
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 1, 2014 

113 | P a g e  
www.ijacsa.thesai.org 

For an Independent Spell-Checking System from the 

Arabic Language Vocabulary

Bakkali Hamza 

Telecom and Embedded Systems Team,  

SIME Lab ENSIAS, University of Mohammed V Souissi 

Rabat- Morocco 

Yousfi Abdellah 

Eradiass Team 

Faculty of Juridical, Economic 

and Social Sciences University of  
Mohammed V-Souissi,  

Rabat- Morocco 

Gueddah Hicham 

Telecom and Embedded Systems Team, SIME Lab 

ENSIAS,  

University of Mohammed V Souissi 

Rabat- Morocco 

Belkasmi Mostafa  

Telecom and Embedded Systems Team, SIME Lab 

ENSIAS,  

University of Mohammed V Souissi 
Rabat- Morocco 

 

 
Abstract—In this paper, we propose a new approach for spell-

checking errors committed in Arabic language. 

This approach is almost independent of the used dictionary, 

of the fact that we introduced the concept of morphological 

analysis in the process of spell-checking. Hence, our new system 

uses a stems dictionary of reduced size rather than exploiting a 
large dictionary not covering the all Arabic words. 

The obtained results are highly positive and satisfactory; this 

has allowed us to appreciate the validity of our concept and 
shows the importance of our new approach. 

Keywords—Arabic language; Lexicon; Misspelled word; Error 

model; Spell-checking; Edit distance; Morphological analysis; 

Prefix; Stem, Suffix 

I. INTRODUCTION 

Automatic correction of spelling errors is one of the most 
important areas in the field of Natural Language Processing 
(NLP) and it has been a subject of many researches since the 
60's [1]. Spell-checking consists in suggesting the closest 
corrections for a misspelled word, this implies the development 
of error models and methods allowing the scheduling of 
plausible corrections and the disposal of a representative 
lexicon for a given language in order to compare. 

Early researches consist in founding a kind of error 
modeling. Since, appears Damerau's [2] definition which 
consider a spelling error as a simple combination of elementary 
edition operations of insertion, deletion, transposition and 
substitution. Based on Damerau's definition, Levenshtein [3] 
will define his distance (Levenshtein distance) which is 
characterized by three of elementary edition operations: 
insertion, deletion and permutation. Another modeling 
proposed by Pollock and Zamora [4] consists in associating for 
each word in the dictionary its alpha-code (consonants of the 
word), hence the need of having two dictionaries: one for the 
words and the other for their alpha-codes, and therefore the 
correction will be done by comparing alpha-codes with the 

misspelled word. This method is efficient for permutation 
errors cases. 

We also find among these studies: the decomposition 
method based on the concept of N-gram language model which 
is based on decomposing a misspelled word to di-trigrams and 
compare them to the dictionary di-trigrams in order to produce 
a similarity index to designate the nearest words to the 
misspelled word [5]. In 1996, Oflaser [6] defined a new 
approach called tolerant recognition of spelling errors by using 
the concept of finite state automaton and a distance called cut-
off edit distance. Using this approach, the correction of a 
misspelled word is done by browsing the dictionary automaton 
and by calculating the cut-off edit distance for each transition, 
without exceeding a threshold previously defined in the 
algorithm. Gueddah, Yousfi and Belkasmi [7] proposed a 
typical and efficient variant of edit distance by integrating 
frequency editing errors matrices [8] in the Levenshtein 
algorithm in order to improve the scheduling of the solutions of 
an erroneous word in Arabic documents. 

Generally in natural languages, and especially in Arabic, 
existing spelling automatic correction systems do not cover all 
the misspelled words. Spelling correction was always related to 
the disposition of a given lexicon covering the totality of 
misspelled words. 

Several studies have been made towards the development 
of dictionaries adapted for spell-checking systems. Among 
these studies we cite in particular: the Ayaspell1 project that 
aims to generate dictionaries, for example the Arabic lexicon 
Hunspell-ar Version 3.2 that contains more than 300000 Arabic 
words designed for free office suite applications of Open 
Office (writer) and Mozilla Firefox 3, Thunderbird and Google 
Chrome incorporating the spell-checker Hunspell2 (originally 
designed for the Hungarian language). 

                                                        
1 http://ayaspell.sourceforge.net 
2 http://hunspell.sourceforge.net 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 1, 2014 

114 | P a g e  
www.ijacsa.thesai.org 

Despite linguistic resources available to the Arabic 
language, we note that we do not have yet a robust spell-
checker capable of covering all the spelling errors committed. 
And that raised a major challenge for spell-checking [9]. 

In order to overcome this limitation raised on spell-
checking for the Arabic language, we propose in this paper a 
new approach which aims to introduce the concept of 
morphological analysis in the process of spell-checking. 

In reality, there are few works that deal with morphological 
analysis in spell-checking process. Among these works are 
cited, specially: 

 Emirkanian [10] have developed an expert system in 
the fields of spell-checking, morphological analysis and 
syntactic analysis for the French language by 
developing a morpho-syntactic analyzer capable of 
detecting and correcting spelling, morphological and 
syntactic errors frequently committed in French 
documents entries. This system is based on the 
integration of knowledge-based rules of French for 
various levels: orthographic (radical’s dictionary), 
morphological (analyzer, suffixes dictionary) and 
syntactic (syntactic tree, substitution rules, completion 
rules). This system uses a metrical distance [11] to 
limit the search space and define the substitution rules. 

 In another approach proposed by Bowden and Kiraz 
[12], they have presented a morpho-graphemic model 
for spelling and morphological errors correction based 
on McCarthy morphological analyzer [13]. The 
advantage of this model is the way it's combines lexical 
analysis with morphological analysis to determine the 
correction possibilities. 

 Another recent study is presented by Shaalan and his 
team [14]. This project present a spell-checking system 
for Arabic language that aims to explore in a first step a 
huge dictionary of few millions words (13 millions) 
generated by the AraComLex3 finite state transducer 
with only 9 millions of valid lexical forms filtered by 
the AraMorph of Buckwalter morphological analyzer 
[15]. These ones have explored this dictionary to 
propose a generic spell-checking model for Arabic by 
using finite state automaton technology [6] and a 
specific metrical distance [3] combined with a noisy 
channel model and also with knowledge-based rules to 
assign weights to the suggested corrections in order to 
refine the best solutions. 

The major inconvenient of all the spell-checking systems 
resides in the limitation of the used dictionaries, because they 
do not cover the totality of the words of a given language. Our 
idea presented in this paper aims to develop a spell-checking 
system for Arabic language independently from the 
vocabulary4 by introducing morphological analysis in the spell-
checking process. 

                                                        
3 http://aracomlex.sourceforge.net 
4 in the broadest sense of vocabulary 

II. THE MORPHOLOGICAL ANALYZER: ARAMORPH 

The Buckwalter morphological analyzer [15] developed by 
LDC (Linguistic Data Consortium), named AraMorph, allows 
segmenting each word into a sequence of triplet "prefix-stem-
suffix". The AraMorph analyzer is formed mainly on three 
lexicons: prefixes (548 entries), suffixes (906 entries) and stem 
(78 839 entries). Lexicons are complemented by three 
compatibility tables used to cover all the possible combinations 
of prefix-stem (2435 entries), suffix-stem (1612 entries) and 
prefix-suffix (1138 entries). Thus, the parser will output the 
stems, prefixes and suffixes associated to the word to be 
analyzed, and then it checks the validity of these solutions in 
the lexicon of the system and in the correspondence tables 
prefix-stem, stem-suffix and prefix-suffix. The stems used in 
AraMorph are constructed as follows: the stems of root "فعل"  
are: "فاعل" "فعول" , "فعيل"  , "فوعل" ,   and "فعال" . 

III. THE LEVENSHTEIN DISTANCE 

Among the most known metrical methods in the field of 
spell-checking, we have the unavoidable Levenshtein distance 
[3], also known as the Edit Distance. The edit distance 
calculates the minimal number of elementary editing operations 
required to transform a misspelled word to a dictionary word. 
Editing operations considered by Levenshtein are: insertion, 
deletion, and permutation. The procedure of calculating the edit 
distance between two strings 

          and           where the length is 

respectively  and , consists in calculating recursively step 

by step in a matrix        the edit distance between different 

substrings of   and   . 
The calculation of the cell       corresponding to the edit 

distance between the two substrings  

  
 
         

 and Q 
 
         , is given by the following 

recurrent relation: 

            

           
           

               

              (1) 

with 

 

      
                                 

             
                (2) 

 

Admitting these following initializations:        

  and         , where  is the empty string. 

IV. INTRODUCING MORPHOLOGICAL ANALYSIS INTO 

LEVENSHTEIN DISTANCE 

   Our new idea in this work is to use a dictionary of small 
size that represents Arabic language stems5 to correct spelling 
errors instead of using a large dictionary. In other words, our 
vision is to invest in a relevant metric method instead of 
building a dictionary that covers all the words in a given 
language, which is usually difficult to build. 

                                                        
5 Stems dictionary is the one used by Buckwalter in AraMorph 

Parser 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 1, 2014 

115 | P a g e  
www.ijacsa.thesai.org 

 We note by: 

 

                  The set of Arabic stems. 

                  All Arabic prefixes. 

                  All Arabic suffixes. 

   means an Arabic lexicon. 
 

Let        a misspelled word, Levenshtein distance 
consists in finding the words  
     satisfying the following relation: 

         
     

                                       

with         presents Levenshtein distance. 

 
According to the morphological analysis approach, there 

exist (   ,     ,     ) in            such as    =         
respectively for the misspelled word     =             , where 
     means an erroneous prefix and      means an erroneous 
stem and       means an erroneous suffix. 

In order to introduce the morphological analysis concept 
(used by Buckwalter) in the Levenshtein algorithm, we have 
defined a new measure noted   , as well the measurement 
between Werr   and vector (Pv, Tv, Sv) is given by the following 
formula: 

                        
                                  

                    
               ) + 

                                   (4) 
                                             

The corrections of erroneous word       are given by: 

 

                
       

                    
                                   

 
For all prefixes, stems and suffix respectively belonging to 

    and  , we calculate the minimum only on prefixes, stems 
and suffixes that are compatibles with each other, and that by 
introducing the three tables of correspondence between prefix-
stem, stem-suffix and prefix-suffix already used by 
Buckwalter. 

Example: 
Let " قغخل"  a misspelled word to correct. By applying the 

formula (4), we get the following solutions in these first orders: 

 

Min Prefix Min Stem Min Suffix 

Dlev ( =(دخل ,قغخل) Dlev 1 =(ف ,  2  Dlev ( , )=0   

Dlev (ف ,ق)= 1 Dlev (غول ,غخل)=  1  Dlev ( , )=   1  

Dlev (ف ,قغ)=  2  Dlev (دخل ,غخل)=  1  
 

Dlev (ف ,قغخ)=   3  ….. ….. 

Dlev (ف ,قغخل)=  4  ...... ...... 

 

    2= ((  دخل  ف    قغخل (wich presents the 
minimal distance in all stems, prefixes and suffixes)  the 
system suggest the solution "فدخل" as a correction of the 
misspelled word "قغخل" , with distance 2. 

 Thus our method returns the 

solution    2= ((  غول  ف    قغخل   which represents the 
word "فغول", with distance 2. 

V. TESTS AND RESULTS 

    To highlight our approach, we have developed a spell-
checking program6 that allows comparing our method to the 
classical approach of Levenshtein. 

The list of words used in this study as reference lexicon for 
Levenshtein approach contains more than 170000 words 
extracted from MySpell7 program of Open Office Writer. 

For our approach, we relied on a list of prefixes, suffixes 
and a list of stems built on Buckwalter approach basis, for 
example, besides the root "فعل"  we find also the stems list of the 
five forms generated from this root: "فاعل" , 

"فعول" , "فعيل" , "فوعل"  and "فعال" . 

The rectifications suggestions proposed by Levenshtein 
distance are the word of minimal distance relative to the 
misspelled word. For our approach, we used the formula (4), 
explained in the previous paragraph. For our tests, we have 
used a corpus of 2784 misspelled words. There were three 
types of errors: addition, deletion and permutation. The table 
below shows the rate of correction by editing operations: 

TABLE I.   COMPARATIVE TABLE BETWEEN THE TWO METHODS 

 

 
To compare our new approach with Levenshtein’s, we have 

used the following three indicators: 

 The correction average time. 

 The rate of rectified words. 

 The size of each system lexicon. 

 

 We have taken 170000 words as lexicon size for 
Levenshtein method. For our system, the theorical 

                                                        
6 Developed in Java language under Eclipse platform 
7 http://myspell.sourceforge.net 

  

Our approach  
Levenshtein 

distance 

E
d

it
in

g
 o

p
e
r
a

to
r
s Insertion 85% 44% 

Deletion 81% 61% 

Permutation 86% 46% 

 

Average time / Erroneous     

                           word 

  

0.10 ms  0.19 ms 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 1, 2014 

116 | P a g e  
www.ijacsa.thesai.org 

lexicon size is N words, with: N= Nbre Prefixes x Nbre 
Suffixes x Nbre Stems     197x106 words. The real 
size of our system (lexicon) is much less than this 
number because the tables of correspondence between 
suffixes, prefixes and stems reduce this number. 
Generally, it is a ten of millions of words order. 

 Despite the fact that the number of words covered by 
our method is about 1000 times higher than the size of 
the lexicon used by Levenshtein method in this study, 
the average time to correct a word is faster in our 
method 0.10 ms versus 0.19 ms in Levenshtein's. 

 For numeral results regarding correction rate, it is 
obvious that our system rectify misspelled words 84% 
more correctly versus an average of 50.3% within 
Levenshtein distance. This difference is mainly due to 
the fact that our lexicon contains enough words 
compared to Levenshtein's. Spelling errors in our 
system are mainly due to the stems base insufficiency 
that stays incomplete and do not contains all the stems. 

We clearly notice that our system is better than 
Levenshtein's, either at lexicon level or at runtime level or 
compared to the correction rate. 

VI. CONCLUSION 

We can see clearly, that our system is much better that the 
one using classical comparison between two lexical forms via 
Levenshtein distance. The result we have gotten in the previous 
paragraph shows clearly the interest of our new approach and 
the facility of integration it has in an automatic spell-checking 
system. 

REFERENCES 

[1] Kukich K.," Techniques for Automatically Correcting Words in Text ", 

ACM Computing Surveys, Volume 24, No.4, pp, 377-439, December 
1992. 

[2] Damerau F.J.," A technique for computer detection and correction of 

spelling errors ", Communications of the Association for Computing 
Machinery, 1964. 

[3] Levenshtein V.," Binary codes capable of correcting deletions, insertions 
and reversals ", SOL Phys Dokl,pp, 707-710, 1966. 

[4] Pollock J. and Zamora A., " Automatic Spelling Correction in Scientific 

and Scholarly Text ", Communications of the ACM, 27(4), pp, 358-368, 
1984. 

[5] Ukkonen E., " Approximate string matching with q-grams and maximal 

matches ", Theoretical Computer Science, 92, pp, 191–211, 1992. 

[6] Oflazer K.," Error-tolerant Finite-state Recognition with Applications to 
Morphological Analysis and Spelling Correction ", Computational 

Linguistics Archive Volume 22 Issue 1,pp,73-89, March 1996. 

[7] Gueddah H., Yousfi A. and Belkasmi M.," Introduction of the Weight 
Edition Errors in the Levenshtein Distance ", International Journal of 

Advanced Research in Artificial Intelligence, Volume 1 Issue 5,pp, 30-
32,  2012. 

[8] Gueddah  H. and Yousfi A., " Etude Statistique sur les erreurs d’édition 

dans la langue Arabe", La 5éme conférence internationale sur les 
Technologies d'Information et de Communication pour l'Amazighe, 

IRCAM, Septembre 2012. 

[9] Mitton R., " Ordering the suggestions of a spellchecker without using 

context ", Natural Language Engineering 15 (2), pp, 173-192, 2009. 

[10] Emirkanian L. and Bouchard L.H.," La correction des erreurs 
d'orthographe d'usage dans un analyseur morphosyntaxique du français " 

dans langue Française N 83, Paris, Larousse, pp, 106-122, 1989. 

[11] Romanycia M.H. and Pelletier J.F., "What is an heuristic? " 
Computational Intelligence, volume 1, pp, 47-58, 1985. 

[12] Bowden T. and Kiraz G.A.," A morphographemic model for error 

correction in nonconcatenative strings ", Proceedings of the 33rd annual 
meeting on Association for Computational Linguistics, pp, 24-30, 1995. 

[13] McCarthy J., "A prosodic theory of non-concatenative morphology ", 

Linguistic Inquiry 12(3), pp, 373-418, 1981. 

[14] Shaalan K., Samih Y., Attia M., Pecina P., Genabith J.V.," Arabic Word 
Generation and Modelling for Spell Checking ", In the Proceedings of 

The 8th international conference on Language Resources and Evaluation 
(LREC'12), pp,719-725, May 2012. 

[15] Buckwalter T., " Buckwalter Arabic Morphological Analyzer version 1.0 
", Philadelphia: Linguistic Data Consortium, Catalog No.LDC2002L49, 

ISBN 1-58563625760, 2002. 


