
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

98 | P a g e
www.ijacsa.thesai.org

POSIX.1 conformance for Android Applications

TayyabaNafees

Department of computer engineering

National University of science &Technology, H-12,

Islamabad, Pakistan

Prof. Dr. Shoab Ahmad Khan

Department of computer engineering

National University of science &Technology, H-12,

Islamabad, Pakistan

Abstract—Android operating system is designed for use in

mobile computing by The Open Handset Alliance. Android

market has hundreds of thousands of Android applications and

these applications are restricted only to the mobiles. This

restriction is mainly because of portability and compatibility

issues of Android operating system. So need of employing these

countless Android applications on any POISX Desktop operating

system without disturbing the internal structure of application is

very desirable. Thus we need to resolve these standardization and

portability concerns by using POSIX standards (Portable

Operating System Interface). The concepts of POSIX

conformance for Android applications provide full-scale

portability services and Android applications reusability for any

POSIX desktop operating system. So Android applications will

become usable for all POISX desktop users. This research theme

introduces POSIX.1 Android thin layer model that simply

provides the POSIX conformance for Android applications. It is

using the POSIX.1 APIs for Android applications, which

maintains the compatibility between the POISX Desktop

operating systems and Android applications. We have analyzed

our research work by implementation of the different

applications in standard POSIX environment and, have verified

its results. The results of POSIX.1 model clearly showed that it

will boost up the Android applications market revenue up to
100% plus add real-time standardization and reusability.

Keywords—Portable Operating System Interface (POSIX);

Application Programming Interface (API); Operating system (OS);

User interface (UI)

I. INTRODUCTION

Android is open source mobile OS .It is particularly
adapted by various manufacturers and modified based on their
own taste for its openness [1]. Currently, Android cell phones
are becoming more sophisticated by providing functionalities
that once expected from laptop and/or desktop computing
systems. [2] For example, using cell phone, callers can now
interact with system using spoken language, brows internet,
exchange emails, chat online and social network medias, use
navigation systems, etc. Mobile computing is real time
computing. But mobile computing did not compete with
Desktop OS because the Desktop users are still large in number
plus it becomes the necessary need of user thus Mobile OS
companies are still trying hard to make their space in the
Desktop OS environment. Android is most famous and open
source mobile operating system. It covers nearly 60% of
mobile market but even Android OS (operating system) had the
compatibility limitations. Therefore the need of standardization
and portability is very essential. Android applications have
multiple dependences so this limits the Android application
utilization. One of the best possible solutions for catering these
limitations is POSIX.

POSIX is an international standard with an exact definition
and a set of assertions, which can be used to verify compliance.
A conforming POSIX application can move from system to
system with a very high confidence of low maintenance and
correct operation. If you want software to run on the largest
possible set of hardware and operating systems, POSIX is the
way to go. [3]

 POSIX conformance for android Application is the basic
aim of this research in, which multiple Android applications
are, used as sample input with the POSIX Application
Programming Interface (API) standards. The research agenda
based on the POSIX.1 thin layer model, which gives the
POSIX conformance for Android applications. This POSIX.1
thin layer model hierarchy is:

 Selection of POSIX standard for Android Applications
(POSIX.1).

 Need of POSIX.1 binding language.

 Conversion of sample examples of Android in POSIX
binding language and test it

 Establishment of template for Android applications
(POSIX thin layer model for Android applications)

A. The Problem Statement

Android is open source OS introduce by Google. Android
is still developing. In the design of today’s computing systems
it is becoming increasingly important to design software with
an open system architecture utilizing industry adopted
standards. The need to develop open systems is driven by these
major factors.

 Inefficient usage of manpower: First, gone are the days
where a single developer can implement the entire
system from scratch. Software development programs
are continuously growing in scale, requiring teams of
increasing size.

 Portability problem: Secondly, software does not
operate in isolation; it must co-exist with the vast
amount of commercially available software and can be
run on available OS.

 Maintainability problems: The lifecycle of a software
application is typically long requiring numerous
modifications and updates as new features are added.

 Need of standardization: Lastly the biggest problem
facing in these days is implementation of standards
because portability and maintainability only fruitful
when software developer follows the standards.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

99 | P a g e
www.ijacsa.thesai.org

But Android performance is not enough, In addition,
performance-analyzing environment has not been developed
yet, and then its performance cannot be discussed well.
Android OS addresses multiples challenges of today’s software
development process like interoperability, portability and
compatibility issues. The major question is here, is Android
application market is usable for all OS. Android applications
standardization is major dilemma for Android market. Android
applications for all OS are core idea of this research. But HOW
is big question here. Thus Android applications need the
openly published standard interfaces for competing these
hybrids issues in Android OS. We are applying the Android
applications standardizations by using the POISX.POSIX is
based on UNIX, a well-established technology. POSIX defines
a standard way for an application to interface to the operating
system. [4] POSIX, the Portable Operating System Interface
.The goal of POSIX is the source-code portability of
applications: it means transform an application from one
operating system to another by simple conversion. This Thin
layer model of POSIX.1 provides the portability for Android
applications that can be run on any operating system.

1) Android Application Portability:There are more than

600,000 apps and games available on Google Play store. [8]

But the sorrowful act is limitation of these 600,00 apps only

for the Android OS. All of this work need conformance for

any operating system according to the users and developers

need. Because developers are also looking to employ Android

in a variety of other embedded systems that have traditionally

relied on the benefits of true real-time operating systems

performance, boot-up time, real-time response, reliability, and

no hidden maintenance costs.

2) Is Android POSIX Compliance?: Android is

considering a partial POSIX compliance. Limited POSIX

threads (pthreads) library is implemented in Android Bionic

library. It provides built-in support for pthreads, but

implementation is very restricted. So Android applications

conformance is very inspiring, which never has done yet.

3) Earliest Idea Invention of POSIX Compliance for

Android: Android used the non standard Bionic library which

restricted the android applications to only for android OS. So

best into our knowledge this proposed model first time in the

history trying to merge the mobile OS Android applications

with desktop POSIX OS. All this innovation has been done

under the umbrella of POSIX.1 that means standardization and

consistency.

II. BACKGROUND

Basically android is not POSIX compliant but some time it
called partially POSIX compliant so this work is very
restraining in lecture. Till now there is no such thing
implemented for any MOBILE Operation System especially
for Android. There are some software’s like blue stack that
provides the portability for Android applications but the
concept of standardization is not applied like POSIX there and
secondly all these type of software’s work like application file
run and exit but not gives the compatibility with underlying
machine OS. Hence there is no implementation related work.

Now this chapter explains the brief history of Android OS,
application development framework for Android and POSIX
its standards and APIs.

A. What POSIX Is:

POSIX is a standard to allow applications to be source-
code portable from one system to another. On a system
conforming to a particular version of POSIX (as measured by
the test suite it passed), you should be able to just compile and
run those applications, which use the POSIX (and only the
POSIX) functions. POSIX basically dependent on:

 A Compilation System: A compiler, basically. Real live
POSIX systems are supposed to support a standard
language. For this purpose the compiling language is C.
for getting the POSIX support in any application each
system has a variety of way of compiling code, for each
occurrence. [1]

 Headers: A set of headers that defines the POSIX
interface supported on the particular system. [1]
#include<stdio.h> was used header file in given
example

 Libraries: Libraries are pre-compiled, vendor-supplied
objects that implement the POSIX functionality for any
one. The libraries are linked into the application when it
is built, or in the case of dynamically shared libraries,
when user runs the program. [1]

 A Run-Time System: Once user has built the program,
the run-time, or operating system, allows him/her to run
the application. [1]

POSIX.1 on the other hand, is not considered to be basic
functionality that all systems need in order to be useful
(regardless of my personal opinion). Therefore, POSIX.1 is
structured as a set of well-defined options that a vendor can
support, or not. The only parts of POSIX.1 that aren't optional
are some additions to the basic POSIX.1 signal mechanism.
POSIX.1 options. [1]

B. Android

Android is s a software stack for mobile devices, which
includes an operating system, a middleware and key
applications. Android SDK provides the tools and APIs
necessary to develop an application using JAVA (which is a
popular language amongst the developers. Currently, Android
is the most popular operating system out of the several Linux
based mobile operating systems (e.g.,Maemo) [4].

 Linux Kernel: Android is based on Linux but is not
Linux. The kernel of Android relies on Linux version
2.6 for core system services such as security, memory
management, process management, network stack, and
driver model. [6]

 Libraries: The surface manager of Android library takes
care of the display of the system and OpenGL is an
open-source utility, which takes care of graphics of the
system. [6]

 Android Runtime: The development language that is
used in this section is Java. The core Libraries of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

100 | P a g e
www.ijacsa.thesai.org

Android is very powerful, yet simple and familiar
development platform as it is very similar to Linux.

 Dalvik Virtual Machine (DVM): Dalvik virtual
machine focuses on two of the most important issues of
mobile system: limited space, and limited power. DVM
converts all the files into smaller and more optimized
(.dex) suitable for mobile systems [6].

 Application Framework and Application: The activity
manager is responsible to keep track of life cycle of any
application. [7]

III. IMPLEMENTATION OF ANDROID POSIX.1 THIN

LAYER MODEL

A. Contribution

1) Proposed ANDROID POSIX.1 Thin layer

Model:POSIX, the Portable Operating System Interface .The

goal of POSIX is the source-code portability of applications: it

means transform an application from one operating system to

another by simple conversion. This goal is unattainable since

most applications, especially the real-world ones, require more

operating system support than you can find in any particular

standard. The above unfeasible objective is now achievable

through POSIX. POSIX is called useful.” Useful," here,

means "an aid to portability," and this brings us to the goal of

POSIX: source-code portability of applications. The main

intention of this work is that it will provide portability for the

Android real world applications. But after the development of

this thin layer model of POSIX.1.Android applications will

become portable (POSIX compliance) and can be run on any

operating system. This model provides the benefit to users as

well as Android developers by increasing the number of users

of android applications and reduces the developer time and

cost because of portability and equivalence.

Fig.1. Proposed POSIX.1 thin layer model

2) The POSIX Development Environment: POSIX

provides portability at the source level. This means that you

transport your source program to the target machine, compile

it with the Standard C compiler using conforming headers, and

Source code conversion with respect to POSIX.1 binding language.

 ANDROID Application

Application layer UI layer

LINUX, UNIX, WINDOWS/OS

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

101 | P a g e
www.ijacsa.thesai.org

link it with the standard libraries. The system vendor provides

the compiler, the libraries, and headers. Strictly speaking,

these are all black boxes and you do not need to know how

they work. For POSIX .1 thin layer model implementation we

used the following specifications.

TABLE I. DEVELOPMENT ENVIRONMENT SPECIFICATIONS

Specifications POSIX

environment

Android

Environment
OS Macintosh Macintosh

IDE Xcode Eclipse INDIDGO

Language C Java

Complier gcc version 4.2.1 Java complier

3) List of Android Applications: For this model we start

the implementation from very simple to the complex one like

multithreading [29].
Hello world

 Timer

 Text file creator, save data on it and display the text on
the terminal

 Multithreading example [29]

The reasons of start test from very simple Android
application to complex one Android application are:

 Is Android application will be POSIX compliant is a
question itself. So we implement the very first sample
example in both environment then we move forward
that why it is part of our research work.

 The User interface means graphical user interface of
POISX is not very supportive for android applications

 There is no such engine or converter that convert the
whole application layer of Android application.

 All the gcc complier is not POSIX and all the desktop
OS are not POISX compliant

 All the implement applications are very simple in
Android environment but POSIX APIs are limited in
numbers. Even for hello example POSIX standard C
language have specified code.

 File creator and multithreading is very important
example because it used very frequent OS calls. The
IEEE Std 1003.1b-1993(pp.103) also used these
examples for implementation.

TABLE II. TIMER APPLICATION FRAMEWORK

Timer Android application layer POISX conformance Timer Android example

#define _POSIXSOURCE 1

#include<stdio.h>

#include<time.h>

main(argc,argv)

intargc;

char **argv;

{

struct tm *tmptr;

time_t timer;

timer = time(NULL);

tmptr = localtime(&timer);

printf("The current time is:\n%s",

ctime(&timer));

if (tmptr ->tm_isdst)

printf("Daylight savings time\n");

else

printf("Standard time\n");

exit(0);

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

102 | P a g e
www.ijacsa.thesai.org

TABLE III. FILE CREATOR APPLICATION FRAMEWORK

File creator Android application layer POISX conformance file creatorAndroid

example

#define _POSIX_SOURCE 1

#include<stdio.h>

int main(){

 FILE *fp;

charch;

int c;

fp=fopen("data.txt","w");

printf("\nTHIS DATA WRITTEN TO A FILE:");

while((ch=getchar())!=EOF)

putc(ch,fp);

fclose(fp);

fp=fopen("data.txt","r");

c = fgetc(fp) ;

while (c!= EOF)

{putchar(c);

 c = fgetc(fp);

printf("\nTHIS DATA WRITTEN TO A FILE:"+c);

}fclose(fp);}

4) Android Application Template for POSIX.1: This

template would be change according to the Application or need

of the developer. But the #define _POSIX_SOURCE 1 is

compulsory part of any application. [29]

TABLE IV. ANDROID POSIX.1 APPLICATION TEMPLATE

Template Description

 /* Feature test switches

*/

#define

_POSIX_SOURCE 1

define the _POSIX_SOURCE

macro to enable the POSIX

symbols and disable all

unspecified symbols.

/* System headers */

Each Standard C or POSIX

function has one or more headers

that must be included to define the

symbols used by that function.

/* Local headers */

Most projects have at least one

project header. These define

common data structures and

symbols that are used in many

files.

/* Macros */

Define all of your macros here.

/* File scope variables */

These are variable that are shared

by several functions in the same

file.

/* External variables */ This is the list of variables defined

in other modules and used in this

module.

 /* External functions */

There should be a prototype for

each user-written external function

that you use.

/* Structures and unions

*/

Define all of the structures that are

used only in this file. Any structure

that is used in multiple files should

be in a local header file.

/* Signal catching

functions */

Place signal catching functions in

one place. Signals are an unusual

calling mechanism and often hard

to debug. Unless you point it out

clearly in your source code, it may

not be obvious that something is a

signal catching function.

/* Functions */ Define functions here.

/* Main */ There is a main() function in this

file

a) Used Some Core Portable Functions: The fgetc(),
getc() and getchar() Functions are very portable. For example

in file creation, deletion and read data from it .the application

used these functions for reading data from created file.

c = getc(fp) ;

while (c!= EOF)

{

putchar(c);

c = getc(fp);

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

103 | P a g e
www.ijacsa.thesai.org

The call fgetc(stream) returns the next character from
stream. If stream is at end-of-file, EOF is returned.The getc()
function is the same as fgetc() except it may be implemented as
a macro. These functions are very portable. So through these
portable functions we are able to write a portable calls like for
reading a data from text file char *fgets(char *s, int n, FILE
*stream);

b) Opening and Closing File Functions: The fopen()

function is used to connect a file with a stream:

fp=fopen("data.txt","w");

Create text file with name data and

w Create new file for writing. If a file with this name already

exists, its contents are lost.
Some systems make a distinction between text files and

binary files. While there is no such distinction in POSIX, a 'b'
may be appended to the mode string to indicate binary. The b
does not do anything but may be useful for compatibility with
non-POSIX systems. If you are creating a binary file, include
the b to make your program more portable. Most systems that
do not support the b option will just ignore it.

Upon success, the fopen() function returns a pointer to a
file descriptor. This pointer is used only as an argument to
other functions. Do not attempt to manipulate the object it
points at. If the open fails, fopen() returns a null pointer.

When you are finished with a file, you should close it. The
call fclose(stream) will complete any pending processing,
release system resources, and end access to the file. If there are
no errors, fclose() returns zero. It returns EOF if any errors are
detected.

int main(){

 FILE *fp;

charch;
int c;

fp=fopen("data.txt","w");

printf("\nTHIS DATA WRITTEN TO A FILE:");

while((ch=getchar())!=EOF)

putc(ch,fp);
fclose(fp);

5) Sample examples code matching with Android

Application template for POSIX.1:

TABLE V. MATCHING OF POSIX.1 COMPLIANT ANDROID APPLICATION WITH

POSXI.1 TEMPLATE

Template Text file creator example

/* Feature test switches */

#define

_POSIX_SOURCE 1

#define _POSIX_SOURCE 1

/* System headers */

#include<stdio.h>

/* Main */

/* Functions */

int main(){

fp=fopen("data.txt","w");

printf("\nTHIS DATA WRITTEN

TO A FILE:");

while((ch=getchar())!=EOF)

putc(ch,fp);

fclose(fp);

fp=fopen("data.txt","r");

c = fgetc(fp) ;

while (c!= EOF)

 {putchar(c);c = fgetc(fp);

printf("\nTHIS DATA WRITTEN

TO A FILE:"+c);} fclose(fp);}

/* File scope variables */ FILE *fp; char ch; int c;

 /* External functions */

fclose(fp);

putchar(c);

fopen("data.txt","r");

Template

Timer example

/* Feature test switches */

#define

_POSIX_SOURCE 1

#define _POSIX SOURCE 1

/* System headers */

#include<stdlib.h>

#include<stdio.h>

#include<time.h>

/* Main */

 /* External functions */

main (argc,argv)

{ struct tm *tmptr;

timer = time(NULL);

tmptr = localtime(&timer);

printf("The current time is:\n%s",

ctime(&timer));

if (tmptr ->tm_isdst)

printf("Daylight savings time\n");

elseprintf("Standard time\n");

exit(EXIT_SUCCESS); }

/* File scope variables */

intargc; char **argv;

/* Structures and unions */

struct tm *tmptr; time_t timer;

6) Sample Examples:

TABLE VI. TESTED SAMPLE ANDROID APPLICATIONS CODE AND OUTPUT COMPARISON

Sample Example Applications Comparison Table

Text File creator POSIX Conformance Android application File creator Android application

#define _POSIX_SOURCE 1 packagecom.tayyaba;

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

104 | P a g e
www.ijacsa.thesai.org

#include<stdio.h>

int main(){

 FILE *fp;

charch;

int c;

fp=fopen("data.txt","w");

printf("\nTHIS DATA WRITTEN TO A FILE:");

while((ch=getchar())!=EOF)

putc(ch,fp);

fclose(fp);

 //char *fgets(char *s, int n, FILE *stream);

fp=fopen("data.txt","r");

c = fgetc(fp) ;

while (c!= EOF)

 {

 putchar(c);

 c = fgetc(fp);

printf("\nTHIS DATA WRITTEN TO A FILE:"+c);

 }

fclose(fp);

}

importjava.io.BufferedReader;

importjava.io.FileNotFoundException;

importjava.io.IOException;

importjava.io.InputStream;

importjava.io.InputStreamReader;

importjava.io.OutputStreamWriter;

importandroid.app.Activity;

importandroid.content.Context;

importandroid.os.Bundle;

importandroid.util.Log;

importandroid.view.View;

importandroid.widget.EditText;

importandroid.widget.TextView;

importandroid.widget.Toast;

public class FileActivity extends Activity {private static final String

TAG = FileActivity.class.getName();

 private static final String FILENAME =

"myFileTayyaba.txt";

 @Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);}

public void SaveText(View view){

 // EditText ET = (EditText)findViewById(R.id.editText1);

 EditText ET =

(EditText)findViewById(R.id.editText1);

 String textToSaveString =

ET.getText().toString()

 //String textToSaveString = "Hello

Android tayyaba";

 writeToFile(textToSaveString);

 String textFromFileString=

readFromFile();

 if (

textToSaveString.equals(textFromFileString))

 Toast.makeText(getApplicationContext(), "both string are

equal", Toast.LENGTH_SHORT).show();

 else

 Toast.makeText(getApplicationContext(), "there is a

problem", Toast.LENGTH_SHORT).show();

 Toast.makeText(this,"Text Saved

!",Toast.LENGTH_LONG).show();}

 private void writeToFile(String data) {

try {

OutputStreamWriteroutputStreamWriter = new

OutputStreamWriter(openFileOutput(FILENAME,

Context.MODE_PRIVATE));

outputStreamWriter.write(data);

Log.e(TAG, "File write : ");

outputStreamWriter.close();}

catch (IOException e) {

Log.e(TAG, "File write failed: " + e.toString());} }

 private String readFromFile() {

 String ret = "";

try { InputStreaminputStream = openFileInput(FILENAME);

if (inputStream != null) {

 InputStreamReaderinputStreamReader = new

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

105 | P a g e
www.ijacsa.thesai.org

InputStreamReader(inputStream);

 BufferedReaderbufferedReader = new

BufferedReader(inputStreamReader);

 String receiveString = "";

 StringBuilderstringBuilder = new StringBuilder();

 while ((receiveString = bufferedReader.readLine()) !=

null) {

stringBuilder.append(receiveString);}inputStream.close();

 ret = stringBuilder.toString();

 TextViewtv = (TextView)findViewById(R.id.textView1);

tv.setText("text file data:"+ret);

 Log.e(TAG, "Can read file: " + ret.toString());

} } catch (FileNotFoundException e) {

 Log.e(TAG, "File not found: " + e.toString());}catch

(IOException e) {Log.e(TAG, "Can not read file: " + e.toString());

}return ret;}}

Output

IV. ANALYSIS AND RESULTS

Essentially we are trying to provide the standardization
(through POSIX) and portability of Android applications on
multiple operating systems. Because a well-structured program
is portable among the different programmers who may
maintain it. Placing program elements in a consistent order
makes finding things easier. [3]

 Portability: POSIX .1 thin layer model is initiation

point for Android application portability to different

operating systems.

 Reusability: POSIX .1 thin layer model provides the

reusability of the Android applications on multiple

operating systems.
 Standardization: POSIX .1 thin layer model is a

standard way of transformation of application with

damaging the application internal structure.

 Diversity: POSIX .1 thin layer model gives the

diversity to the Android application market.

A. Quantified Feasibility Analysis

At this time Android covers the 53% of the Smartphone
market share as shown in figure in 1. [23]. But we turn into
100% by introducing POSIX.1 Thin layer Model. It provides
the viability for Android mobile users as well as developers.
After implementation of this POSIX.1 Thin layer Model the
Android applications can run on any operating system so the
Android covers the 100% market, which means the revenue
according to figure 9 it would be double. The statistical result
is given in the table.1. This model focuses on the Android
mobile users and Android developer through reusability and
standardization

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

106 | P a g e
www.ijacsa.thesai.org

Fig.2. Worldwide Smartphone Sales to End User by Operating source:

Gartner (February 2013)[23]

The Android applications market revenue increasing very
rapidly [24]. Like in figure.1 Android market growth is
861.5%, which is tremendous. But question is here Why are
restricting Android market only to the Mobile OS.

Fig.3. Android market share [24]

The market of the desktop OS is very large as shown in the
below table.1.but if we merge both these markets only for the
Android the result is very magnificent in the form of revue
however also in the form of manpower reduction which shown
in the table.8.

TABLE VII. MARKET SHARE ANALYSIS FOR ANDROID DEVELOPERS

[25]

POSIX

Compliant

operating

systems

Market

share of

desktop

Operating

system

Android

market

share

Total market share for

developers

Windows 7 44.55% 53.1% 97.65%

Windows

XP

38.99% 53.1% 92.09%

Windows

Vista

5.17% 53.1% 58.27%

Mac OS X

10.8

2.61% 53.1% 55.71%

Windows 8 2.67% 53.1% 55.77%

Mac OS X

10.6

1.97% 53.1% 55.07%

Mac OS X

10.7

1.93% 53.1% 55.03%

TABLE VIII. COMPARATIVE ANALYSIS OF APPLICATIONS

DEVELOPMENT TIME AND MANPOWER FOR ANDROID DEVELOPERS

Application

type

Applicat

ion

develop

ment

manpow

er

Application

developmen

t time

POSIX

application

developme

nt time

POSIX

application

development

manpower

Entertainme

nt

6-7

develope
rs

30 days

(min)
120 days
(max)

3

developers

15 days (min)

60 days (max)

Lifestyle 2-3
develope
rs

20 days
(min)
60 days
(max)

1 developer 10 days (min)
30 days (max)

Productivity 10-11
develope
rs

30 days
(min)
120 days
(max)

5-6
developers

15 days (min)
60 days (max)

Libraries &

Demo

10-11
develope
rs

30 days
(min)
120 days
(max)

5-6
developers

15 days (min)
60 days (max)

1) Resulting Impact Factor for Android Developers:

The feasibility study of the POSIX.1 thin layer Model clearly

revealed a lot of benefits for developers.

Fig.4. POSIX.1 thin layer Model resulting impact factors

V. LIMITATIONS

We have faced multiple limitations related to POSIX as well as

related to the Android applications.

 POSIX have a list of standards and some of these

standards are not still verified with IEEE. Secondly

POISX bonding languages are very extinct so POISX

programming is very difficult tasks. With passing

each day POSIX standards are modified very

Android
developers

remuneration

Resuabilit
y

POSIX
Desktop
OS users

100%
market

share for
Android

developer
s

Standardiz
ation

Reduce
Manpowe

r

Reduce
time of

developm
ent

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

107 | P a g e
www.ijacsa.thesai.org

frequently. These abrupt changes in standards

becomes the developer life miserable.

 A lot of Android applications are GUI dependent and

POISX .1 support very limited GUI features so need

of GUI functions in POISX .1.
There is no standard tool or engine for language conversion
from java to standard C.

VI. FUTURE WORK

Till now there is only Application layer (code)
implementation through this model but the need of
implementation of UI layer is very stimulating and tempting.
Although XML code conversion is very difficult and C library
limitation for interface. The Hardware acceleration for
Graphics subsystem is also in require for completing
implementation.

Second option is related to making the Android OS POSIX
compliant. This is not an easy task as there are a lot of
limitations of Android hardware restriction, Android devices
variety plus DVM [32] but the proposed model is one of best
solution for all these limitations. The small size of usage
hardware is obvious but implementation is not impossible by
executing the Standard C library instead of using C/C++ for
code conversion. [33] This is only the idea but achievement
needs more attention.

In the below model we are try to introduce a new layer,
which called the Java POISX APIs layer. This layer simply
converts the all java APIs into POISX APIs but still in java
language .so DVM consider it as java command and convert it
into dex. Format.

The Android Runtime consists of the Dalvik virtual
machine and the Java core libraries. The Dalvik virtual
machine is an interpreter for byte code that has been
transformed from Java byte code to Dalvik byte code. [30]

Fig.5. proposed Android OS POSIX compliant model

Dalvik itself is compiled to native code whereas the core
libraries are written in Java, thus interpreted by Dalvik. It
means conversion of java to C/C++ done here. But we are try
to convert the Android OS POISX .One solution is the POSIX
package. This package provides access to the POSIX API from
Java. However essential question is that where put this POISX
APIs library for Java?

As shown in above figure 7 we put the java POSIX APIs
layer that Basically DVM do the conversion of java
applications to .dex format means conversion of java to C/C++
.so DVM has not problem if there is any JAVA API so if we
put the JAVA POSIX API [31] layer which convert the alljava
simple APIs to POISX APIs but still in the java language. So
DVM very easily do it conversion because DVM consider it a
java API

VII. CONCLUSION

Currently, Android is the most popular operating system out of

the several Linux based mobile operating systems
(e.g.,Maemo) [4].POSIX .1 thin layer model assigns the

Android applications to a wider marketplace without restricting

to them with only mobile computing. In this work, the main

theme of research provides the portability to the Android

Application with POSIX.1 standard. In summary introducing

this thin layer POSIX.1 model expands the market for Android

applications and adds real-time capability and higher

reusability

ACKNOWLEDGMENT

This research work is done under the supervision of Prof.
Dr. Shoab Ahmad Khan. The Integrated development
environments are Eclipse INDOGO for Android Application
with Android virtual device (AVD) Intel Atom x86 with API
level 10 and Xcode with gcc complier version is mention in
previous Fig.1 at Macintosh OS.

REFERENCES

[1] IEEE/ANSI Std 1003.1: Information Technology-- (POSIX®)--Part 1:

System Application: Program Interface (API) [C Language], includes
(1003.1a, 1003.1b, and 1003.1c). 1996.

[2] Bill O. Gallmeister,POSIX. 4: Programming for the Real World,

1995.ppt.4, 19-20,22,23

[3] Donald A. Lewine, POSIX Programmer's Guide Writing Portable UNIX
Programs with the POSIX.1 Standard, 1991,pp.16-17, 25

[4] E. Oliver, A Survey of Platforms for Mobile Networks Research. Mobile

Computing and Communications Review, December 2008, pp. 56-63.

[5] Hassan Reza, and Narayana Mazumder, A Secure Software Architecture

for Mobile Computing (2012 IEEE)

[6] Android. http://code.google.com/android/

[7] Canalys Report. http://www.canalys.org

[8] http://www.android.com/about/

[9] http://developer.android.com/about/versions/index.html

[10] POSIX. 1: ISO/IEC 9945-1:1990 IEEE Std. 1003.1-1990

[11] Donald A. Lewine, POSIX Programmer's Guide Writing Portable UNIX

Programs with the POSIX.1 Standard, 1991,pp.31-36

[12] http://developer.android.com/sdk/eclipse-adt.html[Aug.20, 2011].

[13] http://www.ibm.com/developerworks/opensource/library/os-android-
devel/[Aug.10, 2011].

[14] http://en.wikipedia.org/wiki/Android_ (operating_system) [Aug.10,

2011]

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 4, No.7, 2013

108 | P a g e
www.ijacsa.thesai.org

[15] http://en.wikipedia.org/wiki/Android_Market [Aug.20.2011].

[16] http://developer.android.com/guide/basics/what-is-android.html[Aug.20,
2011].

[17] Barra, Hugo (10 May 2011). "Android: momentum, mobile and more at

Google I/O".The Official Google Blog. Retrieved 10 May 2011.

[18] http://www.google.com/support/androidmarket/developer/bin/answer.py
?answer=113475[Aug.6, 2011]

[19] http://www.android.com/about/[Aug, 6, 2011]

[20] Lawson, Stephen (17 March 2009). "Android Market Needs More

Filters, T-Mobile Says". PC World.

[21] http://www.gartner.com/newsroom/id/2335616

[22] http://appleinsider.com/articles/11/02/18/rim_nokia_and_googles_andro

id_battle_for_apples_ios_scraps_as_app_market_sales_grow_to_2_2_bi
llion.html

[23] http://www.netmarketshare.com

[24] IEEE Std 1003.1b-1993 (Formerly known as IEEE P1003.4) (Includes

IEEE Std 1003.1-1990)

[25] Kolin Paul, Tapas Kumar Kundu "Android on Mobile Devices: An
Energy Perspective," 10th IEEE International Conference on Computer

and Information Technology, 2010.

[26] Kyosuke Nagata,Saneyasu Yamaguchi “An Android Application

Launch Analyzing System”

[27] IEEE Portable Applications Standards Committee, P1003.13:

Infonnaiion Technology - Siandardized Applications Environment
Profile - POSIX Real-time Application Support (AEP) (Draft 5) (Feb

1992).

[28] Namseung Lee, Sung-Soo Lim, “A Whole Layer Performance Analysis
Method for Android Platforms”, (2011 IEEE).

[29] Java POSIX APIs,

[30] http://bmsi.com/java/posix/posix-1.2.2/doc/index.html.Accessed March

2012

[31] Leonid , Aubrey-Derrick , Hans-Gunther , Ahmet Camtepe and Sahin
Albayrak,” Developing and Benchmarking Native Linux Applications

on Android,” Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Volume 7, pp

381-392, 2009.

[32] E. Cooper and R. Draves, “C threads”. TR CMU-CS-88- 154, Carnegie
Melloii University, Dept. of CS (1988).

http://www.pcworld.com/article/161410/android_market_needs_more_filters_tmobile_says.html
http://www.pcworld.com/article/161410/android_market_needs_more_filters_tmobile_says.html

