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Abstract—The Traveling Salesman Problem (TSP) is the 

problem of finding the shortest path passing through all given 

cities while only passing by each city once and finishing at the 

same starting city. This problem has NP-hard complexity making 

it extremely impractical to get the most optimal path even for 

problems as small as 20 cities since the number of permutations 

becomes too high. Many heuristic methods have been devised to 

reach “good” solutions in reasonable time. In this paper, we 

present the idea of utilizing a spatial “geographical” Divide and 

Conquer technique in conjunction with heuristic TSP algorithms 

specifically the Nearest Neighbor 2-opt algorithm. We have found 

that the proposed algorithm has lower complexity than 

algorithms published in the literature. This comes at a lower 

accuracy expense of around 9%.  It is our belief that the 

presented approach will be welcomed to the community 

especially for large problems where a reasonable solution could 

be reached in a fraction of the time.  
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I. INTRODUCTION 

Divide and Conquer is an algorithm method used in search 
problems. As the search problem increases this method proves 
to be one of the best in reaching quick solutions; not only does 
it breakdown the search problem for easier calculations, in 
some cases it also allows for parallelizing the search hence 
reaching faster results. It has come to our notice that not many 
or not enough tries were given to the Divide and Conquer 
method when it comes to the Traveling Salesman Problem 
(TSP). The trend in resolving TSP is for Local Search 
algorithms and Evolutionary algorithms. Most of the research 
targets enhancing the constraints and fitness functions of these 
2 categories of algorithms to reach a better solution. In most 
cases, these enhancements affect computational complexity 
making the resulting algorithms unfeasible for large scale 
problems. 

For TSP, eliminating the long paths between any 2 
cities/points in advance enables us to find quickly a more 
optimum solution. By dividing the search space or plane into 
pieces, we are effectively eliminating the paths between cites at 
the 2 ends of the search space thus, decreasing the number of 
paths we need to search. The plane/space is divided into 
“Buckets” each holding a set of points that are within a specific 
distance from each other. In the most ideal situation of evenly 
distributed points, the Heuristic TSP would now need to find 
the path for N/b points only where b is the number of buckets.  

In the case of NN 2-opt, finding the path of N/b points 
requires a fewer number of iterations to reach a near optimum 
path and a much shorter run time. Accordingly, it is expected 
that the computational complexity of the Hashed Bucket 
algorithm will be of a much lower order of magnitude as we 
shall see in this paper.  

The rest of this paper is organized as follows; Section II 
outlines the problem we are trying to address. Section III gives 
a briefing on TSPs and the current algorithms used for their 
resolution while Section IV presents a literature survey of 
related work. Section V describes our proposed solution. We 
then discuss the flow of our system in Section VII. Finally, our 
experimental results are presented in section VIII. 

II. PROBLEM DEFINITION 

The traveling salesman problem asks the following 
question: Given a list of cities and the distances between each 
pair of cities, what is the shortest possible path that visits each 
city exactly once and returns to the origin city? The complexity 
of such a problem is NP-hard making it extremely unrealistic to 
solve optimally.  

The problem addressed here is how to improve Local 
Search Algorithms specifically the Nearest Neighbor 2-opt 
using a spatial Divide and Conquer method to obtain a new 
hybrid faster Heuristic algorithm. This poses the challenge of 
deciding the correct search space division and how these space 
divisions impact the performance of the NN 2-opt. 

III. BACKGROUND 

TSP is a very old problem with many references in 
literature as well as a long standing history. The first instance 
of the traveling salesman problem was documented by Euler in 
1759. Euler wanted to address the problem of moving a knight 
to every position on a chess board exactly once as explained in 
[1]. The constraint set by Euler was that the knight must move 
according to the rules of chess and must visit each square 
exactly once. 

A. Types of TSP 

There are 2 main characteristics of TSPs. Depending on 
these, the problem representation may use different data 
structures and different calculations. 

1) Symmetric vs. Asymmetric TSPs: a symmetric TSP is a 

problem where the distance from point A to point B is equal the 

distance from B to A. Asymmetric TSPs is when the distances 
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from A to B and vice versa are not equal. For example: if we 

consider the effort needed to go up a hill higher than the effort 

needed to go down then we have an Asymmetric problem. 

2) Euclidean/Planer vs. 3 Dimensional: problems that 

consider only 1 constraint for the distance between the TSP 

points/cities can be considered planer. The most famous 

example of that would be the Euclidean distance. Once we 

start considering geographical distances, time or monetary 

costs we find that we have more constraints and hence, more 

dimensions for the TSP problem representation. 

B. Complexity and Optimality 

When we assess TSP algorithms, we look into optimality as 
well as complexity. Complexity is key given the number of 
permutations needed to calculate all possible paths; as we shall 
see in for exact algorithms in the following section. Yet in 
some cases, we can easily get an approximated path so it 
becomes necessary to measure the optimality of that path. By 
optimality, we mean how close it is to the real shortest path of 
the problem. 

C. Exact (Non-Heuristic) TSP Algorithm 

Simply put, there is only 1 way of finding the most optimal 
path for a TSP: comparing all possible paths and picking the 
shortest. Unfortunately, this Brute Force seraph method is not 
realistic as it means we must enumerate all possible 
permutations for the points in the TSP. In other words, for a 
problem with N points, we would need to look through N! – N 
Factorial – possible solutions. For example, a simple problem 
of 10 points would require passing through (and comparing) 
3,628,800 possible paths. Such an approach would be 
impractical in real world situations where we would need to 
solve TSP for a huge number of points. The complexity of this 
approach is O (n!) where n is the number of points. Algorithms 
with such complexity are called NP-hard. In the case of NP-
Hard problems, other means of reaching a solution are required 
as we shall see in the next section.  

D. Heuristic TSP Algorithms 

The traditional lines of attack for an NP-hard problem – 
when exact optimal methods are unfeasible – are the following: 

 Devising "suboptimal" or heuristic algorithms, i.e., 
algorithms that deliver either seemingly or probably 
good solutions, but which may prove to be suboptimal. 

 Finding special cases for the problem ("sub-problems") 
for which either better or exact heuristics are possible. 

The TSP problem remains NP-hard even for the case when 
the cities are in the planer Symmetric Euclidean problem. 
Various heuristics and approximation algorithms have been 
devised specifically for TSP. Modern methods can find 
solutions for extremely large problems within a reasonable time 
and which are quite close to the optimal solution. 

There are many types of Heuristic TSPs in the literature. 
Following is an overview of the main categories: 

1) Tour Construction Algorithms: these algorithms 

gradually build a tour by adding a new city at each step. This 

approach is always quiet simple, but often too greedy. The first 

distances in the construction process are reasonably short, 

whereas the distances at the end of the process usually will be 

rather long. The most popular algorithm in this family is the 

Nearest Neighbor (NN). NN starts at some random city and 

then visits the city nearest to the starting city and then keeps 

visiting the nearest city that has not been visited so far until all 

cities are covered. It is a poor heuristic with the only simplicity 

as an advantage so it is normally used for small size problems. 

2) Iterative Local Search (ILS) Algorithms: these start out 

with a complete solution at a certain optimality and iteratively 

try to change the features of the solution until a more optimal 

solution is found. For TSP, the initial complete solution can be 

a random tour through the problem with total cost S. The 

iterative changes would involve exchanging edges or paths 

between 2 or more cities and comparing the resulting tour of 

cost S’ to S. If S’ is a more optimal tour, we start iterating on 

that. If S’ is worse than S, we discard that tour and begin 

iterating on other city pairs. A stopping criteria must be set in 

advance so that the algorithm doesn’t iterate endlessly on all 

cases. There are many variations on the ILS, for example: 

a) 2-opt Heuristic algorithm: this is the most basic of the 

ILS algorithms: 

 Start with a given tour.  

 Replace 2 links of the tour with 2 other links in such a 
way that the new tour length is shorter. 

 Repeat until no more improvements are possible. 

b) 3-opt Heuristic Algorithm:this is the same as the 2-opt 

but we pick 3 edges or links to replace instead of just 2 edges. 

K-opt or Lin–Kernighan Heuristic Algorithm: this a 
generalization on the 2-opt and 3-opt algorithms that allows k-
opt moves. It has many different constraints and modifications 
in an attempt to improve optimality and complexity. As 
explained in [2], the original algorithm as implemented by Lin 
and Kernighan in 1971, had an average running time of order 
N2.2 and was able to find the optimal solutions for most 
problems with fewer than 100 cities. However, this algorithm is 
not simple because the number of operations to test all k-
exchanges increases rapidly as the number of cities increases. 
In a naive implementation, the testing of a k-exchange has a 
time complexity of O(Nk). Furthermore, there is no upper 
bound of the number of exchanges. Accordingly, the usefulness 
of general k-opt sub-moves usually depends on the candidate 
TSP. Unless it is sparse, it will often be too time consuming to 
choose k larger than 4. Another drawback is that k must be 
specified in advance and it is difficult to know what k to use to 
achieve the best compromise between running time and quality 
of solution. To overcome the drawbacks of the traditional LK 
algorithm, Lin and Kernighan introduced a powerful variable-
opt algorithm: at each iteration, the algorithm examines – for 
ascending values of k – whether an interchange of k-links may 
result in a shorter tour. This continues until some stopping 
conditions are satisfied. Many other variantions and 
enhancements can be found in [3]. 

3) Evolutionary Algorithms: As the name implies, 

evolutionary algorithms follow nature in an attempt to reach 
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the best solution for optimization problems. Genetic 

algorithms (GAs) are one of the most popular evolutionary 

techniques. Taken from nature, GAs use crossover and 

mutation to solve optimization problems. GAs are loosely 

based on natural evolution and use a “survival of the fittest” 

technique, where the best solutions survive and are varied until 

we reach a good result. The incorporation of the survival of 

the fittest idea provides a means of searching the problem 

space without enumerating every possible solution. A GA 

works by first ‘guessing’ a set of solutions and then combining 

the fittest solutions to create a new generation of solutions 

which should be better than the previous generation. We may 

also include a random mutation element to account for the 

occasional ’mishap’ in nature. As [4] explains, the main 

disadvantages of GAs are premature convergence and poor 

local search capability. In order to overcome these 

disadvantages, evolutionary adaptation algorithms based on 

the working of the immune system have been devised. The 

interested reader can refer to [5], and [6] for more samples. 

IV. RELATED WORK 

Being able to solve large scale TSPs has been of great 
interest to many. In this section, we give an overview of some 
proposed solutions and their usefulness for different types of 
TSP sizes.  

1) Medium Scale TSPs (500 to 3000 points): In [7], the 

authors look into solving TSP problems with hybrid, iterative 

extended crossover operators for GA. The objective of the 

hybrid algorithm is to efficiently search for the optimum 

solution while maintaining the diversity of the cyclic paths 

composing the population. It is a kind of hybrid method which 

combines Edge Assembly Crossover (EAX) with Ant Colony 

Optimization. The algorithm was verified on test data of size 

up to 1173 cities. The optimal path was obtained but required 

109 hours to calculate! In fact, the computational time 

increases exponentially with the increase in number of cities.  

2) Large Scale TSPs (5000+ points): In [8], the authors 

consider a k-means partitioning algorithm to divide the initial 

TSP problem into multiple partitions to be solved separately 

then merging. The partitioned sub-problems are merged using 

Lin Kernighan algorithm. To partition the TSP problem, the 

authors represented the problem as a graph and used 

multilevel graph partitioning. Multilevel k-means graph 

partitioning reduces the size of the graph by collapsing 

vertices and edges as explained by [9]. It divides the graph 

into smaller graphs and then refines the partition during an 

“un-coarsen” phase to construct a partition for the original 

graph. For solving each sub-problem a greedy tour 

construction heuristic is used to get a good solution of 

individual small partitions. After solving each partition, step 

by step recreation of graph is carried out by simply adding 

each solved partition back to the graph. The algorithm was 

tested on TSPLIB and provided quite optimal TSP tours but no 

time complexity was clarified. It is known that the average LK 

complexity is O(N2.2); by clustering and using LK in the 

coarsening phases of merging the partitions, it is clear that the 

complexity of this algorithm is definitely more than that of the 

proposed Divide and Conquer NN 2-opt. 
Many other researchers have attempted to enhance the 

complexity of LK implementations and have reached O (N2) 
yet the tradeoff is extra memory of O(N) making it again 
impractical for large scale problems. 

3) HW Parallelization of Large Scale TSPs: Given the 

complexity of TSP algorithms, the speed up and execution 

time gained from increasing HW resources cannot be expected 

from normal software solutions so will not be compared with 

the algorithm proposed in this paper. It does show though that 

partitioning the problem still allows us to get relatively 

optimal tour solutions. The authors of [ 10] (2007) introduced 

the notion of “symmetrical 2-Opt moves” which allowed them 

to uncover fine-grain parallelism when executing the 2-opt 

local search optimization algorithm. Once the parallelism is 

apparent they use an FPGA (or FPGA simulator) to resolve 

each sub problem gaining an average speed up of 600%. 

V. PROPOSED APPROACH 

The proposed algorithm depends on the theory that “the 
addition of shortest set of paths will yield shortest total path”. 
Accordingly, if we have N points getting the shortest path for 
N/b points then consolidating the set of b paths will give us the 
shortest path through the N points. We divide the N points 
according to their proximity to each other in the search space 
using x and y dimensions.  

For example, a square space of area A2 will be divided into 
smaller areas called Buckets of area A2 /b where b is the 
number of Buckets. All points in the same bucket are 
considered close in proximity and a heuristic TSP algorithm is 
used to get their shortest path. Given that the number of points 
in area A2/b is much less than the total area, the heuristic 
algorithm has a good chance of finding the optimal path in a 
much shorter execution time. Once all b paths have been 
obtained, merging them into a single path for the N points 
should yield the shortest total path. Fig. 1 shows a simple 
example where the search space/plane has been divided into 4 
buckets. 

This approach was inspired by the work done in [11]that is 
based on the Fixed-Radius Nearest-neighbor problem.  The 
authors of [11] show that bucket hashing is very effective in the 
domain of electronic design automation specifically in chips of 
millions of transistors as it breaks the problem into manageable 
pieces for quicker resolution. 
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Fig. 1. Search Space division using Buckets 

VI. SYSTEM FLOW 

The system is comprised of a set of functions that interact 
with each other. The flow of processing can be seen in the chart 
in fig. 2. The first step of the process is to parse the input file to 
get the points that make up the TSP problem. Using the input 
criteria for bucket size, a decision is made regarding the 
division of the search space. The following functions then 
handle the creation of the buckets and hashing the TSP points 
into the different buckets. Once the buckets are ready, we can 
then consider each bucket as a separate TSP problem for the 
regular heuristic NN 2-opt TSP algorithm and thus, the 
algorithm is run for each bucket. The final step in our flow is to 
merge the smaller bucket TSP solutions into 1 solution for the 
original input point thus providing 1 single path and its total 
cost. 

The implementation explained above makes the assumption 
that all points are connected (in case the TSP doesn’t fit this 
constraint, setting the distance between the unconnected points 
to infinity should automatically eliminate the path but this 
theory has not been tested here). We also assume that the input 
TSP is a Symmetric TSP and that the distance used is 
Euclidean. 

The algorithm depends on finding the minimum path for 
each bucket and then merging the result. The sum of these local 
minima may not in fact result in the global minimum. This is 
one of the disadvantages of the Heuristic algorithms in general 
yet given that the hashed algorithm complexity is significantly 
lower we can run the hashed algorithm with different averages 
or bucket sizes and choose the minimum depending on the 
original problem size. 

A. Bucket Size Decision 

The algorithm complexity depends heavily on the number 
of buckets used. Accordingly, we need a simple decider to use 
for dividing our search space. Heuristic TSP algorithms 
normally have an Average number of points that they can 
optimally get the shortest path for. Assuming the points are 
equally distributed, we use this average to divide the space 
according to the following equations: 

1) Get the minimum possible number of buckets by 

dividing number of points on the input average. 

2) Calculate the search space area A (maximum of x * 

maximum of y). 

3) Get bucket width using eq. 1: 

                   
               

                     
            (1) 

4) Get bucket length using eq. 2: 

                   
 

                                 
    (2) 

B. Path Merging 

The other important step in the algorithm is the merging of 
the separate bucket solutions to form a single final path. An 
example of the bucket path merging is shown in fig. 3.  

We have Start point “S” for the bucket and a Transition 
Forward point “TF” for moving to the next bucket in each 
individual bucket path. When we merge, we remove the path 
between the TF and the point following it in the bucket; instead 
we merge it with the start point of the successor bucket. On the 
way back, we remove the last leg of the path back to the bucket  

Start

Read a set of 
points from 

text file

Decide on Bucket Size

Create Buckets 

Hash Points into Buckets

Run the Heuristic TSP 
Algorithm for Each Bucket

Merge the separate bucket 
solutions to create 1 single 

path

Return Path Cost
 

Fig. 2. System Workflow 
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Fig. 3. Path Merging 

start point and instead move to the point following the TF 
in the previous bucket. In other words, we delete the “dashed” 
red lines and add the solid black lines. 

VII. RESULTS AND ANALYSIS 

The complexity of the simple NN 2-opt algorithm is O (N2) 
where N is the input number of points of the TSP problem. In 
the hashed approach, we divide the space into buckets. 
Assuming that we have “b” buckets and that the points are 
evenly distributed on the buckets as “N/b” then the complexity 
of a single bucket is O((N/b)2). To get the complexity of the 
entire Hashed algorithm we consider that we need to calculate 
the NN 2-opt for b buckets i.e. a complexity of O (b*(N/b)2) 
which is equal O ((N/√b)2). As we shall see in the results, the 
above complexity is tangible numerically in the following 
example. If N = 493 and b = 9, the normal NN 2-opt would 
require 4932 = 243,049 calculations/computations while the 
Hashed technique would provide (442)2/9 = 27,005 
computations which is 11% of the simple algorithm 
computations. 

To show the effectiveness of the proposed algorithm and its 
ability to solve all general cases, some test cases from TSPLIB 
were used with focus on large samples. The results obtained are 
from running the system under Windows 7 and using Matlab 
7.0. The system specifications are: Intel Core CPU (1.6GHz) 
and a 4GB RAM. 

We show the test results for 3 different test samples. For 
each sample, we list the results of the normal NN 2-opt 
algorithm as well as the Hashed algorithm with the different 
values of the bucket decider. We can conclude that using 20% 
of the problem size as the bucket decider tends to give the least 
error %. 

The error is calculated using the eq. 3.  

    
                                         

                  
          (3) 

 
For the results the execution time is provided in seconds. 

This documented execution time does not include the time 
spent in parsing the input file because this is the same function 
in both hashed and un-hashed algorithms. It is important to 
note that the NN 2-opt requires an input of the number of 
iterations to be used. We have kept this at a constant of 4 for 
both the NN 2-opt and the hashed buckets algorithm. More 
iterations should theoretically decrease the error but after some 

test runs we found that 4 iterations are a suitable average as the 
added optimality is not proportional to the increase in time. 

A. Sample 1: File d493.txt 

 Number of Points: 493 with optimal path cost as per 
TSPLIB: 35,002. 

 NN 2-opt without hashing has path cost = 36,099 and 
execution of 1.476s thus an Error % of 3.13% 

 Results for the Hashed algorithm are in Table 1. 

B. Sample 2: File rl5915.txt 

 Number of Points: 5,915 with optimal path cost as per 
TSPLIB: 565,530. 

 NN 2-opt without hashing (average results of 2 runs) 
has path cost = 591,715 giving an Error % of 4.63%. Its 
execution was 2004.5s which is equal to 33.5 minutes! 

 Results for Hashing algorithm are in Table 2. 

C. Sample 3: File rl11849.txt 

 Number of Points: 11,849 with optimal path as per 
TSPLIB: 923,288. 

TABLE I.  D493 RESULTS (AVERAGE OF 100 RUNS) 

Decider 
Hashed 

Time 

Hashed 

Cost 
Hashed Error 

10% = 50 (15 buckets) 0.168s 44,788 27.96% 

20% = 100 (9 buckets) 0.235s 36,364 3.89% 

40% = 200 (4 buckets) 0.261s 38,774 10.78% 

TABLE II.  RL5915 RESULTS 

Decider 
Hashed 

Time 

Hashed 

Cost 

Hashed 

Error 

10% = 600 ( 10 buckets) 39.64s 640,430 13.24% 

20% = 1200 (6 buckets) 66.376s 617,670 9.22% 

40% = 2400 (4 buckets)  155.015s 609,920 7.85% 

TABLE III.  RL11849 RESULTS 

Decider 
Hashed 

Time 

Hashed 

Cost 
Hashed Error 

5% = 600 (30 buckets)  

20 runs average: 
51.92s 1,116,000 20.87% 

10% = 1200 (15 buckets) 

20 runs average: 
251.14s 1,053,300 14.07% 

20% = 2400 (6 buckets) 

3 runs average: 
917.97s 1,002,600 8.59% 

 NN 2-opt without hashing: the machine ran out of 
memory and thus no results were gained. 

 Results for Hashing algorithm are in Table 3 

VIII. CONCLUSION 

As shown in the results section, the hashed bucket 
algorithm is very effective in reducing the overall execution 
time of large scale TSPs. Fig. 4 and fig. 5 show the comparison 
between algorithm methods and different decider values quite 
clearly. 
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We are able to reach a path in less than 10% of the time 
required for the original NN 2-opt. We understand that the 
tradeoff is in optimality yet a 9%~15% error is considered an 
acceptable margin for such a gain in execution speed.  

We would also like to note that original NN 2-opt algorithm 
was unable to run on the limited specs of the machine after a 
certain size due to its memory consumption. Accordingly, 
another advantage of the algorithm is the possibility to reach 
results using limited memory and execution power. This begs 
the possibility that the algorithm would be useful in robots and 
applications that run on batteries (reduced power consumption) 
and limited size.  
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Fig. 4. Performance/Time Comparison 
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Fig. 5. Error Margin Comparison 
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