
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

29 | P a g e

www.ijacsa.thesai.org

Efficient Identification of Common Subsequences

from Big Data Streams Using Sliding Window

Technique

Adi Alhudhaif

Department of Computer Science, The George Washington University, Washington, DC. 20052, USA

Department of Computer Science, Salman Bin Abdulaziz University,

 Al Kharj, The Kingdom of Saudi Arabia

Abstract—We propose an efficient Frequent Sequence Stream

algorithm for identifying the top k most frequent subsequences

over big data streams. Our Sequence Stream algorithm gains its

efficiency by its time complexity of linear time and very limited

space complexity. With a pre-specified subsequence window size

S and the k value, in very high probabilities, the Sequence

Stream algorithm retrieve the top k most frequent subsequences

of size S. The Stream Sequence algorithm also provides a high

accuracy of the estimation of the number of occurrences of each

promoted subsequence. Our experiments indicate several factors

that influence the result accuracy of the Sequence Stream

algorithm: stream size, subsequence size S and frequency of the

subsequence.

Keywords—Frequent subsequence; Stream processing;

Periodic pattern; Pattern recognition; Big data processing

I. INTRODUCTION

Due to the new data collection methods, vast amount of
data is produced [1]. This data-increasing trend is associated
with business needs, geographical research works, social media
networks and etc. and these result in “Big Data”. Big Data
situation relates to the problem of dealing with very large
amounts of data [2]. It presents a qualitatively different state of
affairs for the organization of information processing, namely,
this organization cannot utilize all the data explicitly. Data
processing is one of the important challenges and many studies
have been made on this topic [3]. Big Data support to build
several worldwide social network connections, which integrate
human beings with the accelerated progress of communication.
Because of big data, entrepreneurs could make wise decision
based on consumers’ behaviors. Recently, the use of big data
has a key role in improving competitiveness in all kinds of
fields. The big data stream contains very large amounts of
information. The stream data processing is to understand data
and to retrieve useful information from it. Various methods are
designed to deal with big data [4][5][6]. The challenges include
accuracy, efficiency and availability.

Frequent sequence mining finds sets of data elements that
occur together frequently in many subsequences. Frequent
sequence mining, which retrieve the most frequent
subsequences from a stream of a very large sequence. It gained
a great deal of attention in the field of data mining due to its
great value in many applications, such as: trend prediction,

stock market, DNA sequence analysis (Bioinformatics), using
history of side affects or symptoms to predict valuable medical
information, web user analysis, finding language or linguistic
sequences from natural language text.

In this paper, we introduce a novel technique for mining the
top k frequent subsequences over large stream of big data with
a pre-defined subsequence size S, in the fashion of stream
processing. The algorithm provides very high probabilities for
retrieving the most frequent subsequences in leaner time using
very limited space and memory locations.

II. FREQUENT SEQUENCE MINING IN STREAM PROCESSING

Finding most frequent sequences is considered as one of
the most heavily studied data mining task since its introduction
in work [7] and is of wide scientific interest [8][9][10][11].
Subsequences are valuable kind of data that occur more often
in domains such as: information security, artificial intelligent,
machine learning, education, medical, financial and many other
fields. As for medical field, extracting frequent subsequences
from very large DNA sequences is a key step for understanding
biological processes as basic as the RNA transcription [12].

Stream processing uses different methods comparing to
traditional datasets computing, it requires relatively smaller
respond time with dealing huge amount of data. In computer
science, the streaming algorithms are designing for processing
data streams in the way of limited time and limited memory. It
was first introduced in 1999 [13] [14], and then spread to all
kinds of angles in computer science, such as database,
networking and machine learning. Now the big data society
comes to study stream algorithms when large amounts of data
can be operated continuously regardless of storage and access
distribution, meanwhile respond quickly to new information. In
reality, stock market data is a typical stream data. The data
contains real-time price, transaction and other financial
information. Traders usually receive and analyze data streams
to make decisions by advanced systems.

We focus on the process of massive stream by optimal
processing algorithm to extract meaningful value from large
sequence of big data. This is done by retrieving (on-the-fly
[15][16]) the most frequent subsequences over large stream of
big data with the concerns of time-consumption and space-
consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

30 | P a g e

www.ijacsa.thesai.org

III. FREQUENT SEQUENCE STREAM ALGORITHM

The Frequent Sequence Stream algorithm (FSS), was
inspired during the development of Multi-Buffer based
algorithm in work [5]. Multi-Buffer based algorithm was
proposed to extract the top k most frequent elements over large
stream of Big Data. FSS works in window sliding technique
and window size is a pre-defined value of S. In addition, FSS
holds multi sequence candidates (SeqCan) that hold common

sequences of size S. For a Big data stream u = u1,...,un ∈ Σ∗ we

consider all the subsequences uiui+1 ...ui+S-1 ⊑ u, where 1≤S≤

n and 1≤i1 <i2 <···<in ≤n, and goal is to find the top k most

frequent sequences of size S and an approximate counter that
reflects each subsequence occurrence.

Using k Sequence candidates, the FSS algorithm can be
stated as following: store the first new arrival of sequence
(uiui+1 ...ui+S-1) to SeqCan#1 and set Weight (w) to β and
Counter (c) to 1. Keep comparing the incoming new sequence
with the previously stored sequences candidates (SeqCan). If
the new incoming new sequence equals to one of the sequence
candidates in (SeqCan), increase its associated counter by 1
and increase its weight by β.

Otherwise, assign this new subsequence to any sequence
candidates that has an associated weight equal to zero and set
that weight to β and its counter to 1. At the case of no weight
equals to zero, decrease the weight (w) with minimum value by
1. By the end of this stream, output stored sequences
(Candidates) and their associated counters (c).

For example; when k = 3 the algorithm FSS can be
described as follows:

Moreover, the output of the FSS algorithm will be k pairs
(candidate, counter). The focus of this algorithm is to improve
the probability that one of the k pairs contains the most
frequent sequence of size S, and enhance the accuracy of
estimating its frequency. The FSS algorithm is able to select up
to k – 1 top frequent sequences in the data stream. For
example, when k = 3 and an input of random sequences with
two top occurrence of frequency 12% and 15%, they would be
selected efficiently by using three sequence candidates

(SeqCan) or more.

IV. EXPERIMINTS

For every single stream file with determined sequence
frequncy we generated many iterations using The Fisher-Yates
shuffle algorithm [17][18]. Generating pseudo-random
numbers was done using both generator functions in Python’s
library Lib/random.py and the random number library in C that
takes variable seeds such as: current system time to generate
pseudo-random numbers. Then, according to the most frequent
frequence.

We performed and examined Frequent Sequence Stream
(FSS) algorithm using the big data stream under a common
implementation framework to test their performance as
accurately as possible. The algorithm was implemented using
both C and Python, and compiled using gcc on Cygwin 1.7.25
for C code, and Python 2.7.5 for python code. We ran Python
experiments on 2.6GHz dual-core Intel Core i5 with 8GB of
RAM running OS X 10.9.2. Experiments of algorithms in C
were ran on Intel 4th generation core i5 using 8GB of RAM
running Microsoft Windows Server 2012. We did not observe
notewothy differences between two compilers.

A. The Calculation of Sequence Frequency

In big data stream of size n, and a pre-defined subsequence
size S. A subsequence X has a frequency of 100% when the
number of occurrence of sequence X is ⌊n/S⌋. For example:
stream of size 100,000 elements and a subsequence size of 7,
the subsequence X has a frequency of 15% when it occurs
2,142 times (⌊(n/S)* 0.15⌋).

B. Results

Using stream sizes 30,000, 100,000 and 1,000,000 Fig. 1
shows the probabilities of retrieving the most frequent
subsequences of size 3, with low frequencies: 5%, 4%, 3%, 2%
and 1%.

Fig. 1. Probabilities of extracting most frequent subsequences of size 3.

Fig. 2 represents the probabilities for retrieving most
frequent subsequences of size 7 with low frequencies using
various stream sizes.

Repeat

 Get next sequence using sliding window of size S
 Seq = uiui+1 ...ui+S-1

if (w1 ≠ 0 and SeqCan1 = Seq):

w1=w1+ β, c1=c1+1
Else_if (w2 ≠ 0 and SeqCan2 = Seq):

w2=w2+ β, c2=c2+1

Else_if (w3 ≠ 0 and SeqCan3 = Seq):
w3=w3+ β, c3=c3+1

Else _if (SeqCan1 ≠ Seq and w1 ≠ 0) and (SeqCan2 ≠ Seq

and w2 ≠ 0) and (SeqCan3 ≠ Seq and w3 ≠ 0):
 Minimum [w1,w2,w3] = Minimum[w1,w2,w3] - 1

Else_if (w1 = 0):

 w1 = β , c1 = 1 , CanSeq1 = Seq

Else_if (w2 = 0):

 w2 = β , c2 = 1 , CanSeq2 = Seq

Else_if (w1 = 0):
 w3 = β , c3 = 1 , CanSeq3 = Seq

Move window by 1(i = i + 1).

Until no more sequences

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

31 | P a g e

www.ijacsa.thesai.org

Fig. 2. Probabilities of extracting subsequences of size 7 using various

stream sizes

Moreover, in Fig. 3 we increased the subsequence size to be
matched to 15 using various stream sizes: 30,000, 100,000 and
1,000,000.

Fig. 3. Probabilities for extracting subsequences of size 15 within various
stream sizes.

For larger subsequence frequencies like 10%, Fig. 4 shows
the probabilities for retrieving subsequences of various sizes
versus various stream sizes.

Counters that represent the number of a subsequence
occurrence are part of the FSS algorithm. For a stream size of
100,000, and subsequences of low frequencies, Fig. 5 shows
the accuracy of counter values returned by the FSS algorithm
compared to the real number of occurrences within the big data
stream.

Fig. 4. Probabilities for retrieving subsequences of various stream and

subsequences sizes

Fig. 5. Accuracy of counter values using various subsequences sizes and

stream size of 100,000.

For a stream size of 1,000,000 and subsequences of low
frequencies, Fig. 6 shows the accuracy of counter values
returned by the FSS algorithm compared to the real number of
occurrences.

Fig. 6. Accuracy of counter values using various subsequences sizes and

stream size of 100,000.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 11, 2014

32 | P a g e

www.ijacsa.thesai.org

V. COMMENTS/FUTURE RESEARCH

During experiments many values for β were tested and
verified. The best value for β turned out to be S

2
. As for Multi-

Buffer based algorithm in work [5], stream sizes has an impact
on the performance of the FSS algorithm as shown in Fig. 1,
Fig. 2 and Fig. 3. The bigger the stream size the better the
results.

Moreover, we observed that the subsequence sizes have an
influence on the output results of the FSS algorithm. The
smaller subsequences’ sizes to be processed, the better
accuracy of the results to be promoted. To explain this, for a
stream size of 100,000, 1% frequency of a subsequence size 3
is 333 times, 1% frequency of a subsequence size 7 is 142
times, and a 1% frequency of subsequence size 15 is 66 times.

By tracking changes of these sequence candidates and their
associated weights, we find that the entire process can be
divided into two important stages: stable stage and unstable
stage explained in work [5]. For subsequences of high
frequencies such as %10 and more, probabilities for retrieving
those frequencies are very high compared to low frequencies.

As for counter values, Fig. 5 and Fig. 6 show that the
stream size factor influence the accuracy of the counter value
returned by the FSS algorithm. Counter accuracy increases
when the stream size increases. In addition, frequencies of
subsequence also impact the accuracy of the returned counter
vales.

Above experiments were performed using three sequence
candidates (k = 3), we observed a minor enhancement when
using more sequences candidates. Moreover, more factors
(range of data, number of candidates, number of frequent
subsequences) could impact the accuracy of results but this
needs to be verified by more experiments. Also, the optimal
value of β, its relationship with subsequence’s size and
subsequence’s frequency worth more investigations, and
whither has β and number of top frequent subsequences are
related.

ACKNOWLEDGMENT

Many thanks for Professor Simon Y Berkovich of
Computer Science Department of George Washington
University, for his guidance and support.

REFERENCES

[1] Manyika J, Chui M, Brown B, et al. Big data: The next frontier for
innovation, competition, and productivity. 2011.

[2] Simon Berkovich, “Physical World as an Internet of Things” COM.Geo
'11: Proceedings of the 2nd International Conference on Computing for

Geospatial Research & Applications, May 2011, p.66

[3] Berkovich, S., Liao, D.: On Clusterization of Big Data Streams. In: 3rd
International Conferenceon Computing for Geospatial Research and
Applications, article no. 26. ACM Press,New York (2012)

[4] Zikopoulos P, Eaton C. Understanding big data: Analytics for enterprise
class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

[5] Adi Alhudhaif, Tong Yan and Simon Berkovich. “On the organization
of cluster voting with massive distributed streams”, in Proceedings of
the 5th international Conference on Computing for Geospatial Research
& Application, Washington, D.C., 2014.COM.Geo

[6] Adi Alhudhaif, Tong Yan and Simon Berkovich, “A cyber-physical
algorithm for selecting a prevalent element from big data streams”,
GSTF Journal on Computing (JoC) Vol 4 No 1.

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE’95,
pages 3–14.

[8] Eric P. Xing, Michael I. Jordan, Richard M. Karp, and Stuart Russell. A
hierarchical Bayesian Markovian model for motifs in biopolymer
sequences. In In Proc. of Advances in Neural Information Processing
Systems, pages 200–3. MIT Press, 2003

[9] Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to
finding subtle signals in dna sequences. In Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular Biology,
pages 269–278. AAAI Press, 2000.

[10] Jean-Marc Fellous, Paul H. E. Tiesinga, Peter J. Thomas, and Terrence
J. Sejnowski. Discovering Spike Patterns in Neuronal Responses. J.
Neurosci., 24(12):2989–3001, 2004.

[11] Nebojsa Jojic, Vladimir Jojic, Brendan Frey, Christopher Meek, and
David Heckerman. Using “epitomes” to model genetic diversity:
Rational design of HIV vaccine cocktails. In Y. Weiss, B. Sch olkopf,
and J. Platt, editors, Advances in Neural Information Pro- cessing
Systems 18, pages 587–594. MIT Press, Cambridge, MA, 2006.

[12] P.P. Kuksa and V. Pavlovic, “Efficient discovery of common patterns in
sequences over large alphabets”, in DIMACS Technical Report, 2009.

[13] Alon, Noga, Yossi Matias, and Mario Szegedy. "The space complexity
of approximating the frequency moments." Proceedings of the 28th
annual ACM symposium on Theory of computing. ACM, 1996

[14] Babcock, Brian; Babu, Shivnath; Datar, Mayur; Motwani, Rajeev;
Widom, Jennifer (2002), "Models and issues in data stream systems",
Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS 2002), pp. 1–16,
doi:10.1145/543613.543615.

[15] Duoduo Liao, "Real-Time Solid Voxelization Using Multi-Core
Pipelining", The George Washington University, February 2009
http://gradworks.umi.com/3344878.pdf.

[16] Duoduo Liao and Simon Y. Berkovich, “A New Multi-Core Pipelined
Architecture for Executing Sequential Programs for Parallel Geospatial
Computing”, in Proceedings of the 1st international Conference on
Computing for Geospatial Research & Application, Washington, D.C.,
June 21 - 23, 2010. COM.Geo '10, ACM, New York, NY, U.S.A., 2010.

[17] Richard Durstenfeld, Algorithm 235: Random permutation,
Communications of the ACM, v.7 n.7, p.420, July 1964.

[18] Fisher, Ronald A.; Yates, Frank (1948) [1938]. Statistical tables for
biological, agricultural and medical research (3rd ed.). London: Oliver &
Boyd. pp. 26–27.

http://gradworks.umi.com/3344878.pdf

