
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

7 | P a g e
www.ijacsa.thesai.org

Generic Packing Detection using Several Complexity

Analysis for Accurate Malware Detection

Dr. Mafaz Mohsin Khalil Al-Anezi

Computer Sciences

College of Computer Sciences and Mathematics,

Mosul University, Mosul, Iraq

Abstract— The attackers do not want their Malicious software

(or malwares) to be reviled by anti-virus analyzer. In order to

conceal their malware, malware programmers are getting utilize

the anti reverse engineering techniques and code changing

techniques such as the packing, encoding and encryption

techniques. Malware writers have learned that signature based

detectors can be easily evaded by “packing” the malicious

payload in layers of compression or encryption. State-of-the-art

malware detectors have adopted both static and dynamic

techniques to recover the payload of packed malware, but

unfortunately such techniques are highly ineffective. If the

malware is packed or encrypted, then it is very difficult to

analyze. Therefore, to prevent the harmful effects of malware

and to generate signatures for malware detection, the packed and

encrypted executable codes must initially be unpacked. The first
step of unpacking is to detect the packed executable files.

The objective is to efficiently and accurately distinguish

between packed and non-packed executables, so that only

executables detected as packed will be sent to an general

unpacker, thus saving a significant amount of processing time.

The generic method of this paper show that it achieves very high

detection accuracy of packed executables with a low average
processing time.

In this paper, a packed file detection technique based on

complexity measured by several algorithms, and it has tested

using a packed and unpacked dataset of file type .exe. The

preliminary results are very promising where achieved high

accuracy with enough performance. Where it achieved about

96% detection rate on packed files and 93% detection rate on

unpacked files. The experiments also demonstrate that this

generic technique can effectively prepared to detect unknown,

obfuscated malware and cannot be evaded by known evade
techniques.

Keywords—Packed Executables; Malware Detection;

compression algorithms

I. INTRODUCTION

As a consequence of the arms race between virus writers
and anti-virus vendors, sophisticated code obfuscation
techniques are commonly implemented in computer viruses.
Executable code polymorphism, metamorphism, packing, and
encryption, have been proven very effective in evading
detection by traditional signature-based anti-virus software.
Traditional signature-based anti-virus software needs updating
the virus database regularly, and the virus detection relying on
the known virus database is a passive protection technology

without the capacity of detecting the new unknown virus, the
virus deformation, and packed virus. Among these techniques,
executable packing is the most common due to the availability
of several open source and commercial executable packers
[21][14].

According to [9][5][7], over 80% of computer viruses
appear to be using packing techniques. Moreover, there is
evidence that more than 50% of new viruses are simply re-
packed versions of existing ones, see Fig.1. It has been
reported that among 20, 000 malware samples collected in
April 2008, more than 80% were packed by packers from 150
different families. This is further complicated by the ease of
obtaining and modifying the source code of various packers.
Currently, new packers are created from existing ones at a rate
of 10 to 15 per month [7].

Although executable packing is very popular among virus
writers, it is also applied for encrypting benign executables.
Programmers of benign software apply packing to their
applications mainly to make the resulting executables smaller
in terms of bytes, and therefore faster to distribute through the
network, for example. Also, packing makes reverse-
engineering more difficult, thus making it harder for hackers
to break the software license protections. As a matter of fact,
there exist many commercial executable packing tools that
have been developed mainly for protecting benign applications
from software piracy. However, the percentage of packed
benign executables is low (perhaps as low as 1%, although we
were not able to find any study that can confirm this estimate,
which is based solely on our experience) [14].

Fig. 1. Malware and packing, 80% of new malware are packed with various

packers, 50% of new malware samples are simply repacked versions of

existing malware
[8]

.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

8 | P a g e
www.ijacsa.thesai.org

An executable packing tool is a software that given a
program P generates a new program P′ which embeds an
encrypted version of P and a decryption routine. When P′ is
executed, it will decrypt P on the fly and then run it.
Assuming P contains known malicious code, signature based
anti-virus would (likely) be able to detect it. However, if P has
been packed the anti-virus will try to match the signature of P
on P′. As the malicious code of P is encrypted in P′, no match
will be found. Therefore, P will evade detection and infect the
victim machine, if P′ is executed [14].

PE (Portable executable) file format is a standard Windows
executable file format, which plays a very important role in
the Windows operating system. PE files are widely used in
Win32 executable programs including EXE, DLL, OCX, SYS,
SCR and so on. PE viruses are designed in the way making
use of the characteristics of PE file structure, and are portable
on different hardware platforms, which is a serious security
threat to the Windows operating system [21].

The very first step in the unpacking of packed file is to
detect packed executable files. Recently, many researchers and
analysts have focused on packed file detection techniques. In
this paper, however, a new lightweight packed PE file
detection technique based on the analyze the complexity of PE
files by several algorithms. Packed PE files were analyzed
using the proposed technique. It was found that nearly every
type of packed PE file has higher complexity than it in
unpacked status.

The methods always used are intelligent or it depends on
database, but there are two major problems in them. Firstly,
masses of malicious and benign codes as training data set are
difficult to collect. Secondly, it would consume a lot of time to
train the classifiers, and so the efficiency of the detection of
unknown virus is dissatisfactory and difficult to use in
practice.

A few generic and automatic unpacking techniques have
been proposed to unpack packed binaries without specific
knowledge of the packing technique used, e.g., OmniUnpack,
Justin, Renovo, PolyUnpack and others [7].

The objective is to accurately distinguish between packed
and non-packed executables, so that only the executables
detected as packed will be sent to a computationally expensive
general unpacker for hidden code extraction, before being sent
to the antivirus software.

Therefore, the classification system here helps in
improving virus detection while saving a significant amount of
processing time. This paper do not focus on the improvements
in virus detection accuracy achieved after unpacking, because
this has already been studied in other researchs, for example.
Instead, it focus on the accuracy and computational cost
related to the classification of packed executables into the two
classes packed and non-packed.

II. RELATED WORKS

Most Packer Detection Methods can be summed up by:
Signature based (Executable code signatures) and Heuristics
(Entropy Checks, Import Address Table, Other Checks (not
exclusive to packers)).

Coogan et al. [3] proposed an automatic static unpacking
mechanism. It uses static analysis techniques to identify the
unpacking code that comes with a given malware binary, then
uses this code to construct a customized unpacker for that
binary. This customized unpacker can then be executed or
emulated to obtain the unpacked malware code.

Exeinfo PE [4] is an ongoing work for packed PE file
detection and PE header information extraction. It shows the
entrypoint, file offset, compiler information and the unpack
information of the input file.

Renovo [6] utilizes a virtual machine. By using a virtual
machine, they run a packed executable and record memory
writing operations on shadow memory. When execution flow
reaches one of checked bits of the shadow memory, all the
checked memory bits are dumped. Shadow memory is
changed to extract hidden code from packed executables with
multiple hidden layers. With this mechanism, Renovo can find
hidden layers as well.

OmniUnpack [8] monitors the program execution and
tracks written, as well as written-then-executed, memory
pages. When the program makes a potentially damaging
system call, OmniUnpack invokes a malware detector on the
written memory pages. If the detection result is negative,
execution is resumed. If new type of malware appears, the
dangerous system calls they defined on their paper could not
match.

OllyDbg [12] is a debugger that emphasizes binary code
analysis, which is useful when source code is not available. It
traces registers, recognizes procedures, API calls, switches,
tables, constants and strings, as well as locates routines from
object files and libraries. According to the program's help file,
version 1.10 is the final 1.x release. Version 2.0 is in
development and is being written from the ground up. The
software is free of cost, but the shareware license requires
users to register with the author. OllyDbg is only available in
32-bit binaries. OllyDbg shows the message box that the input
file is packed when the file is detected as a packed or
encrypted file.

PEiD [13] is most commonly used with signature-based
packers, cryptors and compilers for PE file detection. At
present, it can detect more than 600 different signatures in PE
files. PEiD is unique in some regard when compared to other
identifiers. Its detection rates are pretty good among the
current identifiers. Moreover, it has a plugin interface that
supports plugins such as Generic OEP Finder and Krypto
ANALyzer. Finally, it is free and easy to use.

Robert, et al.[16] present an encrypted and packed
malware detection technique based on entropy analysis. In
their paper, they analyzed packed PE files via the byte
distribution. A set of metrics are developed that analysts can
use to generalize the entropy attributes of packed or encrypted
executable and thus distinguish them from native (non-packed
or unencrypted) executables. As such, this methodology
computes entropy at a naive model level, in which entropy is
computed based only on the occurrence frequency of certain
bytes of an executable without considering how these bytes
were produced. Entropy analysis examines the statistical

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

9 | P a g e
www.ijacsa.thesai.org

variation in malware executables, enabling analysts to identify
packed and encrypted samples quickly and efficiently.

PolyUnpack [17] performs static analysis over a packed
executable to acquire a model of what its execution would
look like if it did not generate and execute code at runtime.
When the first instruction of a sequence not found in the static
model is detected, the unknown instruction sequence is written
and the execution of the packed executable is halted.

Hump-and-Dump [20] is a different approach from other
research. Hump-and-Dump tries to find the OEP. Using a
characteristic of unpacking, it counts the number of loops used
in unpacking. When the number of loops is greater than a
threshold and no more big loops are used for the period of a
threshold, the address of the loop end point is the OEP.

III. PACKER

A packer is proposed to reduce file size at first. A packed
executable file is a file applied packer. This packed executable
file operates functionally same as original file. Fig. 2
illustrates packing operation of packer [9].

Fig. 2. Packer structure
[9]

.

In packing procedure, a packer compresses or encrypts the
IMAGE SECTION of input file that is the packed data, and
then insert additional UNPACKING SECTION HEADER and
UNPACK SECTION which can decompress or decrypt the
packed data. Lastly, Packer modifies the entry point to start
instruction of UNPACKING SECTION. Those are all of
packing process. Therefore, packed executable file has smaller
size than original file size and same functional operation as
original file. Fig. 3 illustrates the procedures of execution of
packed executable file.

When a packed executable file is executed, PE loader loads
the packed file to virtual memory, and then the instruction of
UNPACKING SECTION that is indicated by entry point is
executed. Next, UNPACKING SECTION decompresses
PACKED SECTION which is original section(s). Lastly,
UNPACKED SECTION is executed on virtual memory. That
is why operation of packed executable file is functionally
same.

However, a packed executable file has a different bytes
structure with original file. Namely, packed executable file has
a different signature with original file. Therefore, anti-virus
scanner does not consider packer that cannot detect the packed
executable file by a signature of original file.

There exists various packers such as UPX, FSG, ASPack,
Morphine, Exestealph, Pecompact, Yodacrypt, MEW,
Packman, Upack, RLPack, Icrypt, EXE Smasher, Themida,
and etc. Also, these packers have lots of versions, and manual

packers which malware makers made exists. Malware maker
is able to generate variant of malware using lots of packers to
evade anti-virus scanner.

For instance, there exist one malware and three packers.
Malware maker generates three variant malwares using three
packers. If malware maker applies packers to three variant
malwares repeatedly, lots of variant malwares can be
generated. In this way, malware maker makes variant
malwares using various packers. As a matter of fact, 92% of
malwares are packed executable in 2006. Of course, there
exists that usage of packer for protection of commercial
programs from malicious reverse engineering, but this normal
usage is less than 2% (in fact, there is no study about normal
usage of packer). Thus, anti-malware methods such as
'exepacker blacklisting are proposed, that is packed executable
files are considered as malware.

Fig. 3. Execution operation of packed executable file
[9]

.

Among some packers, the most widely used packer is the
UPX, ASPack, Themida, and so on. In next section, only will
describe characteristics of UPX packer because it is used to
pack the dataset in this paper.

A. UPX

The UPX(Ultimate Packer for eXecutables) was released
in March 1998. That is the first beta version. And then
recently the version 3.07 was released in September 2010, the
UPX is created by the Markus Oberhumer and Laszlo Molnar.
And that is distributed in GPL(General Public License). The
UPX offers the more high compression ratio than the Winzip
or GZIP, see Fig4. And the decompress speed is faster than the
others compression applications. The compression speed of
the UPX is about 10MB/sec on the Pentium 133 and about
200MB/sec on the Athlon 2000. Also the UPX supports many
file formats and various platforms. As explained earlier, the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

10 | P a g e
www.ijacsa.thesai.org

UPX compression ratio is superior other applications and is a
commonly used algorithm. However, the UPX is already a
widely known packing algorithm so, the packed binary as the
UPX is able to unpack [19][11].

Fig. 4. UPX Compression Ratio
[18]

IV. PE FILE AND PE VIRUS

PE (Portable Executable) file is an important executable
file format of Windows operating system . ALL win32
executable (except VxDs and 16-bit DLLs) are PE file format.
Files of 32bit DLLs, COM files, OCX controls, Control Panel
Applets (CPL files) and NET executables are all PE format.
The portability of PE file format means that the file format can
be used on all Win32 platforms, and PE loader can recognize
and use the file format in all win32 platforms. PE viruses take
advantages of the PE file format to spread themselves among
different Win32 platforms. The data structure of PE file in
memory is consistent with that on disk. PE file uses a flat
address space in which all code and data are merged into a
large structure. PE loader maps the disk file to the virtual
address space by the mechanism of mapping file to the
memory [21]. All of the data structures of PE file are defined
in WINNT.H.

A. PE virus

PE virus is a computer virus that can infect PE format file
in Windows operating system. Most of PE viruses are written
with Win32 assembly language. PE virus has no data section.
Variables and data are all put in code section. There are
several key technologies of Win32 virus like Virus address
relocation, Obtaining API Address, Searching target files,
Mapping files to the memory, The general process of virus
infection, Returning to the host program [21], and others.

As mentioned before, signature is a specific bytes string.
But when packer technique is applied to specific file, that file
will have different file structure in comparison to the original
file. It means that malware makers can generate variant of
malware using packers. Thus, anti-virus scanner cannot detect
variant of malware by original signature. Recently, almost
92% malwares are found to be protected by packers In
particular, the packing of malware is the very first problem
that an analyst should address. If it is impossible to unpack a
packed executable file, the analysis is impossible because the
codes cannot be understood [9].

V. FILE ANALYSIS

Security researchers need to find ways to fight malware,
i.e., they need to obtain malware samples, analyze them to

gain an understanding of malware tactics and weaknesses, and
use that understanding to develop effective countermeasures
[1].

A. Static Analysis

Static analysis is a generic term referring to analysis
methods that do not involve executing the program to be
analyzed, for the sake of brevity henceforth called a specimen.
Static analysis can be used to gather a variety of information
about a specimen, e.g., high-level information such as its file
size, a cryptographic hash, its file format, imported shared
libraries. Cryptographic hashes can be used to identify a
specimen. Packer signatures or its entropy may be used to
determine whether it might be runtime packed.

Static analysis has several advantages over dynamic
approaches. As static methods do not involve executing a
potentially malicious specimen, there is a lesser risk of
damaging the system that analysis is performed on. Given
availability of the right tools, it is also possible to perform the
analysis on a platform that differs from the platform that the
specimen is designed to run on, further mitigating the risk of
damaging the analysis platform (e.g., by accidentally
executing it). Furthermore, static analysis typically covers the
whole specimen and not just those code paths that are
executed for a set of inputs, like dynamic analysis.

B. Dynamic analysis

Dynamic analysis is a way of analyzing an unknown
program by executing it and observing its behavior. When
executing potentially hostile code, careful consideration must
be given to securing the analysis environment, so as not to risk
its destruction or even damage to other computer systems on
the same network.

VI. UNPACKING TRADITIONAL METHODS AND THEIR

LIMITATIONS

1) Signature-based Unpacking method.
The signature-based anti-virus scanner detects the malware

by signature which exists in malware as a specific bytes string,
so it has low false-negative rate. If no signature is matched
with the target, anti-virus scanner will classify an input file as
non-malware. However, malware maker uses various evasion
techniques such as control-flow obfuscation, source
obfuscation, instruction virtualization, and packer which
combine all evading techniques. In fact, the packer is
originally proposed to reduce file size, but malware maker
misuse packer to hide its malicious intention [9]. PEiD is an
example of signature-based packer[2][13].

2) Algorithm-based Unpacking method
Use of specific unpacking routines to recover the original

code (i.e., one routine per packing algorithm). Their
limitations are [8]:

 Every new packer requires a dedicated unpacking
algorithm.

 New packers are created from existing ones at a rate of
10-15 per month.

3) Generic Unpacking method

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

11 | P a g e
www.ijacsa.thesai.org

Emulation/tracing of the execution until the unpacking
routine terminates (e.g., PolyUnpack and Renovo). Their
limitations are [8]:

 Unpacking is slow and is not suitable for end-user
environments.

 Effectiveness depends on the fidelity of the emulation
environment (packers leverage anti-emulation
techniques).

4) Heuristic
This involves searching through the code in a file to

determine whether that code takes actions that appear to be
actions typical of a packed file. The more packed like code
that is found, the more likely that a packed is present.
Heuristics approach of detection to provide protection against
new and unknown packer, but it is inefficient and inaccurate
where it is usually resulting in false positives. And there is a
difficult to describe a heuristic which will work on all kinds of
computer systems.

VII. PROPOSED METHOD AND GOALS

The main goals are to achieve high accuracy on packed file
classification with appropriate performance for practical anti-
virus scanner. In addition, the proposed method is not evaded
by avoidance techniques. Ultimately, the goal is that reduce
the malware infection.

To achieve these goals, the arbitrator of the packed
executable file classification based on complexity, not
signature, entropy, or characteristics. Since packed executable
file that is compressed or encrypted usually has high
complexity, this is easily the judge that executable file is
packed or not. A complexity concept can measure the
information quantity more correctly than entropy concept.

The programs in Portable Executable (PE) 32-bit and 64-
bit Microsoft Windows operating systems format is used. And
in order to classify an executable program, binary static
analysis is used to extract information. This information
allows us to translate each executable into a sequence string of
bytes. Then apply complexity measures techniques to
distinguish between packed and non-packed executables.

Figure 5 shows how the classifier may be used to improve
virus detection accuracy with low overhead, compared to a
system where all the executables are directly sent to the
general unpacker. Once a PE executable is received, the
classification system performs a static analysis of the PE file
in order to measure the complexity of it. After that, the
complexity obtained from the PE executable is compared with
a threshold. If the executable is classified as packed, it will be
sent to the general unpacker for hidden code extraction, and
the hidden code will then be sent to the anti-virus scanner. On
the other hand, if the executable is classified as non-packed, it
will be sent directly to the anti-virus scanner. It is worth noting
that the PE file classifier may erroneously label a non-packed
executable as packed. In this case the general unpacker will
not be able to extract any hidden code from the received PE
file. Nonetheless, this is not critical because if no hidden code
is extracted, the AV scanner will simply scan the original non-
packed code. The only cost paid in this case is the time spent

by the general unpacker in trying to unpack a non-packed
executable. On the other hand, the PE classifier may in some
cases classify a packed executable as non-packed. In this case,
the packed executable will be sent directly to the anti-virus
scanner, which may fail to detect the presence of malicious
code embedded in the packed executable, thus causing a false
negative. However, this PE file classifier has a very high
accuracy and is therefore able to limit the false negatives due
to these cases.

Fig. 5. Overview of classification Method and operations of Anti-Malware

Scanner

The complexity concept is proposed by to complement the
entropy concept to more exact measure information quantity.
The complexity C(X) of a finite string X will be defined as the
length of the shortest string of X. In other words, C(X) is the
length of the shortest computer program that represents X and
then stops. The computer program can be programming
languages or any others [9]. Complexity function is defined as

C(X) = min {X} (1)

For example, the finite string X as

 111111…..1

 10;000times
then, this X can represented as follow program.
print 10,000 times a '1'

UnPacked code

Static file

Analysis

Complexity
Measure using

several algorithms

Cancel unnecessary

sequence of bytes

Complexity <= Th

- Packed -

Complexity <= Th

- Unpacked -

General

Unpacker

Anti-Malware

Scanner

Input file

PE ? No

Yes

Another Packer

Detection Techniques

Malware Benign

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

12 | P a g e
www.ijacsa.thesai.org

However, a serious problem of complexity concept is
incomputable, since finding optimal algorithm that makes the
shortest length output program from input string x is
infeasible. A good news is compression algorithm as same as
the complexity concept [9].

Compress(X) = (Xˋ) (2)

where Xˋ is the compressed string of string X. Thus,
various compression algorithms are used to measure the
complexity. The definition of compression algorithm is
reduced input size to best smallest output size using their
algorithm. Therefore, the complexity can measured for the
input file using compression algorithm for classification.

Almost of packed executable file is compressed or
encrypted, so to classify packed executable file is done when
file has high complexity. But the difference value between file
length's before and after compress is lower in the case of
packed file than in the unpacked file. So if the complexity
lower than Th value it will be packed else, unpacked. So
setting Th and choice the compression algorithm are important
for accuracy and performance.

Three steps are considered for implementation:

1) Scan the sequence string bytes of input file for

unnecessary bytes and cancel them.

2) Compress the bytes string throughout the step1 by

several compression algorithms and entropy.

3) Measure the Complexity of string throughout the step 2.

By the follow operation.

 C = Length of X / Length of Compress(X) in the case of
compression algorithms are used, where X is input
string,

 C= 8- entropy, in the case of entropy is used,

 C <= Th : packed executable file, else: unpacked
executable file.

 And, it is packed executable file, if the decision of at
least 5 compression algorithms and entropy is packed,
else unpacked executable file.

VIII. THE USED COMPRESSION ALGORITHMS

The entropy and compression algorithms used to measure
the complexity in this paper can be summarized as following:

A. Entropy Analysis

In information theory, entropy is a measure of uncertainty
in a series of an information unit. Information is compressed
by following a logical sequence. First, some repeated patterns
are found in the information, and then the redundancies of the
patterns are used to reduce the size of the information. That is,
the number of patterns of the information is reduced by
compression and a series of bits becomes more unpredictable,
which is equivalent to uncertainty. Therefore, the measured
entropy of compressed information is higher than of the
original information. Shannon’s formula is devised to measure
information entropy, as follows [5]:

H(x) = −∑n
i=1 p(i) · logb p(i) (3)

where H(x) is the measured entropy value and p(i) is the

probability of an ith unit of information in event x’s series of n
symbols. The base number of the logarithm can be any real
number greater than 1. However, 2, 10, and Euler’s number e
are chosen in general. We choose b=2 so this formula
generates entropy scores as real numbers; when there are 256
possibilities, they are bounded within the range of 0 to 8.

B. LZO

Lempel–Ziv–Oberhumer (LZO) is a lossless data
compression algorithm that is focused on decompression
speed. It is a portable lossless data compression library written
in ANSI C. It offers pretty fast compression and very fast
decompression. Decompression requires no memory.

LZO is a data compression library which is suitable for
data de-/compression in real-time. This means it favours
speed over compression ratio [10].

It is a block compression algorithm—it compresses and
decompresses a block of data. Block size must be the same for
compression and decompression. The LZO library implements
a number of algorithms with the following characteristics:

 Decompression is simple and *very* fast.

 Requires no memory for decompression.

 Compression is pretty fast.

 Requires 64 KiB of memory for compression.

 Includes compression levels for generating pre-
compressed data which achieve a quite competitive
compression ratio.

 Algorithm is thread safe.

C. Deflate

Deflate is a data compression algorithm that uses a
combination of the LZ77 algorithm and Huffman coding.
Deflate is widely thought to be implementable in a manner not
covered by patents. This has led to its widespread use, for
example in gzip compressed files, PNG image files and the
ZIP file format for which Katz originally designed it [23][22].

Compression is achieved through two steps:

 The matching and replacement of duplicate strings with
pointers.

 Replacing symbols with new, weighted symbols based
on frequency of use.

D. LZW

 LZW compression is named after its developers, A.
Lempel and J. Ziv, with later modifications by Terry A.
Welch. It is the foremost technique for general purpose data
compression due to its simplicity and versatility. Typically,
you can expect LZW to compress text, executable code, and
similar data files to about one-half their original size. LZW
also performs well when presented with extremely redundant
data files, such as tabulated numbers, computer source code,

http://en.wikipedia.org/wiki/Lossless
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/LZ77_and_LZ78
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/Gzip
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/ZIP_(file_format)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

13 | P a g e
www.ijacsa.thesai.org

and acquired signals. Compression ratios of 5:1 are common
for these cases. LZW is the basis of several personal computer
utilities that claim to "double the capacity of your hard drive".
LZW compression is always used in GIF image files, and
offered as an option in TIFF and PostScript [19].

E. Gzip

gzip is based on the DEFLATE algorithm, which is a
combination of LZ77 and Huffman coding. DEFLATE was
intended as a replacement for LZW and other patent-
encumbered data compression algorithms which, at the time,
limited the usability of compress and other popular archivers.
"gzip" is often also used to refer to the gzip file format[23].

Although its file format also allows for multiple such
streams to be concatenated (zipped files are simply
decompressed concatenated as if they were originally one
file), gzip is normally used to compress just single files.
Compressed archives are typically created by assembling
collections of files into a single tar archive, and then
compressing that archive with gzip. The final .tar.gz or .tgz
file is usually called a tarball.

gzip is not to be confused with the ZIP archive format,
which also uses DEFLATE. The ZIP format can hold
collections of files without an external archiver, but is less
compact than compressed tarballs holding the same data,
because it compresses files individually and cannot take
advantage of redundancy between files (solid compression)
[23].

F. QuickLZ

 QuickLZ is the world's fastest compression library,
reaching 308 Mbyte/s per core. It can be used under a
commercial license if such has been acquired or under GPL 1,
2 or 3 where anything released into public must be open
source [15]. It characterize by:

 Simple to use and easy to integrate. Get done in minutes
and continue developing!

 Streaming mode for optimal compression ratio of small
packets down to 200 - 300 bytes in size.

 Auto-detection and fast treatment of incompressible
data.

IX. EXPERIMENTAL RESULTS

The dataset used in this paper consists of 250 benign
unpacked programs that were randomly gathered from the
system files of windows XP operating system, then these files
are packed using UPX. Each set of unpacked .exe files, and
packed .exe files are enter alone in the classifier and the last
decision is not depend on one the other.

Table 1 and figure 6 show the higher detection rate (True
Positive TP = 0.96) of unpacked files is for the Totality Algs,
this mean that the False Positive is (FP = 0.04). While the
lower detection rate (TP = 0.83) of unpacked files is for the
Qlz, this mean that the higher False Positive is (FP = 0.17).

Table 2 and figure 7 show the higher detection rate (True
Negative TN = 0.97) of unpacked files is for the Entropy, this
mean that the lower False Negative is (FN = 0.03). While the
lower detection rate (TN = 0.9) of unpacked files is for the
Qlz, this mean that the higher False Negative is (FN = 0.1).

TABLE I. 250 Unpack .exe file

Fig. 6. 250 UnPack .exe file

TABLE II. 250 Pack .exe file

Algorithm Unpack Pack Detection Rate

Entropy 57 193 0.228

LZO 233 17 0.932

QLZ 207 43 0.828

Gzip 235 15 0.94

Deflate 235 15 0.94

LZW 239 11 0.956

Totality Algs 240 10 0.965

Algorithm Unpack Pack Detection Rate

Entropy 7 244 0.976

LZO 25 225 0.9

QLZ 15 235 0.94

Gzip 16 234 0.936

Deflate 17 233 0.932

LZW 9 241 0.964

Totality Algs 18 232 0.928

0.228

0.932
0.828

0.94 0.94 0.956 0.96

Entropy LZO QLZ Gzip Deflate LZW Totality
AlgsAlgs

http://en.wikipedia.org/wiki/DEFLATE
http://en.wikipedia.org/wiki/LZ77_and_LZ78
http://en.wikipedia.org/wiki/Huffman_coding
http://en.wikipedia.org/wiki/LZW
http://en.wikipedia.org/wiki/Patent
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Concatenation
http://en.wikipedia.org/wiki/Tar_(file_format)
http://en.wikipedia.org/wiki/Tar_(file_format)
http://en.wikipedia.org/wiki/ZIP_(file_format)
http://en.wikipedia.org/wiki/Tar_(file_format)
http://en.wikipedia.org/wiki/Solid_compression

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

14 | P a g e
www.ijacsa.thesai.org

Fig. 7. 250 Pack .exe file

X. CONCLUSION

The main goal in this paper, is to classify a packed and
unpacked executable file in simple manner and achieve high
accuracy, non-evade technique, and efficiency that can apply
practical anti-virus scanner. These goals ultimately contribute
to the anti-virus scanner that reduces malware infection with a
little overhead.

Complexity is measured using entropy and five known
compression algorithms. And the advantage of using
complexity analysis is that it offers a convenient and quick
technique for analyzing a sample at the binary level and
identifying suspicious PE file (packed and encrypted
Executables). This Generic unpacking has low-overhead by
using existing hardware mechanisms, and it is characterized
by fast, detect unknown packers, and resilient to anti-
debugging.

For future works to enhance the detection rates use an
artificial technique to segment the PE file and eliminate the
less important segments, and further to add this
packing/unpacking detection step to unpacking system.

REFERENCES

[1] Bohne L., 2008, "Pandora's Bochs: Automatic Unpacking of Malware",
Diploma thesis, Laboratory for Dependable Distributed Systems

University of Mannheim.

[2] Choi Y., Kim I., Oh J., and Ryou J., 2009, "Encoded Executable File
Detection Technique via Executable File Header Analysis", International

Journal of Hybrid Information Technology, Vol.2, No.2, pp. 25-36.

[3] Coogan K., Debray S., Kaochar T., and Townsend G., "Automatic static

unpacking of malware binaries". In WCRE ’09: Proceedings of the 2009

16th Working Conference on Reverse Engineering, pages 167–176,

Washington, DC, USA, 2009. IEEE Computer Society, Iraq Virtual
Science Library.

[4] Kang M. G., Poosankam P., and Yin H.. "Renovo: a hidden code
extractor for packed executables". In WORM ’07: Proceedings of the

2007 ACM workshop on Recurring malcode, pages 46–53, New York,
NY, USA, 2007. ACM.

[5] L. Limin, M. Jiang, W. Zhi, G. Debin, and J. Chunfu, "Denial-of-Service

Attacks on Host-Based Generic Unpackers", 2010.

[6] Martignoni L., Christodorescu M., and Jha S., "OmniUnpack Fast,
Generic, and Safe Unpacking of Malware", ACSAC 2007, Iraq Virtual

Science Library.

[7] Noh H., 2009, "Complexity-based Packed Executable Classification with
High Accuracy", Master Thesis, School of Engineering, Information and

Communications University, Korea.

[8] Oberhumer M., http://www.oberhumer.com/opensource/lzo, Version:
2.06, Date: 12 Aug 2011.

[9] Oberhumer M., Molnar L. & Reiser J., 1996-2010, "The Ultimate Packer

for eXecutables", UPX, http://upx.sourceforge.net

[10] OllyDbg homepage, http://www.ollydbg.de/

[11] PEiD homepage, http://www.peid.info/

[12] Perdisci R., Lanzi A., and Lee W., 2008, "Classification of Packed

Executables for Accurate Computer Virus Detection", Elsevier, Iraq
Virtual Science Library.

[13] QuickLZ 1.5.x, http://www.quicklz.com/index.php, 2013

[14] Robert, Lyda, et al, “Using Entropy Analysis to Find Encrypted and

Packed Malware”, IEEE Security and Privacy, Apr. 2007, Iraq Virtual
Science Library.

[15] Royal P., Halpin M., Dagon D., Edmonds R., and Lee W, “Polyunpack:

Automating the hidden-code extraction of unpack-executing malware”.
In ACSAC’06: Proceedings of the 22nd Annual Computer Security

Applications Conference, pages 289–300, Washington, DC, USA, 2006.
IEEE Computer Society, Iraq Virtual Science Library.

[16] Shin D., Im C., Jeong H., Kim S., and Won D., 2011, "The new
signature generation method based on an unpacking algorithm and

procedure for a packer detection", International Journal of Advanced
Science and Technology Vol. 27, February, pp 59-78.

[17] Steven W. Smith , "The Scientist and Engineer's Guide to Digital Signal

Processing", copyright ©1997-1998.

[18] Sun L., Ebringer T., and Boztas S., "Hump-and-dump: efficient generic
unpacking using an ordered address execution histogram". 2nd Int’l

CARO Workshop, May 2008.

[19] Tian Z., Sun X. and Yang H., 2011, ”A Scheme of PE Virus Detection
Using Fragile Software Watermarking Technique”, International Journal

of Digital Content Technology and its Applications. Volume 5, Number
2, February, pp. 158-164.

[20] Wagner C., "Data Compression- DEFLATE Algorithm", Spring

Semester 2011.

[21] Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/, 2013.

0.976

0.9

0.94 0.936 0.932

0.964

0.928

Entropy LZO QLZ Gzip Deflate LZW Totality
Algs

http://oberhumer.com/
http://www.oberhumer.com/opensource/lzo
http://upx.sourceforge.net/
http://www.ollydbg.de/
http://www.peid.info/

