
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

132 | P a g e

www.ijacsa.thesai.org

A Hybrid Multi-Tenant Database Schema for Multi-

Level Quality of Service

Ahmed I. Saleh

Computers and Systems Department,

Faculty of Engineering,

Mansoura University, Egypt

Mohammed A. Fouad

Information Systems Department,

Faculty of Computer and

 Information Sciences,

Mansoura University, Egypt

Mervat Abu-Elkheir

Information Systems Department,

Faculty of Computer and

Information Sciences,

Mansoura University, Egypt

Abstract—Software as a Service (SaaS) providers can serve

hundreds of thousands of customers using sharable resources to

reduce costs. Multi-tenancy architecture allows SaaS providers to

run a single application and a database instance, which support

multiple tenants with various business needs and priorities. Until

now, the database management systems (DBMSs) have not had

the notion of multi-tenancy, and they have not been equipped to

handle customization or scalability requirements, that are typical

in multi-tenant applications. The multi-tenant database

performance should adapt to tenants workloads and fit their

special requirements. In this paper, we propose a new multi-

tenant database schema design approach, that adapts to multi-

tenant application requirements, in addition to tenants needs of

data security, isolation, queries performance and response time

speed. Our proposed methodology provides a trade-off between

the performance and the storage space. This proposal caters for

the diversity in tenants via defining multi-level quality of service

for the different types of tenants, depending on tenant rate and

system rate. The proposal presents a new technique to distribute

data in a multi-tenant database horizontally to a set of allotment

tables using an isolation point, and vertically to a set of extension

tables using a merger point. Finally, we present a prototype

implementation of our method using a real-world case study,

showing that the proposed solution can achieve high scalability

and increase performance for tenants who need speedy

performance and economize storage space for tenants who do not

have demanding quality of service.

Keywords—Multi-Tenancy; Flexible Database Schema Design;

Data Customization

I. INTRODUCTION

As the majority of small and medium enterprises are
pressured to reduce their expenditure in information
technology via cutting down costs spent on buying software
licenses and updating the hardware. Therefore, a lot of
software vendors turn to the principle of sharing hardware
resources, software and services over the Internet among a
large number of customers, this environment is called cloud
computing, and its customers are called tenants. The cloud
software delivery model is called Software as a Service (SaaS),
and multi-tenancy is the primary characteristic of SaaS [1], as
it allows SaaS vendors to run a single instance of an
application and a database to serve multiple tenants with
various requirements.

Multi-tenancy increases resource utilization, as well as
sharing the same database instance to multiple tenants.

However, the more the company shares resources, the more
risks it faces because an outage of a shared resource can
potentially affect many customers. Shared resources also add to
the complexity of the solution [2]. The primary multi-tenant
application challenge is how to make the application ready for
future tenants‟ requirements, and enable it to fulfill their
interests and business needs, without changing code or
database schema and without doing too much work.

Managing data in multi-tenancy database can be divided
into three major schemas: Separated Databases Schema, which
is optimum for security, isolation, and customization, but on
the other side, it incurs the highest costs and storage space,
moreover, it is hard to maintain a large number of databases;
Separated Tables Schema, whose cost is low as compared to
separated databases, and is suitable for small database
applications, where the number of tables per tenant is small,
but it has scalability issues since it needs to maintain a large
numbers of tables; Shared Tables Schema, which achieves the
best storage space, the lower costs and good scalability at the
expense of poor performance. Each of the aforementioned
approaches has special requirements in designing schema
process, and selecting the appropriate approach for every
application depends on a number of changeable factors, such as
the nature of application, the number of participative
customers, the number of tables and the importance of data
security. Table I shows a brief comparison among the three
approaches.

When investigating a pool of potential SaaS customers, we
found that there are two types of customers: the first segment,
is customers who have high workloads and focused on quality
of services requirements, such as performance, security and
isolation assurance as fundamental requirements; on the other
hand, there are some customers, how have low workloads, are
focused on minimizing tenancy costs by reducing the hardware
resources required in the shared system as much as possible
and sacrificing workload performance.

Based on these tenants‟ requirements, we propose a flexible
multi-tenant database schema, using a set of factors and rates to
be used as shift keys between a separated databases schema, a
separated tables schema or a shared tables schema in a multi-
tenancy database, in order to achieve a good scalability and a
high performance with a low storage space, while supporting a
large number of tenants with different level of performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

133 | P a g e

www.ijacsa.thesai.org

TABLE I. THE MAIN APPROACHES TO MANAGING DATA IN MULTI-

TENANT DATABASE COMPARISON

The proposed multi-tenant database schema satisfy the two
segments of customers, and it can be describe as the following:

 Firstly, it is appropriate for tenants who have a high
workloads through separating their tables, to confirm
the data isolation, high security and reduce joining
operation to get the optimal performance in a shared
multi-tenant database.

 Secondly, it economizes the costs for tenants who have
a low workloads or who do not have demanding quality
of service level, through saving storage space, by
sharing the same table for these tenants as possible,
while preserving a minimum acceptable level of
efficiency to get the optimal cost.

The rest of the paper continues with a background review
of existing schema mapping techniques in Section II, followed
by a full presentation of our multi-tenant database schema
technique in Section III. Our case study will be presented in
Section IV, and the paper will be concluded in Section V.

II. RELATED WORK

The three major approaches to manage data in multi-tenant
databases are summarized in Table I, and discussed in detail in
[3] [4]. In addition to, there are several multi-tenant database
schema mapping techniques ware presented in [5],[6], the
majority of these techniques are derived from the three major
approaches of managing data in multi-tenant databases, in
order to create a logical isolated database schema for every
tenant in multi-tenant databases. We classify multi-tenant
database schema mapping techniques in to three segments:
techniques using a single approach to represent data in a multi-
tenant databases, techniques mixing two or three data isolation
approaches, and techniques mixing unstructured data as XML
data type and structured data as relation database.

A. Techniques Deploying a Single Approach

Some SaaS providers prefer to use a single multi-tenant
data storage approach to represent data in multi-tenant
databases, to avoid the complexity in database design.

Private Tables‟ Technique is derived from the separate
tables schema, where each tenant has a logical schema
consisting of a set of extensions tables. This technique was
explicated in [5], and provides a high performance, however
neglects the storage space and scalability. It was preferred to
use when applications have a few tenants or a few tables [1].

Universal Table‟ Technique is derived from the shared
tables schema, and was referred to as the most flexible
technique in [7]. This technique was adopted by
SalesForce.com. In the other side, this technique wastes storage
space, because of the great use of null values, moreover, it
harms query performance because it does not support indexes.

Pivot Tables‟ Technique is derived from the shared tables
schema, it was explicated in [1]. This technique eliminates null
values and supports more flexible extensions at the expense of
increasing query processing time for inserting, updating and
deleting operations.

The proposed technique in [8], hosted every tenant data in a
separated database, and divided tenants‟ databases into two
classes: high performance and low performance. The main
important point in this technique is that it measures the tenant
workload by transactions per second, and uses this metric to
measure overall workloads to get the hardware provisioning
policy and the associated scheduling policy.

B. Techniques Mixing the Separate Tables Schema and the

Shared Tables Schema approaches

There are a lot of techniques ware proposed to representing
data in multi-tenant databases such as in [1], [3], [6], [9], [10].
These techniques mixing separate tables and shared tables
schemas to achieve balance between scalability, performance,
data isolation and storage space with the best cost. However,
these techniques achieve some features, at the expense of other
features.

M-store‟ technique was proposed in [3], it saves storage
space and prevents null values, at the expense of
reconfiguration. Our proposal solves null problem relatively to
tenant need of performance.

Chunk Table‟ technique and Chunk Folding‟ technique
ware proposed in [6], these were flexible and reduce the
number of tables, at the expense of increasing the queries
complexity, because of the huge joining operation. These
techniques just focus on vertical partitioning into logical tables
'chunks', however, our proposal adds vertical and horizontal
partitioning to save a specific level of performance for every
tenant.

An Elastic Schema‟ technique was proposed in [1], it works
on increasing query performance and storing the data in the
database as a character large object (CLOB) or binary large
object (BLOB) values, to eliminate the impact of BLOB and
CLOB values, and divides tables into common tables and
virtual extensions. In our proposed technique every attribute
has a special attribute rate depending on: the type, size in
memory and rate of participation between tenants, in order to
decide merging or separating this attribute from the base table.

The technique proposed in [9] works on reducing joining
operations, by measuring an attribute‟s importance based on
how many tenants share it. The attributes kept in the base table
if they have high rate of participation. Unfortunately, this
technique ignores the workload for individual tenants,
however, in our proposed technique we solve this problem by
evaluating the importance of attributes, via collecting the
tenants workloads incorporating with the attributes workload.

 Separated

Database

Separated

Tables

Shared

Tables

Data isolation high middle low

Customizability high high low

Scalability low middle high

Maintenance cost high high low

Optimal use of

storage space

low middle high

General cost high middle low

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

134 | P a g e

www.ijacsa.thesai.org

C. Techniques Mixing an Unstructured Data and a Structured

Data

In [10], the technique works on splitting up the common
content tables, shared by all tenants, away from the extension
tables. The extension tables contain additional information,
tenants may need to supply, these tables are stored in XML
document. Using XML technique satisfies SaaS providers and
tenants‟ needs, because the extension data can be handle
without changing original database schema. However, it down
of performance in queries mechanism, because the collecting
between unstructured data in XML and structured data in
relation database takes more time.

III. FLEXIBLE MULTI-TENANT DATABASE SCHEMA

A. Flexible Multi-tenant Database Schema Overview

The previous section outlined the common schema-
mapping techniques for managing data in multi-tenancy
databases. These techniques focus on realizing all tenants‟
requirements, and ignore the multiple levels of tenants‟
workloads. However, in multi-tenancy architecture, a single
application and database instance should comply with the
tenants‟ needs as a whole, but the tenants on the same server
may have multiple requirements with varying qualities [8],
according to a set of business factors, such as: information
system workload and importance of data security. These
factors motivate us to propose a new schema mapping
technique to support multiple levels of data isolation, data
security and performance for the tenants in the multi-tenant
database.

Multi-tenancy in the database tier can be achieved by
sharing databases at different levels of isolation, which results
in different multi-tenancy database models according to the
requirements for each system. There are three main approaches
for isolating data in the multi-tenant database: firstly, shared
server and separated databases for each tenant, which provide
the highest degree of isolation, but it is much more costly;
secondly, shared database and separated tables for each tenant,
which is lower than the previous approach in isolation issue,
but more fair in the cost; thirdly, shared tables approach which
provide the worst degree of data isolation, but it is not costly
for the majority of tenants and it achieves a good scalability.

Usually, SaaS providers select the appropriate data
isolation approach to each application depending on a set of
factors that can change over time, such as: the number of
tenants, the size of tenants‟ data, the importance of data
isolation, and the desirable security degree. Unless multi-tenant
databases are equipped to handle the changes in these factors
such as increasing the number of tenants or the size of their
data, they will waste a lot of time and effort in reconstructing
database architecture, which is illogical and unacceptable,
because SaaS applications should be scalable to support the
inconstant customers‟ needs, without affecting the existing
tenants‟ services.

Building multi-tenant applications with incomplete and
inconsistent requirements calls for building a flexible multi-
tenant database schema to manage the additional tenants
information. Building a flexible multi-tenant database schema
should take into account all the influential factors of building

the multi-tenant system, including the tenants requirements and
the SaaS provider expectations, because multi-tenant database
schema should scale to multiple levels of tenants, with multiple
requirements and multi-quality of service. This motivates us to
propose a new dynamic partitioning mechanism to isolate data
in a multi-tenant database, that contains a mixed mode of the
three main isolation approaches, in order to improve the server
utilization and minimize wasted storage space, while keeping
appropriate quality of service for each tenant.

The shared tables schema is referred to as "pure multi-
tenancy" in [4] [11]. By the same token, we depend mainly on
this approach in our system, in addition to using some metrics
to separate extensions tables, to get the desired performance for
some tenants, who have a high workload. Finally, we may use
a separated database in a special cases, to ensure a desired
security level for data, so our proposal combines characteristics
of shared tables, separated tables and separated databases
architectures.

B. The Standard Components to Build a Multi-tenant

Database

A flexible multi-tenant database should be based on three
components: firstly, metadata-driven schema architecture,
which allows tenants to add customizable extensions to the
common objects or create entirely new customizable objects.
The metadata tables save data of each tenant, such as: users
data, desirable entities, customized attributes, and reference to
the tenants‟ data in the temporary tables "generated tables",
generated tables is provisional tables made in order to store the
actual data for tenants; secondly, global unique identifier,
which generates a new unique id for every inserting operation
from any user in any table, which will be used to store the data
in the generated tables to minimize the volume of metadata
columns in the generate tables; thirdly, runtime table generator
is the most important component, which decides where to save
the data in the generated tables or create a new generated table
to save the data.

C. Data Partition in a Multi-tenant Database

The Data distribution in multi-tenancy databases should
based on the current transactions and the expected transactions
on the data. Before we decide what is the appropriate data
distribution approach, we ought to answer the following
questions:

a) What are the main functions for the system, and the

required resources?

b) What are the additional tenants’ requirements, and

the required quality of services for each tenant?

c) What are the required memory and processing power

to access various data type?

d) What is the expected workload for every table?

e) What is the critical point to horizontal data

isolation?

f) What is the critical point to vertical data merging?

Note that the requirements of the system are split to the
functional requirements that are the services the system should
provide and the minimum quality of services to be accepted,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

135 | P a g e

www.ijacsa.thesai.org

and the non-functional requirements are the other services that
improve the system properties e.g. performance, response time.

The proposed technique realizes scalability not only by
supporting a large number of customers, but also supporting
multiple levels of qualities, through supporting multiple levels
of data isolation. Runtime table generator is responsible for
distributing the tenants‟ data in the generated tables, according
to set of suggested factors: system rate, tenant rate, attribute
rate, and table rate. These factors take in account the volume
of activity of the enterprise and the system workload, to
provide appropriate data isolation approach and level of
performance for the enterprises however the volume of
activity.

System rate will be determined by the SaaS provider, to
define the functional system needs and the minimum cost for
the system, by calculating the required storage space, memory,
processing power, maintenance procedures and schedules
backup.

Tenant rate will be determined for each tenant individually,
it is used to measure the non-functional requirements of tenants
such as the desirable level of data isolation, the level of data
security, the required query performance and number of extra
backups. It is used to define the additional cost for every tenant
according to his individual non-functional requirements.

Attribute rate is concerned with the growth of the attribute
usage, by taking into account the attribute data type and
constrains and whether it was an index attribute.

Table rate is a special rate used to determine every
generated table workload, by measuring the growth of the data
within each table. On the grounds of the experimental study
conducted, which we will discuss in details later, we cater for a
set of measurements to compute the four rates as in Table II,
and present the suggested weights from these measurements.

The multi-tenant solution must fits functional requirements
of the system, which represent by 'system rate', plus the non-
functional requirements of the tenant, which represent by
'tenant rate'. In that manner, general tenant cost equals the
minimum system cost 'system rate' plus the extra tenant cost
'tenant rate'.

Our proposal system save multimedia objects, like images
and secure documents, in a set of separate databases for files
and documents. However, each database has a level of security,
a data encryption system and a special backup system that refer
by the database rate. For example, if a tenant has secure
documents and hopes to save them in a separated database, he
should have a tenant rate high enough to allow him to use one
of these separated databases, otherwise his tenant rate is not
enough to allow him to use this feature.

TABLE II. THE SUGGESTION MEASUREMENTS TO COMPUTE THE SYSTEM

RATE, TENANT RATE, ATTRIBUTE RATE AND TABLE RATE

In multi-tenancy environment, SaaS providers wish to
reduce wasted storage space and maximize the sharing of
resources, although the tenants wish to maximize the isolation
and performance qualities, neglecting storage space. Therefore,
we propose to use two thresholds the isolation point and
merger point, to detect when to isolate data in multiple tables
or to share data in the same table. Data in a multi-tenancy
database will be partitioned horizontally to a set of allotment
tables according to isolation point, and vertically to a set of
extension tables according to merger point.

Isolation point is a threshold point that determines the
necessity of horizontal partition data, in order to constrict the
tables workloads with a concrete point, and it was assigned by
the system variables using a several methods according to the
nature of application.

The following equations used to calculate the Isolation
point depending on the isolation factor only, where IP is the
isolation point, IR is the isolation rate, SR is system rate, TR is
tenant rate, AR is attribute rate and GTR as generate table rate.
By the same token, is the current isolation

degree of the system, to be accepted by the customers, and it
detect by the system provider depending on the nature of the
system, is the average of special isolation

rates for the tenants who sharing the system, the

average degree of data isolation rate for both the tenants and
the system, note that must be less than or equals 1.

 Measurement Description Weight
System rate The number of prospective tenants 20 %

Average of tables per tenant and prospective data 20 %

The nature of prospective tenants 10 %

The prospective non-functional requirements of

tenants

10 %

Number of functions and procedures 10 %

Minimum security level 10 %

Minimum isolation level 10 %

Minimum performance level 10 %
Tenant

rate
Maximum number of users for this tenant 20 %

Growth rate of tenant data (average of
transactions per period)

20 %

Special isolation rate 10 %

Special security rate 10 %

Special performance rate 10 %

Number schedule backup 10 %
Attribute

rate
Date type 5 %

Column type(primary key, index) 5 %

Foreign key 5 %

Have constraints(unique, check) 5 %
Table rate Table growth rate = number of rows / number of

days from create
10 %

Growth rate per tenant= number of rows / number

of tenants

10 %

Total current "general attributes rate" 80 %

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

136 | P a g e

www.ijacsa.thesai.org

 (1)

 (2)

 (3)

 () (4)

In (5), is a general attribute rate, that calculate a

new attribute expected workload, and the required resources by
a special tenant.

 (5)

Equation (1), (2), (3) and (4) calculate the isolation point,
that support multi-levels of data isolation feature. In the same
manner we can rebuild these equations where IR replace with
the security rate to support multi-levels of data security.

Merger point is a threshold point, that responsible for
vertical partition data, in order to reduce the volume of joining
operations, it was assigned by the SaaS provider according to a
set of factors, such as: the available storage space, the space
will be allocated to each tenant, the number of tables will be
allocated for each tenant, the expected extra customization
attributes for each tenant, and availability to save a null values.

In the proposed system, when a tenant needs to create a
custom table or alter an existing table, the runtime table
generator searches for the best isolation approach by selecting
the ideal generated tables to save the data in them. The
algorithm in "Pseudocode 1" explain how the runtime table
generator add a new custom table 'ACT' to a tenant 'test'. The
algorithm starts by saving the data of a new customized table in
the metadata-driven schema tables (line 3), then selecting or
creating the appropriate generated tables, to store the tenant
data and refer to it in the metadata-driven schema tables. In
(lines 4-6) the algorithm check if the new general attribute rate
is more than or equal the 'isolation point', then creating a new
generated table with this schema and returns its identifier as a

reference. Otherwise the algorithm searches in all generated
tables, and if it finds a generated table has the new customized
table schema and its table rate plus the new general attribute
rate are less than or equal to the isolation point, then returning
this generated table Identifier as a reference (lines 7-12). In the
failure case, the algorithm attempts to find all the tenants who
need this schema, and if the summation of their tenant rates
plus tenant rate of 'test' is more than or equal to the isolation
point, a new generated table is created and its identifier is
returned (lines 14-19). The last case, a new customized table is
divided to a set of sub tables, and the algorithm determines
whether this schema is available or it needs to create a new
generated tables and return the tables references (lines 20-23).

D. Analyzing the performance of the proposed multi-tenant

database schema-mapping technique

The traditional DBMSs usually consists of 4 basic
operations: selection, insertion, deleting and updating
operation, and each operation is a collection of an I/O
processes in the DBMS. The final target of our solution is
twofold: firstly, the system aim at reducing the number of the
I/O processes by saving the tenant data in one table. This
means that a tenant inserts or updates a row to one physical
source table, which means a small response time and a high
throughput rate. This serves the tenants whose tenant rate is
high enough, or high number of tenants with the same schema
to allow the merge of their data in one table, which is expected
to provide a high quality of service while wasting a lot of
storage space; secondly, the system aim at reducing the number
of generated tables by maximizing the sharing tables between
tenants, by dividing the tenants entities vertically to a set of
extension tables in order to eliminate the null values and
economize on the storage space for tenants who do not have
demanding quality of service, where a single operation can be
divided into several I/O processes to the corresponding
physical tables, which means a high response time and a lower
throughput rate. This approach provides a relatively low
quality of service while economizing on storage space.

IV. EXPERIMENTAL STUDY

In this section, we conduct a case study for a customer
relationship management system in multiple hotels to evaluate
our proposal. In the beginning, the hotels organizations are
divided into multiple levels categories, as illustrated in Table
III. All hotels have a common entities such as: room, travel
agent and guest entity, and a common procedures such as:
reservation operation. However, multiple hotels have different
services types, citizenships of clients, and various quality of
services. As a result, the common entities of multiple hotels
will vary in attributes such as: table of customers. Table IV
illustrates a sample of the variety on schema for an entity
'customer' for seven hotels.

 The case study consists a sample of customers from
“tenant1” to “tenant7”, representing the different segments of
hotels. According to the column "Tenant Rate" in Table IV,
there are a small enterprises such as “tenant1”and “tenant2”,
who have a small workload and do not have demanding quality
of service, the system ought to economize storage space for
these tenants. However, tenants as “tenant7” and “tenant6”
reject to share their tables with others.

Pseudocode 1 Creating a new Customized table 'ACT' to tenant 'test'.

 1: IP ← Isolation Point

 2: MT ← Meta-data Table
 3: insert ACT into MT

 4: if (TenantRate (test) >= IP) then

 5: create (a new generate table with ACT schema)
 6: return (the new generate table ID)

 7: else for each (GT in Generated Tables)

 8: GT ← current generated table
 9: if (Schema(GT)=Schema(ACT))

 and (TableRate(GT)+TableRate(ACT)<=IP)

10: then return (the current generated table ID)
11: end if

12: end for

13: end if

14: X ← distributed generated tables require ACT schema

15: if (TableRate (X) + TableRate (ACT) >= IP) then

16: create (a new generate table with ACT schema)
17: update MT replace with the new generate table ID where X

18: move data in X into the new generate table

19: return (the new generate table ID)
20: else for each(sub table in ACT)

21: [: : :] /* Symmetric to lines 7 to 19 */

22: [: : :] /* Symmetric to lines 5 to 6 */
23: end for

24: end if

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

137 | P a g e

www.ijacsa.thesai.org

In Table V, we compare the performance of our proposed
approach with the three main approaches of data isolation in

multi-tenancy database. We realize the proposed solution by
applying the following steps:

TABLE III. THE MAIN CATEGORIES OF THE HOTELS COMPARISON

TABLE IV. VARIANT DEFINITIONS OF 'CUSTOMER' ENTITY FOR VARIANT TENANTS

a) Table VI, we studied the functional requirements for

the prospective tenants and the critical system needs to get the

system rate.

b) Table VII, we got the tenant rate for each tenant,

through studying the non-functional requirements for them,

and calculated the extra costs for each tenants.

c) Using equation (4) to get the isolation point through

depending on isolation rate.

d) Table VIII illustrate the generated tables

 . schemas, and how to use these to

represent the entity 'customer' for all tenants.

A. Implementation with the current isolation rate

In the current case, the system provider set the system
isolation rate = 5, the minimum= 0 and maximum = 10. Note
that the maximum system rate equal 100.

 ⁄

 In our case study, isolation point equal 53, so that tenants
such as: “tenant6”, “tenant7” who have tenant rate more than or
equal 53 will be in separated tables, but the other tenants will
be in a shared tables according to their tenant rates.

B. Implementation the minimum system isolation rate

In this case, data isolation quality is not necessary in the
system, so the system in common is opt for working like a
shared tables schema, so it resulted isolation point =78. In the
final analysis, only “tenant7” who have a tenant rate >= 78 will
be in a separated tables, and other tenants will be in a shared
table schema. In conclusion, this case work like a shred tables
schema and neglect the performance for most tenants. Finally,
it use less number of tables and less storage space.

TABLE V. CHARACTERISTIC OF REALIZATION THE FOUR SCHEMAS

C. Implementation the maximum system isolation rate

In this case, it is opt for working like a separated tables
schema, where all tenants having a tenant rate >= 28 will be in
a separated tables. In conclusion, this case use more tables and
neglect the storage space size and the number of tables.

Hotel

Class

Percentage

of Market

Avg. of

Users

Avg. of

Reservations

Avg. of

Transactions

Security

Need

Variability

need

three

stars
80% 2 224 20 Low Low

four

stars
10% 3 689 176

Mediu
m

High

five stars

standard
5% 6 734 477 High High

five stars

deluxe
5% 10 1518 158

V.

High
V. High

Tenant name
Hotel

Level

Tenant

Rate
Attribute 1

Data

Type
Attribute 2

Data

Type
Attribute 3

Data

Type
Attribute 4 Data Type

TENANT7 *****D 80 Id Int Name
Char

150
Web Site

Char

100
Email

Char

100

TENANT6 *****S 69 Id Int
English

Name

Char

150
Arabic Name

N Char

200
Phone

Char

20

TENANT5 *****S 49 Id Int Name
Char

100
Address

Char

500

TENANT4 **** 34 Id Int Name
Char

200
Tel

Char

20

TENANT3 **** 28 Id Int Short Name
Char

50
Full Name

Char

200
Site

Char

100

TENANT2 *** 20 Id Int Name
Char

100
Email

Char

200

TENANT1 *** 9 Id Int Name
Char

50
supervisor

Char

200

Solution Tenant cost
customiz

able

Space

requirements

Handle

db size

Prospective

tenants

Separate

databases
V. High

V.

High
V. High Low 5 star Hotels

Separate

schemas Medium High Medium High
4 star and

part of 3 star

Shared

Table
Low High Low

V.

High
3 star

Propose

Solution

made to

order

V.

High

made to

order
High All Hotels

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

138 | P a g e

www.ijacsa.thesai.org

TABLE VI. ILLUSTRATE SYSTEM RATE MEASUREMENT

TABLE VII. ILLUSTRATE THE TENANTS‟ RATES IN THE CASE STUDY

TABLE VIII. ENTITY 'CUSTOMER' SCHEMA IN THE GENERATED TABLES

In Table VIII, the generated tables start with the Global
Unique Identification column, that is represented by (UID)
column, and then list the attributes which the generated tables
ware contained. The seventh column „Shared by tenants‟ shows
who the tenant are used this generated table, such as GT1 is
specified for “tenant7”. The eighth column is the table rate
equal summation of its tenants’ rates. finally the last column is
the available points is table rate subtracted from isolation
point, the tables have available point more than zero can be
shared with tenants have tenant rate less than or equal this rate.

In the final analysis, the three implementation cases
achieved the required theory, because the system had a
multiple levels of data isolation. Fig. 1 illustrates the variety of
data isolation approaches in the system, where vertical axis
refer to the percentage of tenants and horizontal axis refer to
the .
Furthermore, Fig. 2 illustrates how the needs of tenants can
automatically affect the isolation rate. Decreasing the isolation
rate mean increasing the separated tables or the storage space.

No of

users

Growth

rate

Isolation

Rate

Security

Rate

Performan

ce rate

No of

Backup

tenant

rate

Max.

Value
20 20 10 10 10 10 80

Tenant 1 2 3 1 1 1 1 9

Tenant 2 6 6 1 1 4 2 20

Tenant 3 8 8 2 3 5 2 28

Tenant 4 8 10 5 2 6 3 34

Tenant 5 15 16 5 5 5 3 49

Tenant 6 18 20 7 8 8 8 69

Tenant 7 20 20 10 10 10 10 80

 AVG 31/70 30/70 39/70

Measurement Description
Weights

rate

The number prospective tenants 8

Average number of table per tenant 5

the nature of prospective tenants 2

the needs of prospective tenants 3

Number of functions and procedures 3

Security Rate 4

Isolation Rate 5

Performance Rate 4

the system rate 51

Table name Column 1 Column 2 Column 3 Column 4 Column 5 Shared by tenants Table rate Available points

GT1 UID INT char 150 char 100 char 100 T7 80 0

GT2 UID INT char 150 N char 200 char 20 T6 69 0

GT3 UID INT T5 49 4

GT4 UID char 100 T5 49 4

GT5 UID char 500 T5 49 4

GT6 UID INT char 200 char 100 T2,T3 48 5

GT7 UID char 50 T1,T3 37 16

GT8 UID INT char 200 T1,T4 43 10

GT9 UID char 20 T4 34 19

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

139 | P a g e

www.ijacsa.thesai.org

Fig. 1. Example of variation of data isolation schemas in a single system

Fig. 2. The effect of change the avarage of tenants rates on isolation rate

V. CONCLUSION

In this paper, we trade-off between the performance and the
storage space, in the major approaches of managing data in
multi-tenant databases, as well as highlighted the standard
components to build a customizable multi-tenant database
schema. This paper proposes a new multi-tenant database
schema-mapping technique, contain a mixed mode of the

multi-tenancy data isolation approaches, in order to improve
the database server utilization and minimize the wasted storage
space, while keeping the appropriate quality of service for each
tenant, by selecting the effective way to part the data in multi-
tenant databases horizontally by the isolation point and
vertically by the merger point.

REFERENCES

[1] H. Yaish, M. Goyal, and G. Feuerlicht, “An Elastic Multi-tenant Database
Schema for Software as a Service,” 2011 IEEE Ninth Int. Conf.
Dependable, Auton. Secur. Comput., pp. 737–743, Dec. 2011.

[2] R. F. Chong, “Designing a database for multi-tenancy on the cloud
Considerations for SaaS vendors,” pp. 1–12, 2012.

[3] M. H. M. Hui, D. J. D. Jiang, G. L. G. Li, and Y. Z. Y. Zhou, “Supporting
Database Applications as a Service,” 2009 IEEE 25th Int. Conf. Data
Eng., pp. 832–843, Mar. 2009.

[4] M. N. A. Khan, A. Shahid, and S. Shafqat, “Implementing a Storage
Pattern in the OR Mapping Framework,” Int. J. Grid Distrib. Comput.,
vol. 6, no. 5, pp. 29–38, Oct. 2013.

[5] S. Aulbach, M. Seibold, and S. a P. Ag, “A Comparison of Flexible
Schemas for Software as a Service,” Proc. 35th SIGMOD Int. Conf.
Manag. data, pp. 881–888, 2009.

[6] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-
tenant databases for software as a service: schema-mapping techniques,”
Proc. ACM SIGMOD Int. Conf. Manag. Data, pp. 1195–1206, 2008.

[7] Liao, K. Chen, and J. Chen, “Modularizing Tenant-Specific Schema
Customization in SaaS Applications,” AOAsia ‟13 Proc. 8th Int. Work.
Adv. Modul. Tech., pp. 9–11, 2013.

[8] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Towards Multi-Tenant
Performance SLOs,” Data Eng. (ICDE), 2012 IEEE 28th Int. Conf., pp.
702 – 713, 2012.

[9] J.. Ni, G.. Li, J.. Zhang, L.. Li, and J.. Feng, “Adapt: Adaptive database
schema design for multi-tenant applications,” ACM Int. Conf. Proceeding
Ser., pp. 2199–2203, 2012.

[10] S. Foping, I. M. Dokas, J. Feehan, and S. Imran, “A new hybrid schema-
sharing technique for multitenant applications,” 2009 Fourth Int. Conf.
Digit. Inf. Manag., 2009.

[11] Bezemer and A. Zaidman, “Challenges of Reengineering into Multi-
Tenant SaaS Applications,” 2010.

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Shared
Tables

Separate
Tables

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AVG Tenants
rates = %20

AVG Tenants
rates = %44

AVG Tenants
rates = %88

