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 Abstract—A new wavelet transform (WT) is introduced based 

on the fractional properties of the traditional Fourier transform. 

The new wavelet follows from the fractional Fourier order which 

uniquely identifies the representation of an input function in a 

fractional domain. It exploits the combined advantages of WT 

and fractional Fourier transform (FrFT). The transform permits 

the identification of a transformed function based on the 
fractional rotation in time-frequency plane. The fractional 

rotation is then used to identify individual fractional daughter 

wavelets. This study is, for convenience, limited to one-dimension. 
Approach for discussing two or more dimensions is shown. 
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I. INTRODUCTION 

An introduction has been given to a new family of 
wavelets that are formed from the fractional Fourier order of 
the Fourier transform [1-5]. The fractional order of the Fourier 
transform is discussed based on discrete Fourier transform 
(DFT) as the fractional Fourier transform (FrFT) [6, 7] which 
is believed to be related to the chirp-Fourier transform [7, 8]. 
The chirp signal is highly concentrated in the fractional 
domain and a time delay leads to a fractional shift making the 
FrFT an efficient tool for separating the chirp signal [2]. In 
fact, the property of the FrFT tool enables that such delays 
choreographing into/as noise can be effectively filtered off [8]. 
Meanwhile, there are other possible characterizations of the 
fractional domain based tools that can be derived from the 
fractional Fourier tool. This was introduced as fractional wave 
packet transform (FRWPT) in [3]. The FRWPT was aimed at 
combining the advantages of the WT and FrFT, but this 
transform is computationally expensive [2]. In the recent 
times, this relationship has received wider attention in the 
discussion of wavelet families based on the fractional order of 
the DFT such as in [1, 9] and in [2]. It is called the fractional 
wavelet transform (FrWT). It is hoped that the proposed FrWT 
circumvents the computational cost available in [3]. Although 
the new wavelet transform discussed in [3] stemmed from the 
parent impulse filter property of the wavelet function, we 
approach the problem in a new fashion. For instance, in this 
work we extend this novelty into discussing wavelet transform 
using the quadratic phase function, as an example,  earlier 
mentioned in [1] and based on FrFT by exploiting the dilation 
and translation properties of the mother wavelets demonstrated 
in [10].  

 

At the moment, other studies have followed different 
methods to showing the exact closed-form expression for 
wavelet transform, for instance, by using raised cosine 
function [11]. The exact closed form expression for discrete 
wavelet transform based on FrFT is derived in this study. The 
complexity of the transform within a novel family of wavelet 
proposed here is also described. The computational gain 
exhibited in this new design is well spelt out and stressed. This 
would however revive the interest in deploying wavelet in 
signal processing, for instance.  

We have organized the remaining parts of this paper as: In 
Section II, we familiarize the reader with the basic wavelet 
theory, then the proposed wavelet in Section III and the 
closed-form expression for the proposed wavelet is described 
in Section IV. The conclusion is presented in Section V. 

II. TRADITIONAL WAVELET THEORY 

Wavelets are orthonormal functions derived from the 
parent scaling functions. For instance, consider an input signal 
f(t), that modulates the transforming function, or scaling 
function, φ(t). There are narrowband functions ψ(t) derivable 
from φ(t), which are orthogonal wavelets useful in the design 
of multicarrier systems. By the Fourier relation and Parseval’s 
theory, the signal for band-limited case can be periodic with β, 
-2π ≤ β ≤ 2π, so that if ψl,m(t) belongs to a set of orthonormal 
functions, then; 

  )()()()( ,, nmkldttt nkml   
(1) 

where δ(.) is a Dirac delta. Equation (1) defines a simple 

orthogonality condition between two daughter wavelets. Since 
ψ(t) is obtained from the decomposition of φ(t), we can 
express the relationship of the input signal with φ(t) in discrete 
form as [12]; 
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where M is the length of the characteristic filter. f(m) is the 
discrete equivalent of f(t). The mother wavelet has a clear 
relation to the filters; 
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where g(m) is a high-pass filter (HPF) and can be directly 
derived or constructed from a low-pass filter (LPF) that comes 
from the parent scaling function as; 

 

m

mtmht )2()(2)(   (4) 

where h(m) is the LPF and )(t  is the scaling function. 

Thus, as an alternative to modulating the input symbols by the 
sinusoids, these half-band filters can be used. The high-pass 
filters construct the detail coefficient part of the signal while 
the low-pass filters construct the approximate coefficient part 
of the signal. The high-pass filter can be formed from the low-
pass filter as: 

)1()1()( nMhng n   (5) 

where M is the length of the filter and n is the prevailing 
filter coefficient index. Both the high-pass and low-pass filters 
constitute the filter bank [13] required in multiresolution 
analysis (MRA). In signal processing for example, the 
multiplexing/processing function can be equivalently used 
orthogonal basis function such as [14]:  
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where   and   are scales and shifts respectively. φm,n(t) 
represents the complex orthogonal DWT basis function similar 
to the traditional multicarrier system. 

III. PROPOSED FRACTIONAL WAVELET TRANSFORM 

It is a common knowledge that when a mother wavelet is 
translated and dilated, the daughter wavelets are born. The 
shifting and translation parameters of the father wavelet (or 
scaling function) can be well represented and approximated 
respectively, each of which gives rise to a uniquely different 
family of wavelets (see [10]).  

Earlier, [15] identified discrete wavelets for any family by 
approximating the shift and translation parameters to discrete 
coefficients. Alternatively, the DFT roots can as well be 
exploited to define a new family of wavelets, namely, 
fractional wavelet transform. The fractional orders of the DFT 
define a uniquely different FrFTs which must also identify 
daughter wavelets [1] consequent on the DFT roots [16] that 
characterize the FrFT order.  

Now, let us recall the definition of wavelet as represented 
in [1, 3]; for instance, let the mother wavelet be defined as, 

2
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But daughter wavelets are translated and shifted parts of 
Equation 6. So, let the daughter wavelets be defined as: 
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where τ and k are shifts and scale parameters respectively. 
These parameters are defined as k = 2d and τ = 2dn for 
traditional discrete wavelets [15].  

Equation 7 (in discrete sense) becomes 

)2(2 2/
, ntdd
nd    where d and n are equivalent shift 

and scale parameters respectively. Let Equation 7 be defined 
in terms of Equation 6 as: 
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If we consider a signal ƒ(t) to be transformed by the 
wavelet transform, then the resulting transformation can be 
expressed as: 
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Notice that for unit impulse [17], in other words, for a 
maximum of unit amplitude input signals: 
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Equation 9 is necessarily a Fourier transform of ƒ(t) that is 
shifted and translated by τ and k respectively. For a rotation 
angle α which defines the fractional Fourier order of a-
fractional rotation, 0 < |α| < π (i.e. 0 < |a| < 2), then the 
fractional Fourier transform when α is not a multiple of π-rad 
can be expressed as [1, 3, 16]: 
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where )sgn(sinˆ   and 
2




a
 . Thus, there exist a unique 

fractional Fourier transform for every order a. From Equation 
10, let sectu  such that, 
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where, 
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Figure 1 shows an asymptotic representation of the 
behaviour of DFT roots which implies that the possible 
Fourier roots that govern the fractional Fourier order can never 
be zero. Although at a = 1, the traditional DFT is obtained. 
Thus, the possible roots that define the kernel of the FrFT or 
the resulting fractional wavelet cannot be obtained from a zero 
root. 
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Fig. 1. A graph of the possible fractional Fourier order 

From Equation 11 tan1/2α is the scale parameter. Thus, 
Equation 11 is a fractional Fourier transform in the 
resemblance of a wavelet transform. If the wavelet is of the 

quadratic phase function where )2exp()( tit   , as of 

Equation 1 where the coordinate is scaled by tan1/2α and the 
amplitude is scaled by Aα, then the discussion can proceed for 
signal of interest to exploit the FrFT property and wavelet 
property also. So, the convolution in the integral of Equation 
11 is a wavelet transform. Notice that Equation 11 
characterizes one–dimensional (1-D) wavelet transform only. 
However, for two-dimensional (2-D) and so on wavelet 
transforms, the following definitions must be followed [9]: 
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(12) 

Equation 12 is a typical 2-D wavelet transform. The scaled 
and dilated equivalent of Equation 12 can be expressed as: 
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where τ is the shift parameter respective to t-coordinate, ξ 
is the shift parameter respective to the z-coordinate. Recall the 
quadratic phase function based wavelet transform in Equation 
9 and the fractional Fourier transform based wavelet 
constructed in Equation 11. We can define the phase function 
wavelet transformation based on Equation 11 by substituting 
the scaling factor k in Equation 6 into Equation 9 so that: 
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where 2/1tank . Thus in 1-D respect, if the function 
ƒ(τ) is translated/dilated by τ then the t coordinate will be 

scaled by 2/1tan . This gives a unique wavelet transform for 
every possible fractional Fourier order. This suggests that, 
instead of scaling f(τ) by some discrete factors (such as k = 2d), 
the signal f(τ) can be scaled by the rotation factor of the 

fractional Fourier order ( 2/1tank ). It can be further 
stressed that for every frequency content, the shift and 
fractional rotation (or frequency fractional) content is well 
localized. The properties of the new wavelet function can be 
studied based on the fractional Fourier transform wavelet 
(fractional-wave) discussed in [3] and extended in [2, 5]. It 
exploits the time-frequency MRA advantage of the WT and 
the fractional frequency domain explanation of an input signal 
advantage of the FrFT. Thus, the new transform can provide 
information on a signal of interest in a fractional scale during 
the MRA in the time-frequency plane. 

IV. CLOSED-FORM EXPRESSION OF THE PROPOSED 

WAVELET TRANSFORM 

We can proceed to finding the exact discrete closed-form 

expression of Equation 14 while assuming that 2/1tank  
for brevity. Without loss of generality, recall the WT defined 
in Equation 9 can be expanded to accommodate the FrWT 
starting from: 
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But from traditional derivative theory knowledge and 
taking the first derivative of y, 
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From Equation 16a, it can be rewritten that: 
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Now, substituting for d : Put Equation 16b into Equation 15, 
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The lower limit of the above relation is 0 (This is because 

0e ). However, recall that 
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For discrete values of above expression, say 0 ≤ n < N. Then,  
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By factoring the n terms accordingly,  
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Substituting for G in Equation 18 with k = tan1/2α,  
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Eliminating the k terms appropriately, Equation 18 can be 
written in a compact form such that: 
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On the other hand,  
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Factorizing the terms accordingly,  
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From Equation 19, the term  iek ti 2/)( tan/2

can be seen 

as a normalization parameter in the discrete sense. Similarly to 
the formulation of Equation, from Equation 11, the discrete 
relation can be expressed as: 
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By eliminating the k terms appropriately, we obtain that: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 5, No. 1, 2014 

186 | P a g e  
www.ijacsa.thesai.org 

)(}2{
2

exp
)(2

)/(2

),(

1

0

2

nfun
k

ni

uni

kui
ek

DAux

N

n 













 











  

 

(21) 

Now, recall that: 
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Now, factorizing Equation 21: 
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Substituting )(AD of Equation 22 for  DA in Equation 23: 
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This can be written in a more compact form as: 
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Clearly, Equation 23 can be exposed as: 
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taken to be the normalization parameter for the alternative 
earlier fractional wavelet transform comparable to the 
proposed FrWT in Equation 19, then Equation 23 becomes: 
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Now, comparing Equations 24 and 19, it can be observed 
that the complexity overhead associated with Equation 24 is 
more than that of Equation 19 (proposed). The computational 
cost of implementing FrWT based on Equation 11 is 
discouraging which is greatly reduced in the case of Equation 
14. Meanwhile, that there are different wavelet for each 
fractional Fourier order, the idea of compact support stressed 
in [18] can be well accommodated. Also in the combination of 
the MRA property of the wavelet transform and the fractional 
Fourier property of the FrFT, the proposed well addresses a 
new wavelet that can achieve MRA in a fractional domain 
sense.  

V. CONCLUSION 

A new kernel for discussing the wavelet transform has 
been presented. It was derived from the fractional Fourier 
properties of the fractional Fourier transform to exploit the 
wavelet transform properties. The new wavelet combines the 
MRA and the fractional Fourier properties to discuss input 
signal in the fractional domain sense. Analytical results 
obtained were explicitly described in discrete and closed form 
solution unlike any work before. Also, it was identified that 
the fractional wavelet transform presented shows uniquely 
different wavelet for every particular fractional Fourier order. 
The new fractional wavelet obtained was shown to be 
computational efficient that the earlier fractional wavelet using 
explicit discrete definition shown.  
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