. 

TABLE II.  CUT-OFF FREQUENCIES VALUES OF DIFFERENT 

CIRCUMFERENTIAL WAVES FOR ALUMINUM CYLINDRICAL SHELL OF VARIOUS 

RADIUS RATIOS  

 Cut-off frequencies (ka)c 

Cylindrical 
shell 

Mode A1 
ma=0 

 Mode S1 
ms=1 

Mode S2 
ms=0 

Mode A2 
ma=1 

b/a=0.9 66.21 132.43 136.28 198.65 

b/a=0.95 132.43 264.87 272.56 397.30 

b/a=0.97 220.72 441.45 454.26 662.17 

III. DISPERSION ANALYSIS USING TIME-FREQUENCY 

IMAGES 

The analysis of the returned echoes has traditionally been 
done in the frequency domain, and later in the time domain. A 
recent processing technique that seems to be gaining 
acceptance is to work in the combined time-frequency domain. 
Usually, projections of these three-dimensional surfaces are 
shown in the two-dimensional time-frequency plane. This 
evolution can be extracted from the echoes and displayed in as 
much detail as is feasible. Among the large number of existing 
time-frequency representations, some authors [1-2, 8, 10-16] 
have proposed to use the Smoothed Pseudo Wigner-Ville. The 
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choice of this particular distribution results from its interesting 
properties in terms of acoustic applications [1-2, 8, 12, 14-15]. 

A.  Theoretical fundamentals 

The Wigner-Ville distribution (WVD) of the real signal x(t) 
is defined by [4, 8, 11-14] : 
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Time-frequency smoothing can then be applied to reduce 
the amplitude of these spurious terms. It can be achieved by 
using the Smoothed Pseudo Wigner-Ville (SPWV) [1-2]: 
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The smoothing windows g(t) and h(t) are introduced into 

the SPWV definition in order to allow a separate control of 
interferences either in time (g) or in frequency (h). 

B.  Dispersion and cut-off frequency using SPWV 

Scattering from a finite object provides many interesting 
subjects for analysing the circumferential waves. For example, 
one of the challenging problems is how to determine the shape 
and physical properties of an object thanks to the SPWV. This 
technique appears to be a very useful tool for such a task, as it 
is able to represent a given signal simultaneously in time and 
frequency domains. 

The resonances brought into evidence on the scattered 
complex pressure (figure 3) are linked to the propagation of 
circumferential waves: Scholte waves (A) and shell waves (S0, 
A1, S1, S2, A2) in the case of a cylindrical shell with light 
thickness. In this study, one is interested only in the symmetric 
and the anti-symmetric circumferential waves (Si and Ai, 
i=1,2,…). According to this spectrum (figure 3), the reduced 
frequencies scale in which appears the symmetric and the anti-
symmetric waves (Si and Ai, i=1,2) are illustrated in the table 
III. 

TABLE III.  RANGE FREQUENCIES OF CIRCUMFERENTIAL WAVES 

FOR ALUMINUM CYLINDRICAL SHELL OF RADII RADIO B/A=0.95 

 Range frequencies (k1a) 

Anti-symmetric wave A1 130 – 200 

Symmetric wave S1 260 – 340 

Symmetric wave S2 270 – 350 

Anti-symmetric wave A2 > 390 

 
Figures 6, 7 and 8 represent the time-frequency images for 

the anti-symmetric circumferential wave A1 for aluminium 
cylindrical shell of various radius ratio b/a. When the time 
augments, the trajectory associated to anti-symmetric wave 
A1, for each case (figures 6, 7 and 8), tends to an asymptotic 
value which equal the cut-off frequency (ka)c of this wave. 

Using the proper modes theory, this frequency is calculated by 
the equation (13). More precisely, this cut-off frequency is the 
intersection point of the asymptotic trajectory of the anti-
symmetric wave A1 and the axis of frequencies (figures 6, 7 
and 8). The values of the cut-off frequency (ka)c obtained from 
these images are presented in table IV. This table presents also 
those values computed with the proper modes theory (equation 
13). We notice that the cut-off frequencies determined from 
the time-frequency images are in good concordance with those 
computed from proper modes theory (PMT). 

TABLE IV.  COMPARISON BETWEEN THE CUT-OFF FREQUENCIES 

VALUES COMPUTED THEATRICALLY AND DETERMINED FROM SPWV IMAGES 

FOR ANTI-SYMMETRIC CIRCUMFERENTIAL WAVE A1 

 Cut-off frequencies (ka)c 

Cylindrical shell Computed 

using PMT 

Determined 

using SPWV 

b/a=0.9 (figure 8) 66.21 66.00.3 

b/a=0.95 (figure 7) 132.43 132.00.3 

b/a=0.97 (figure 6) 220.72 221.00.2 

IV. MATERIALS AND METHOD 

A.  Fuzzy Inference System 

Fuzzy logic is an extension of Boolean logic that allows 
intermediate values between “True” and “False”. In this 
approach the classical theory of binary membership in a set, is 
modified to incorporate the memberships between "0" and "1". 
The fuzzy models are means of capturing humans expert 
knowledge about the process, in terms of fuzzy (if–then) rules. 

 
Fig.6. SPWV of backscattered signal for the first aluminum cylindrical 

shell of radii radio b/a=0.97 (Anti-symmetric circumferential wave A1, 
220<ka<375) 

The fuzzy inference system (FIS) can initialize and learn 
linguistic and semi-linguistic rules; hence it can be considered 
as direct transfer knowledge, which is the main advantage of 
fuzzy inference systems over classical learning systems and 
Neural Networks [26-28]. Often the rules of the fuzzy system 
are designated a priori and the parameters of the membership 
functions are adapted in the learning process from input–
output data sets.  

Basically, a fuzzy inference system is composed of five 
functional blocks, shown in Figure 9, as follows [26-28]:  
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1) A rule base containing a number of fuzzy if–then 

rules. All the uncertainties, non linear relationships, or model 

complications are included in the descriptive fuzzy inference 

procedure in the form of if–then statements. In general, a fuzzy 

if–then rule has two constitutes; first the if part and the second 

the then part; which are called premise and consequent, 

respectively. The general form of a fuzzy if–then 
 

 
Fig.7. SPWV of backscattered signal for the second aluminum cylindrical 

shell of radii radio b/a=0.95 (Anti-symmetric circumferential wave A1, 
130<ka<200) 

rule is as follows; Rule: if Z is A then f is B. 

2) A database, which defines the membership functions 

of the fuzzy sets used in the fuzzy rules. 

3) A decision-making unit, which performs the inference 

operations on the rules. 
 

 
Fig.8. SPWV of backscattered signal for the third aluminum cylindrical 

shell of radii radio b/a=0.9 (Anti-symmetric circumferential wave A1, 

65<ka<120) 

4) A fuzzification inference, which transforms the crisp 

inputs into degree of match with linguistic values. 

5) A defuzzification inference, which   transforms the 

fuzzy results of the inference into a crisp output.  

 

Fig.9. Bloc diagram for a fuzzy Inference System 

Several types of FIS have been proposed in the 
literature[29], which, vary due to differences between the 
specification of the consequent part and the defuzzification 
schemes. This paper incorporates one of these types, the so-
called Takagi and Sugeno FIS [30], to propose a systematic 
scheme for the development of fuzzy rules using the 
input/output data sets. 

A typical fuzzy rule in a sugeno fuzzy model has the 
format: 

                  If x is A and y is B then z = f(x, y) 
where A and B are fuzzy sets in the antecedent; z =f(x, y) is 

a crisp function in the consequent. Usually f(x, y) is a 
polynomial in the input variable x and y, but it can be any 
other functions that can appropriately describe the output of 
the system within the fuzzy region specified by the antecedent 
of the rule. When f(x, y) is a first order polynomial, we have 
the first-order sugeno fuzzy model. When f is a constant, we 
then have the zero-order Sugeno fuzzy model. Consider first-
order Sugeno fuzzy inference systems which contain two 
rules: 

   Rule 1:  if x is 1A and y is  1B    then    .1111 ryqxpf   

   Rule 2:  if x is 2A and y is 2B   then    .2222 ryqxpf   

Weighted averages are used in order to avoid complexity 
in deffuzification processes. Figure 10 illustrates graphically 

the fuzzy reasoning mechanism to derive an output f from a 

given input vector (x, y). The firing strengths 1 and 2 are 

usually obtained as the product of the membership grades in 

the premise part, and the output f  is the weighted average of 

each rule’s output. To facility the learning of the sugeno fuzzy 
model, into the framework of adaptative networks we can 
compute gradient vectors systemically. The resultant network 
architecture is called Adaptative Neuro Fuzzy Inference 
system (ANFIS). 

B.  Adaptive neuro-fuzzy inference system architecture  

The Adaptive Network-based Fuzzy Inference System 
(ANFIS) is developed by Jang in 1993 [26]. This model use 
neuro-adaptive learning techniques, which are similar to those 
of neural networks. Given an input/output data set, the ANFIS 
can construct a Fuzzy Inference System whose membership 
function parameters were adjusted using a hybrid algorithm 
learning that is a combination of Last Square estimate and the 
gradient descent back-propagation algorithm or other similar 
optimisation technique. This allows Fuzzy system to learn 
from the data they are modelled. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 4, No. 6, 2013 

29 | P a g e  
www.ijacsa.thesai.org 

For simplicity, we assume the fuzzy inference system with 

two input, x and y with one response f . From the first-order 

Sugeno fuzzy model, a typical rule set with two fuzzy if-then 
rules can expressed as below. The corresponding equivalent 
ANFIS architecture is as shown in figure 11. The system 
architecture consists of five layers, namely; fuzzy layer, 
product layer, normalized layer, fuzzy layer and total output 
layer. The following section in depth the relationship between 
the input and output of each layer in ANFIS. 

Layer 0: It consists of plain input variable set. 

Layer 1: It is the fuzzy layer. Each node in this layer 
generates a membership grade of a linguistic label. For 
instance, the node function of the ith node may be generalized 
bell membership function: 

                 
ii b

i

i

A

a

cx







 




1

1
                          (17)  

where x is the input to node i; iA is the linguistic label 

(small, large, etc.) associated with this node; and { iii cba ,, } is 

the parameter set that changes the shapes of the membership 
function. Parameters in this layer are referred to as the premise 
parameters. 

Layer 2: The function is T-norm operator that performs 
the firing strength of the rule, e.g., fuzzy conjective AND and 
OR. The simplest implementation just calculates the product 
of all incoming signals. 

                  (y))( iii BxA   , i=1,2                (18)                

 
Layer 3: Every node in this layer is fixed and determines a 

normalized firing strength. It calculates the ratio of the ratio of 
the jth rule’s firing strength to the sum of all rules firing 
strength. 

                  
21 





 i

i ,  i=1,2                (19)                

Layer 4: The nodes in this layer are adaptive are 
connected with the input nodes and the preceding node of 
layer 3. The result is the weighted output of the rule j. 

 

                  )( iiiiii ryqxpf                  (20)                

where i is the output of layer 3 and { iii rqp ,, } is the 

parameter set. Parameters in this layer are referred to as the 
consequent parameters. 

Layer 5: This layer consists of one single node which 
computes the overall output as the summation of all incoming 
signals. 

Overall Output  
i

i

ii

i
ii

i

f

f









                  (21)   

The constructed adaptive network in figure 11 is 
functionally equivalent to a fuzzy inference system in figure 

10. The basic learning rule of ANFIS is a combination of last 
squar error and the back-propagation gradient descent, which 
calculates error signals (the derivative of the squared error 
with respect to each node’s output) recursively from the output 
layer backward to the input nodes. This learning rule is exactly 
the same as the back-propagation learning rule used in the 
common feed-forward neural networks. 

 
Fig.10. First-order Sugeno fuzzy model 

 
Fig.11. ANFIS architecture 

V. COLLECTION OF DATA 

The conception of the fuzzy logic model requires the 
determination of the relevant entries that have a significant 
influence on the required model. In this work, a data base is 
collected to involve and test the performance of the model 
starting from the results obtained by the time-frequency of 
Wigner-Ville method then supplemented by data resulting 
from the proper modes theory of the circumferential waves. 
The density of material, the radius ratio, the index of the anti-
symmetric and symmetric circumferential waves, and 
longitudinal and transverse velocities, of the material 
constituting the cylindrical shell, are retained like relevant 
entries of the model because these parameters characterize the 
cylindrical shell and the types of circumferential waves 
propagating around this one. The cut-off frequency (ka)c, of 
the anti-symmetric and symmetric circumferential waves (Si 
and Ai, i=1,2) for a aluminum cylindrical shell with different 
radius ratios b/a, constitutes the output of  fuzzy system. The 
collected data for the training and validation phases of the 
fuzzy logic system model are represented in tables I and II. 
For example, for aluminum cylindrical shell, the density is 
2700 kg/m3, the transverse velocity is 3100 m/s and the 
longitudinal velocity is 6380 m/s. For the anti-symmetric 
circumferential wave A1 the cut-off frequency is 132.43 for a 
radius ratio b/a equal to 0.95. 

VI. RESULTS AND DISCUSSION 

The performance of ANFIS models for training and testing 
data sets were evaluated according to statistical criteria such 
as, coefficient of correlation R, MAE, MRE, SE, and root mean 
square error (RMSE). The selection of different models is done 
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comparing the errors of the ANFIS configuration, calculating 
the MAE, the MRE and the SE of the cut-off frequency. The 
coefficient of correlation R and the determination R2 of the 
linear regression are used like performance measures of the 
model between the predicated and the desired output. The 
different error measures and the coefficient of correlation are 
given by the following relations: 
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where n is the number of data, Pi and Di is the predicted 
and desired of cut-off frequency respectively and Pm is the 
mean of predicted values.  

The coefficient of correlation is a commonly used statistic 
and provides information on the strength of linear relationship 
between the observed and the computed values. The training 
and testing performances of ANFIS models are given in 
figures 12 to 15. 

The analysis is repeated several times. Indeed, the error 
values are measured for each ANFIS architecture based on the 
number of rules and the type of the membership function used. 
In this work we tried to play on the number of rules and the 
number of epochs we have observed that the error values of 
our models decrease more than the number of rules, and the 
number of epochs is increases. The results of the measured 
errors are presented in figures 12 to 15 for each 
circumferential wave (A1, S1, S2 and A2). Tables V to VI 
show that the results obtained by the fuzzy system method are 
in good agreement with those determined from the results 
calculated using the proper modes theory of resonances, and 
they are better to those determined manually from the time-
frequency of Wigner-Ville images (Table V).  

TABLE V.  RESULTS OF THE CUT-OFF FREQUENCIES OF MODE A1 

OBTAINED BY THE ANFIS MODEL, THE PROPER MODES THEORY AND BY THE 

TIME-FREQUENCY OF WIGNER-VILLE IMAGES 

 Cut-off frequencies (ka)c  

Cylindrical 

shell 

Computed 

using PMT 

Determined 

using ANFIS 

Determined 

using SPWV  

b/a=0.9 (figure 

8) 

66.21 66.16 66.00.3 

b/a=0.95 (figure 

7) 

132.43 132.59 132.00.3 

b/a=0.97 (figure 

6) 

220.72 221.32 221.00.2 

 

TABLE VI.  RESULTS OF THE CUT-OFF FREQUENCIES OF DIFFERENT 

MODES OBTAINED BY THE ANFIS MODEL AND THE PROPER MODES THEORY 

PMT FOR THE CYLINDRICAL SHELL 

 (ka)c computed and determined 

 ANFIS PMT ANFIS PMT ANFIS PMT 

 b/a=0.9 b/a=0.95 b/a=0.97 

Mode 

A1 
66.16 66.21 132.59 132.43 221.32 220.72 

Mode 

S1 
132.32 132.43 265.17 264.87 446.64 441.45 

Mode 

S2 
136.16 136.28 272.87 272.56 459.60 454.26 

Mode 

A2 
198.51 198.65 398.49 397.30 668.95 662.17 

 
The results of the different error measures and the 

coefficient of correlation (MRE, MAE, SE and R) are given in 
the table VII. And also are illustrated on the Figs. 12a to 15a. 
So, it is interest to use the approach of the Fuzzy Logic. The 
best configuration is found for a network with 13 rules. The 
predicted values are traced according to the desired values in 
the figures 12 to 15 ((a), (b), and (c)). The results show the 
good agreement between the predicted and the desired values 
of the cut-off frequency. The coefficient of determination R2 
for this optimal configuration is 1 (Figs. 12(a) to 15 (a)). Figs. 
12 to 15 (a and b) show that the cut-off frequency increases 
rapidly when the radius ratio b/a of the cylindrical shell tends 
to one. The evolution of the mean quadratic errors (RMSE) of 
training during the training phase is illustrated on Fig. 16. 

TABLE VII.  RESULTS OF THE DIFFERENT ERROR MEASURES AND 

THE COEFFICIENT OF CORRELATION (MRE, MAE, SE AND R) WITH 13 RULES 

Error 
measures Mode A1 Mode S1 Mode S2 Mode A2 

MAE 0.03 ka 0.08 ka 0.07 ka 0.07 ka 

MRE 0.8 10
-3 

ka 0.8 10
-3 

ka 0.8 10
-3 

ka 0.5 10
-3 

ka 

SE 9 10
-3 

ka 10
-2 

ka 2 10
-2 

ka 10
-2 

ka 

R=R
2
 1 1 1 1 

 

VII. CONCLUSION  

The main aim of this work was to train an ANFIS model to 
predict cut-off frequency with the minimum of input data. 
Results show that the trained model can be used as an 
alternative way in the modelling behaviour system. This fuzzy 
logic model taking into account some characteristics of the 
tube is developed in order to predict the cut-off frequency for 
various types of circumferential waves A1, S1, S2, A2. In this 
article, this model is applied to aluminum tubes. This model 
can be used to predict the evolution of the group and phase 
velocities according to the frequency. It also can constitute a 
help for the estimate of various parameters of a tube starting 
from the characteristics of which it is disposed. 

The use of the fuzzy logic does not present any 
approximation as in the case of the natural modes method 
which assimilates the tubes to the plates with the same 
thickness and that is not sullied with errors as in the case of 
the time-frequency representations of Wigner-Ville that    
determines the cut-off dimensionless frequency manually 
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starting from the time-frequency image. This article can be 
used as a new tool for characterization of an elastic tube. This 
method allows one to determine automatically and with good 

precision the reduced cut-off frequency of an antisymmetric 
wave propagating around the tube. The R2 value in fig is about 
1, which can be considered as very satisfactory.
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Fig.12. (a) Correlation of desired versus ANFIS values of cut-off frequency 

of anti-symmetric wave A1 with validation data set, (b) Cut-off frequency as a 

function of radius ratio of aluminum cylindrical shell on training data set and 

(c) Cut-off frequency as a function of radius ratio of an aluminum cylindrical 

shell on validation data set 
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Fig.13.  (a) Correlation of desired versus ANFIS values of cut-off 

frequency of Symmetric wave S1 with validation data set, (b) Cut-off 

frequency as a function of radius ratio of aluminum cylindrical shell on 

training data set and (c) Cut-off frequency as a function of radius ratio of an 
aliminum cylindrical shell on validation data set 
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Fig.14.  (a) Correlation of desired versus ANFIS values of cut-off 

frequency of Symmetric wave S2 with validation data set, (b) Cut-off 

frequency as a function of radius ratio of aluminum cylindrical shell on 

training data set and (c) Cut-off frequency as a function of radius ratio of an 
aliminum cylindrical shell on validation data set 
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Fig. 15. (a) Correlation of desired versus ANFIS values of cut-off frequency 

of Anti-symmetric wave A2 with validation data set, (b) Cut-off frequency as 

a function of radius ratio of aluminum cylindrical shell on training data set and 

(c) Cut-off frequency as a function of radius ratio of an aluminum cylindrical 

shell on validation data set 
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Fig.15. Visualization of errors of training and testing as a function of the 

number of iteration for an ANFIS to four entries and tree rules. Anti-

symmetric and Symmetric waves (a) A1, (b) S1, (c) S2, (d) A2 
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