
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

194 | P a g e
www.ijacsa.thesai.org

A Review of Scripting Techniques

Used in Automated Software Testing

Milad Hanna

Department of Computer Science,

Faculty of Computers and Information,

Helwan University,

Cairo, Egypt

Nahla El-Haggar

Lecturer of Information Technology,

Faculty of Computers and Information,

Helwan University,

Cairo, Egypt

Mostafa Sami

Professor of Computer Science, HCI

lab, Faculty of Computers and

Information,

Helwan University,

Cairo, Egypt

 Abstract— Software testing is the process of evaluating the

developed system to assess the quality of the final product.

Unfortunately, software-testing process is expensive and

consumes a lot of time through software development life cycle.

As software systems grow, manual software testing becomes

more and more difficult. Therefore, there was always a need to

decrease the testing time. Recently, automation is as a major

factor in reducing the testing effort by many researchers.

Therefore, automating software-testing process is vital to its

success. This study aims to compare the main features of

different scripting techniques used in process of automating the

execution phase in software testing process. In addition, an

overview of different scripting techniques will be presented to

show the state of art of this study.

Keyword— Software Testing; Automated Software Testing; Test

Data; Test Case; Test Script; Manual Testing; Software Under

Test; Graphical User Interface.

I. INTRODUCTION

Software testing has evolved since 1970’s as an integral
part of software development process. Through it, the final
quality of the software can be improved by discovering errors
and faults through interacting, checking behavior and
evaluating the System Under Test (SUT) to check whether it
operates as expected or not on a limited number of test cases
with the aim of discovering errors that are found in the
software and fixing them. According to Ilene Burnstein,
software testing describes as a group of procedures carried out
to evaluate some aspect of a piece of software [1]. Ehmer
Khan [2] shortly defines it as a set of activities conducted with
the intent of finding errors in software. In addition, according
to Ammann and Offutt [3] software testing means evaluating
software by observing its execution.

Since software-testing process is a very expensive process,
complete testing is practically impossible and it is not
acceptable to reduce testing effort by accepting quality
reductions. Testing effort is often a major cost factor during
software development. Many software organizations are
spending up to 40% of their resources on testing [4].
Therefore, an existing open problem is how to reduce testing
effort without affecting the quality level of the final software.

Automation is one major solution for reducing high testing
effort. Automating certain manual tasks from software testing
process can save a lot of testing time. It can help in performing
repetitive tasks more quickly than manual testing.

II. MANUAL TESTING VS. AUTOMATED TESTING

Software testing can be divided into two main categories,
manual testing, and automated software testing. Both
categories have their individual strengths and weaknesses.

With a manual testing, the more traditional approach,
tester initiates each test, interacts with system, reports and
evaluate the test results. To satisfy the test results manually,
testers should prepare and execute test cases on SUT. These
test cases will best test the system using defined processes
trying to find bugs. So, they can be fixed before releasing the
product to the public [5].

Automation is one of the more popular and available
strategies to reduce testing effort. It develops test scripts that
will be used later to execute test cases instead of human [6].
The idea behind automation is to let computer simulate what
the tester is doing in reality when running test cases manually
on SUT. AST is more suitable for repetitive tasks during
different testing levels such as regression testing, where test
cases are executed several times whenever the source code of
SUT is modified or updated [7].

Katja Karhu [5] summarizes the difference between the
two categories by suggesting that automated software testing
should be used to prevent new errors in the already tested
working modules, while manual testing is better used for
finding new and unexpected errors. The two approaches are
complementary to each other, automated testing can perform a
large number of test cases in little time, whereas manual
testing uses the knowledge of the tester to target testing to the
parts of the system that are assumed to be more error-prone.

III. SCRIPTING TECHNIQUES

Test scripts are the basic element of automation. Test
script is a series of commands or events stored in a script
language file to execute a test case and report the results. It
may contain logical decisions that affect the execution of the
script, creating multiple possible pathways, constant values,
variables whose values change during playback. The
advantage of test scripts development process is that scripts
can repeat the same instruction many times in loops, each time
with different data. There are many types of scripting
techniques that can be used in automation. Fewster and
Graham [8] listed five different types of scripting techniques
that will be discussed in this section.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

195 | P a g e
www.ijacsa.thesai.org

A. Linear Scripting Technique

John Kent [9] explains the idea behind linear technique,
which is simply to set the test tool to the record mode while
performing actions on the SUT. The generated recorded script
consists of a series of testing instructions using the
programming language supported by the tool. Gerald Everett
suggested that the linear scripts are being created by recording
the actions that a user performs manually on interface of the
system and then saving test actions as a test script. These test
scripts can then be replayed back to execute the test again. So,
linear scripting technique is called Record/Playback [10].
2Figure 1 illustrates record/playback steps.

Figure 1: Record/Playback Steps

Microsoft® Visual Studio® Team Edition is an example
for tool applying linear scripting technique. It enables testers
to perform record and playback to be used to create and
execute the tests [11].

Every time a test case is being automated using linear
technique, new test script is generated. Thus, the more test
cases are automated, the more lines of code are generated.
This means that the number of Lines of Code (LOC) is
proportional to the number of automated test cases [9]. Thus:
Lines of code α Number of automated test cases

Figure 2 and Figure 3 shows a practical example for
applying linear scripting technique on a simple login page,
which followed by the recorded test script that presents the
sequence of actions performed manually on that page.

Figure 2: Login Page

//Filelds

/// <summary>

/// Go to web page 'http://TestSite/login.aspx' using new

browser instance

/// </summary>

public string UIWelcometoTestSiteWinWindowUrl

="http://testsite/login.aspx";

/// <summary>

/// Type 'test-user' in 'txtUserName' text box

/// </summary>

public string UITxtUserNameEditText = "test-user";

/// <summary>

/// Type '{Tab}' in 'txtUserName' text box

/// </summary>

public string UITxtUserNameEditSendKeys = "{Tab}";

/// <summary>

/// Type '********' in 'txtPassword' text box

/// </summary>

public string UITxtPasswordEditPassword =

"to+VpC5U2lKdiNhE9v4dzPA0ZmKuc60K";

/// <summary>

/// Type '{Enter}' in 'txtPassword' text box

/// </summary>

public string UITxtPasswordEditSendKeys = "{Enter}";

//Actions

// Go to web page the webpage using new browser instance

this.UIWelcometoTestSiteWinWindow.LaunchUrl(new

System.Uri(this.LoginParams.UIWelcometoTestSiteWinWindowU

rl));

// Type 'test-user' in 'txtUserName' text box

uITxtUserNameEdit.Text =

this.LoginParams.UITxtUserNameEditText;

// Type '{Tab}' in 'txtUserName' text box

Keyboard.SendKeys(uITxtUserNameEdit,

this.LoginParams.UITxtUserNameEditSendKeys,

ModifierKeys.None);

// Type '********' in 'txtPassword' text box

uITxtPasswordEdit.Password =

this.LoginParams.UITxtPasswordEditPassword;

// Type '{Enter}' in 'txtPassword' text box

Keyboard.SendKeys(uITxtPasswordEdit,

this.LoginParams.UITxtPasswordEditSendKeys,

ModifierKeys.None);

Figure 3: Linear Script for Login Page

John Kent [9] mentioned main advantages for linear
scripting technique as listed below:

 It enables tester to start automating quickly as no

planning is required, tester can just simply record any

manual test case.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

196 | P a g e
www.ijacsa.thesai.org

 The tester does not need to have any programming

skills.

 It is good for demonstrating the SUT.

John Kent [9] mentioned the shortcomings for linear
scripting technique as listed below:

 The generated scripts are very difficult to be maintained

because they are made up of long lists of actions of

objects interacting with interface, it contains its own

hard-coded data, and this is not the best way for saving

them.

 The recorded script can only work under exactly the

same conditions as when it was recorded at the first

time. If simple error happened or unexpected normal

events (e.g. file not found) during a test run, it will not

be handled correctly by the test script.

 Linear test scripts are not reliable enough, even if the

application has not changed. They often fail on replay

because other things occurred that did not happen when

the test was recorded.

B. Structured and Shared Scripting Techniques

Both structured and shared scripting techniques are being
formed by using structured programming instructions that are
used to control the flow of execution of the script.

Structured scripting technique uses structured
programming instructions, which either be control structures
or calling structures [8]. Control structures is used to control
the different paths in the test script (e.g. If condition). Calling
structures is used to divide large scripts into smaller and more
manageable scripts. For example, one script can call another
script to perform specific functionality and then return to the
first script where the subscript was called. The most important
advantage of structured technique is that the test script can
validate for specific conditions to determine if the executed
test passed or failed according to these conditions. However,
the script has now become a more complex program and the
test data still tightly coupled within the test script itself.
Besides, implementing structured scripts require not only
testing skills but also programming skills [8].

Figure 4 shows applying structured scripting technique on
a simple login web page.

Shared scripting technique enables common actions to be
stored in only one place. This implies that a scripting language
that allows one script to be called by another one is required.
The idea behind shared scripts is to generate separate script
that performs one specific common task that other scripts may
need to perform later.

Thus, different test scripts can call this common task
whenever they needed and testers will not have to spend time
for implementing common actions many times across all
scripts [12]. It works well for small-scale systems to be tested
using relatively few test scripts. Figure 5 illustrates using
shared scripting technique [12].

 [TestMethod]

public void Login_TestMethod()

{

 WatiN.Core.Settings.WaitForCompleteTimeOut = 120;

 IE ie = new IE("http://testsite/login.aspx", true);

 ie.TextField(Find.ById("txtUserName")).Value = "test-

user";

 ie.TextField(Find.ById("txtPassword")).Value =

"12345678";

 ie.Button(Find.ById("btnLogin")).Click();

 ie.WaitForComplete();

 // If "Welcome" message is displayed, then the test

is passed

 if (ie.Text.Contains("Welcome"))

 {

 Console.WriteLine("Testing Passed");

 }

 else

 {

 //If not, then the test is failed

 Console.WriteLine("Testing Failed");

 }

}

Figure 4: Structured Script for Login Page

Figure 5: Driver Scripts and a Test Library

For example, instead of having the same login action
repeated in a number of scripts, tester could simply implement
it once as shared script and each test script just have to call
this common function as illustrated in Figure 6:

public IE Login()

{

 WatiN.Core.Settings.WaitForCompleteTimeOut = 120;

 IE ie = new

IE(Telco_Automation.Properties.Settings.Default.SiteURL,

true);

 ie.TextField(Find.ById("txtUserName")).Value =

"test-user";

 ie.TextField(Find.ById("txtPassword")).Value =

"amv1234!@#$";

 ie.Button(Find.ById("btnLogin")).Click();

 Assert.IsTrue(ie.Text.Contains("Welcome"));

return ie;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

197 | P a g e
www.ijacsa.thesai.org

//Test cases for different actions

[TestMethod]

public void TestMethod_1()

{

 IE ie = Login();

}

[TestMethod]

public void TestMethod_2()

{

 IE ie = Login();

}

[TestMethod]

public void TestMethod_3()

{

 IE ie = Login();

}

Figure 6: Shared for Login Page

C. Data-Driven Scripting Technique

New additional scripting techniques are required to form
test scripts in such a way that the maintenance costs of the test
scripts can be reduced than in the previous scripting
techniques. Data-Driven scripting technique proposes better
organization of test scripts and hence lower maintenance costs
of the test scripts. Bhaggan [13] demonstrates that test data is
stored in a separate data file instead of being tightly coupled to
the test script itself. While performing tests, test data is read
from the external data file instead of being taken directly from
the script itself. It allows both input data and expected results
to be stored together separately from the script itself. For
example, instead of having username and password data input
values within the login script, these values can be stored in an
external excel file and implement test script to read test data to
use it while executing the test script.

In this technique, it is important that the external data file
must be synchronized with the control script. This means that
if any changes applied to the format of the data file, then the
control script must be updated also to correspond to it.

To automate new test case, new control script has to be
implemented with new data records inserted into external data
file. Figure 7 illustrates data-driven scripting technique [12].

Figure 7: Data-Driven Scripting Technique

In data-driven scripting technique, the maintenance costs
are lower than the costs of rerecording the tests from the
beginning. Therefore, tests will not have to be rerecorded, but
only maintained [13].

Linda G. Hayes [14] presents the main advantages of this
approach as below:

 Similar tests can be added very quickly with different
input data as the same script can be used to run
different tests with different data. xIt may useful when
testing large number of data values using the same
control script.

 Data files are stored in easily and maintainable text
records, so it can be updated.

 The format of data files can be modified to suit the
testers with some modifications in the control script.
For example, the data file can contain special column
for comments that the control script will ignore while
execution. This make the data file more readable,
understandable and therefore maintainable.

The disadvantages of data-driven technique by Linda G.
Hayes [14] are listed below:

 It requires high level of programming technical skills in
the scripting language supported by the tool. Such tests
need to be well managed, as it requires maintaining
data files used by various test scripts. This may increase
the cost for the project.

 One script is needed for every logically different test
case. This can easily increase the amount of needed
scripts dramatically. Laukkanen considered that this is
the major problem in this technique [12].

Each test

method calls

the shared

Login function

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

198 | P a g e
www.ijacsa.thesai.org

The following test script with the external data file show
applying data-driven scripting technique on a simple web page
in Figure 8.

Figure 8: Sample Web Page

[TestMethod]

public void GeneratedTestMethod()

{

IE ie = new IE();

Application xlApp = new Application();

Workbook xlWorkbook =

xlApp.Workbooks.Open(@"D:\Data.xlsx");

Worksheet xlWorksheet = xlWorkbook.Sheets[1];

string url = ((Range)xlWorksheet.Cells[3,

2]).Text.ToString();

ie.GoTo(url);

ie.TextField(Find.ById(new Regex("txtTaskId"))).Value =

((Range)xlWorksheet.Cells[4, 2]).Text.ToString();

ie.TextField(Find.ById(new Regex("txtTaskORI"))).Value =

((Range)xlWorksheet.Cells[5, 2]).Text.ToString();

ie.SelectList(Find.ById(new

Regex("ddlTaskName"))).Options[int.Parse(((Range)xlWorksh

eet.Cells[6, 2]).Text.ToString())].Select();

ie.TextField(Find.ById(new

Regex("txtTaskComment"))).Value =

((Range)xlWorksheet.Cells[7, 2]).Text.ToString();

ie.Button(Find.ById(new Regex("btnClose"))).Click();

}

Figure 9: Generated Test Script for the Web Page

Figure 10: Output Data File Snapshot for the Web Page

D. Keyword-Driven Scripting Technique

Keyword-Driven scripting technique is a very similar to
manual test cases. The business functions of the SUT are
stored in a tabular format as well as in step-by-step
instructions for each test case. Keyword-driven approach
separates not only test data for the same test as in data-driven
scripts but also special keywords for performing business
function in the external file. The tester can create a large
number of test scripts simply using predefined keywords. All
what the tester needs is just to know what keywords are
currently available to be applied on SUT and what is the data
that each keyword is expecting. Additional keywords can be
added to the list of available programmed set of keywords to
enlarge the scope of automation. It is more sophisticated than
data-driven technique [12]. Fewster and Graham [8] state that
the keyword-driven scripting technique is a logical extension
of the data-driven scripting technique. A limitation of the data-
driven technique is that the detailed steps of what the tests are
doing are implemented within the control script itself.
Therefore, keyword-driven technique takes out some of the
intelligence from the script, put it into the external file with
the test data, and leaves the task for reading both steps and
data for the control script. Thus, instead of having data file in
data-driven, complete test file is needed in keyword driven
scripting technique. It doesn’t contain test data only but also a
complete description of the test case to be automated using a
set of keywords to be read and interpreted later on while test
case execution. The test file states what the test case will do,
not how to do it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

199 | P a g e
www.ijacsa.thesai.org

Laukkanen [12] supposed that in order to execute the
tabular automated test cases, there have to be a middle layer
that converts the special keywords to the source code that
interacts with SUT (the source code that implements the
keywords are called “handlers”). The translation of keywords
is implemented outside of the control script itself. Now, the
control script only reads each keyword in order from the test
file and calls corresponding supporting script. In addition, a
driver script, which parses the test data and calls the
appropriate keyword handlers, is needed. Figure 11
demonstrates these layers.

Figure 11: Handlers for Keywords

He also divides the keywords into two different levels of
test keywords: high level and low-level keywords. Low-level
keywords are more suitable for detailed testing on the
interface level (e.g. Input, Click, and Select…etc.). High-level
keywords are more suitable for testing higher-level
functionality like SUT business logic (e.g. Create Account,
Login…etc.). Multiple low level keywords can be combined
together to form high-level keywords [12].

Zylberman and Shotten [7] show that keyword-driven
technique is the next generation approach of automation that
separates the task of automated test case implementation from
the automation infrastructure. They state that keyword driven
testing can be divided into two main layers:

1. Infrastructure Layer: It is a combination of the three
types of keywords. It receives the different keywords
as inputs to perform operations on the SUT.

2. Logical Layer: This layer helps manual testers to build
new test scripts using the pre-defined keywords (that
is already implemented in Infrastructure Layer).

They also divide the keywords into three different kinds
(item/base level keywords, utility functions, and sequence/user
keywords) which described below [7]:

1. Item Operation: an action that performs a specific
operation on a given GUI element. Parameters should
be specified to perform an operation on a GUI item
such as name of GUI item, operation to be performed
and the values needed.

2. Utility Functions: a script that executes a certain
functional operation that is hard or ineffective to

implement as a sequence. For example: Run
Application, Close Application, Wait X seconds,
Retrieve Data from DB,...etc

3. Sequence: a set of keywords that produces a business
process such as “create customer” keyword. Sequence
keyword is made by combining various items and
functions.

They also suggest reducing the number of keywords by
creating multi-function keywords. For example,
"Update_Subscriber_Status" keyword is a better approach than
creating two special keywords for "Activate_Subscriber" and
"Deactivate_Subscriber" [7]. Although it can be argued that
may be it is more useful not to combine keywords together
because this allows using them again in creating another test
script. For example, tester can use "Deactivate_Subscriber"
keyword in another sequence of keywords (e.g.
Delete_Subscriber).

Rantanen [15] suggests a new method for dividing system
to multiple user stories. Each user story consists of one or
multiple test cases. Each test case is to be mapped to the actual
code interacting with the SUT while execution. Every test case
contains one or more sentence format keywords. Every
sentence format keyword consists of one or more user
keywords which written in understandable text (they can be
understood without technical skills). A user keyword consists
of one or more base keywords. Finally, the base keywords
contain the source code interacting with system to be tested.
Figure 12 illustrates dividing SUT to multiple user stories.

Figure 12: Mapping from User Story to SUT

Rashmi and Bajpai [16] proposed a new contribution for
keyword-driven framework based on the concept of recording
as shown in Figure 13. To start automating process, enter the
URL of the system to be tested. Like linear scripting
technique, the keyword driven testing framework records the
steps while user navigates the web application manually. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

200 | P a g e
www.ijacsa.thesai.org

user name and password are entered in the appropriate text
boxes, and then the user clicks the Log-In button. The tool
records all the operations performed manually in the web
browser until the test is stopped.

When finishing the recording, a corresponding test script
file is generated that contains all user actions. The user actions
consists of items clicked, items selected and value typed…etc.
These steps are generated in tabular format, representing each
operation performed in the form of keyword, value and
operation.

When the test is finished and replayed back, the tool runs
keywords that were saved in the output test script file. The
SUT opens in a new web browser and all recorded steps are
performed again automatically, as it was originally performed
manually in the test.

Figure 13: Keyword Driven Framework Based on Recording

After the new test run is completed, the test results are
displayed to indicate the status of the test whether the test is
passed or failed. The test results window displays two key
elements of the test run for analysis purpose. The first one
presents the steps that were performed while test execution
while the second element presents the test result details.

Object Repository is a centralized place for storing the
properties of available objects in SUT. Websites are developed
using many different objects (e.g. textbox control, input tag).
Each object is identified based on the object type. It has
properties (e.g. name, title, caption, color, and size) and
specific set of methods, which help in object identification.

Wissink and Amaro [6] state that the principal feature of
the keyword-driven scripting technique is the separation of
engineering tasks into a set of roles. These roles include test
designer, automation engineer, and test executor. To automate

test cases in the keyword-driven scripting technique, the next
steps are to be followed:

1. A set of actions need to be defined by the test designer
and then documented in an external file with other
keywords, input data, and expected results.

2. The automation engineer implements the different
keywords defined above by the test designer in the
programming language of the tool.

3. The test executor just runs the tests directly from the
spreadsheet.

The advantages of keyword-driven scripting technique
mentioned by Linda G. Hayes [14] are:

 Using keyword-driven scripting technique, the tester
only needs to know keywords and learn how to use
them.

 The number of generated scripts required for keyword-
driven is dependent of the size of the SUT rather than
the number of tests. This means that many more tests
can be created without increasing the number of scripts.

 Like data-driven scripting technique, the way in which
tests are created can be modified to suit the testers
rather than the test tool, using the format and tools that
the testers are most comfortable with.

The disadvantages of keyword-driven scripting technique
mentioned by Linda G. Hayes [14] are:

 The costs for development of customized application
specific functions (framework) are very high in terms
of both time and human resources for technical skills.
Such specific framework development can be
considered as standalone software development that
needs to be tested before using in testing other
software.

 If the SUT requires more than just a few customized
keywords, then testers should learn a high number of
keywords.

IV. DISCUSSION

According to the above review of the paper about the
different scripting techniques demonstrated by Figure 14,
which illustrates moving from linear to keyword scripting
technique in addition to a comparison of the main features for
each of them as in Table 1. We recommend applying the data-
driven scripting technique for automating the execution phase
through software testing process as it is considered as the most
cost effective scripting technique.

It is necessary to spend time building the test to avoid high
maintenance costs on the long run. If the tester spends more
time to develop test scripts, maintenance cost will be lower.
However, if tester uses the fastest way to create test scripts
(record/playback), then the maintenance cost will be very
high. The following Table 1 and Figure 14 present a
comparison between different scripting techniques. Numbers
used in the table range from 1 (Lowest) to 5 (Highest).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

201 | P a g e
www.ijacsa.thesai.org

TABLE 1: COMPARISON BETWEEN DIFFERENT SCRIPTING TECHNIQUES

Figure 14: Evolution of Test Automation

V. CONCLUSION

Across many organizations, it is well known that testers
lack the time needed to fully test the SUT within the time
allocated to testing phase. This often happens because of
unexpected environmental problems or problems in the
implementation phase of development process. This normally
shifts the software final delivery date. As a result to this delay,
only two options is found, either to work longer hours or to
add other resources to the test team to finalize testing in the
required limited time. Automation can be one solution to this
problem to accelerate testing and meet project deadline.
Automation of testing phase offers a potential source of savings
across all the life cycle. Automation using scripting techniques
can save the costs for the overall software testing automation
process, improve the speed of testing, shorten the product's
launch cycle and it can achieve an amount of work that manual
tests are impossible to finish.

REFERENCES

[1] I. Burnetein, "Practical Software Testing: process oriented approach,"
Springer Professional Computing, 2003.

[2] M. E. Khan, "Different Forms of Software Testing Techniques for
Finding Errors," International Journal of Software Engineering (IJSE),
vol. 7, no. 3, 2010.

[3] P. Ammann and J. Offutt, Introduction to Software Testing, New York:
Cambridge University Press, 2008.

[4] F. Elberzhager, A. Rosbach, J. Münch and R. Eschbach, "Reducing test
effort: A systematic mapping study on existing approaches," Information
and Software Technology 54, p. 1092–1106, 2012.

[5] K. Karhu, T. Repo and K. Smolander, "Empirical Observations on
Software Testing Automation," International Conference on Software
Testing Verification and Validation, 2009.

[6] T. Wissink and C. Amaro, "Successful Test Automation for Software
Maintenance," in 22nd IEEE International Conference on Software
Maintenance (ICSM'06), 2006.

[7] A. Zylberman and A. Shotten, "Test Language: Introduction to Keyword
Driven Testing," http://SoftwareTestingHelp.com, pp. 1-7, 2010.

. Property Linear Structured Shared Data-Driven
Keyword-

Driven

Ability to use reusable functions No No Yes Yes Yes

Data separation from test script No No No Yes Yes

Logic steps separation from test script No No No No Yes

Access to code required No Yes Yes Yes Yes

Use structured programming instructions No Yes Yes Yes Yes

Ability to compare test results with expected No Yes Yes Yes Yes

Ability to using script in regression testing No Yes Yes Yes Yes

Special framework required No No No No Yes

Programming skills level 1 (Low) 2 3 4 5 (High)

Effort needed to create test script 1 (Low) 2 3 4 5 (High)

Maintenance costs needed to update test script 5 (High) 4 3 2 1 (Low)

Reusability of test script 1 (Low) 2 3 4 5 (High)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 1, 2014

202 | P a g e
www.ijacsa.thesai.org

[8] M. Fewster, Software Test Automation: Effective Use of Test Execution
Tools, Addison-Wesley Professional, 1999.

[9] J. Kent, "Test Automation From RecordPlayback to Frameworks,"
http://www.simplytesting.com/, 2007.

[10] M. Fewster, "Common Mistakes in Test Automation," Grove
Consultants, 2001.

[11] "How to: Generate a Coded UI Test by Recording the Application under
Test," August 2013. [Online]. Available: http://msdn.microsoft.com/en-
us/library/dd286608%28v=vs.100%29.aspx.

[12] P. Laukkanen, "Data-Driven and Keyword-Driven Test Automation
Frameworks," Helsinki University of Technology, Software Business
and Engineering Institute, 2007.

[13] K. Bhaggan, "Test Automation in Practice," Delft University of
Technology, the Netherlands, 2009.

[14] L. Hayes, The Automated Testing Handbook, Automated Testing
Institute, 2004.

[15] J. Rantanen, "Acceptance Test-Driven Development with Keyword-
Driven Test Automation Framework in an Agile Software Project,"
Helsinki University of Technology, Software Business and Engineering
Institute, 2007.

[16] N. Bajpai, "A Keyword Driven Framework for Testing Web
Applications," International Journal of Advanced Computer Science and
Applications (IJACSA), vol. 3, 2012.

