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Abstract—We propose an efficient Frequent Sequence Stream 

algorithm for identifying the top k most frequent subsequences 

over big data streams.  Our Sequence Stream algorithm gains its 

efficiency by its time complexity of linear time and very limited 

space complexity. With a pre-specified subsequence window size 

S and the k value, in very high probabilities, the Sequence 

Stream algorithm retrieve the top k most frequent subsequences 

of size S. The Stream Sequence algorithm also provides a high 

accuracy of the estimation of the number of occurrences of each 

promoted subsequence. Our experiments indicate several factors 

that influence the result accuracy of the Sequence Stream 

algorithm: stream size, subsequence size S and frequency of the 

subsequence. 
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I. INTRODUCTION  

Due to the new data collection methods, vast amount of 
data is produced [1]. This data-increasing trend is associated 
with business needs, geographical research works, social media 
networks and etc. and these result in “Big Data”. Big Data 
situation relates to the problem of dealing with very large 
amounts of data [2]. It presents a qualitatively different state of 
affairs for the organization of information processing, namely, 
this organization cannot utilize all the data explicitly. Data 
processing is one of the important challenges and many studies 
have been made on this topic [3]. Big Data support to build 
several worldwide social network connections, which integrate 
human beings with the accelerated progress of communication. 
Because of big data, entrepreneurs could make wise decision 
based on consumers’ behaviors. Recently, the use of big data 
has a key role in improving competitiveness in all kinds of 
fields. The big data stream contains very large amounts of 
information. The stream data processing is to understand data 
and to retrieve useful information from it. Various methods are 
designed to deal with big data [4][5][6]. The challenges include 
accuracy, efficiency and availability. 

Frequent sequence mining finds sets of data elements that 
occur together frequently in many subsequences. Frequent 
sequence mining, which retrieve the most frequent 
subsequences from a stream of a very large sequence. It gained 
a great deal of attention in the field of data mining due to its 
great value in many applications, such as: trend prediction, 

stock market, DNA sequence analysis (Bioinformatics), using 
history of side affects or symptoms to predict valuable medical 
information, web user analysis, finding language or linguistic 
sequences from natural language text.  

In this paper, we introduce a novel technique for mining the 
top k frequent subsequences over large stream of big data with 
a pre-defined subsequence size S, in the fashion of stream 
processing. The algorithm provides very high probabilities for 
retrieving the most frequent subsequences in leaner time using 
very limited space and memory locations. 

II. FREQUENT SEQUENCE MINING IN STREAM PROCESSING  

Finding most frequent sequences is considered as one of 
the most heavily studied data mining task since its introduction 
in work [7] and is of wide scientific interest [8][9][10][11]. 
Subsequences are valuable kind of data that occur more often 
in domains such as: information security, artificial intelligent, 
machine learning, education, medical, financial and many other 
fields. As for medical field, extracting frequent subsequences 
from very large DNA sequences is a key step for understanding 
biological processes as basic as the RNA transcription [12].   

Stream processing uses different methods comparing to 
traditional datasets computing, it requires relatively smaller 
respond time with dealing huge amount of data. In computer 
science, the streaming algorithms are designing for processing 
data streams in the way of limited time and limited memory. It 
was first introduced in 1999 [13] [14], and then spread to all 
kinds of angles in computer science, such as database, 
networking and machine learning. Now the big data society 
comes to study stream algorithms when large amounts of data 
can be operated continuously regardless of storage and access 
distribution, meanwhile respond quickly to new information. In 
reality, stock market data is a typical stream data. The data 
contains real-time price, transaction and other financial 
information. Traders usually receive and analyze data streams 
to make decisions by advanced systems. 

We focus on the process of massive stream by optimal 
processing algorithm to extract meaningful value from large 
sequence of big data. This is done by retrieving (on-the-fly 
[15][16]) the most frequent subsequences over large stream of 
big data with the concerns of time-consumption and space-
consumption. 
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III. FREQUENT SEQUENCE STREAM ALGORITHM 

The Frequent Sequence Stream algorithm (FSS), was 
inspired during the development of Multi-Buffer based 
algorithm in work [5]. Multi-Buffer based algorithm was 
proposed to extract the top k most frequent elements over large 
stream of Big Data. FSS works in window sliding technique 
and window size is a pre-defined value of S. In addition, FSS 
holds multi sequence candidates (SeqCan) that hold common 

sequences of size S. For a Big data stream u = u1,...,un ∈ Σ∗ we 

consider all the subsequences uiui+1 ...ui+S-1 ⊑ u, where 1≤S≤ 

n and 1≤i1 <i2 <···<in ≤n, and goal is to find the top k most 

frequent sequences of size S and an approximate counter that 
reflects each subsequence occurrence.  

Using k Sequence candidates, the FSS algorithm can be 
stated as following: store the first new arrival of sequence 
(uiui+1 ...ui+S-1) to SeqCan#1 and set Weight (w) to β and 
Counter (c) to 1. Keep comparing the incoming new sequence 
with the previously stored sequences candidates (SeqCan). If 
the new incoming new sequence equals to one of the sequence 
candidates in (SeqCan), increase its associated counter by 1 
and increase its weight by β. 

Otherwise, assign this new subsequence to any sequence 
candidates that has an associated weight equal to zero and set 
that weight to β and its counter to 1. At the case of no weight 
equals to zero, decrease the weight (w) with minimum value by 
1. By the end of this stream, output stored sequences 
(Candidates) and their associated counters (c). 

For example; when k = 3 the algorithm FSS can be 
described as follows: 

Moreover, the output of the FSS algorithm will be k pairs 
(candidate, counter). The focus of this algorithm is to improve 
the probability that one of the k pairs contains the most 
frequent sequence of size S, and enhance the accuracy of 
estimating its frequency. The FSS algorithm is able to select up 
to k – 1 top frequent sequences in the data stream. For 
example, when k = 3 and an input of random sequences with 
two top occurrence of frequency 12% and 15%, they would be 
selected efficiently by using three sequence candidates 

(SeqCan) or more.  

IV. EXPERIMINTS 

For every single stream file with determined sequence 
frequncy we generated many iterations using The Fisher-Yates 
shuffle algorithm [17][18]. Generating pseudo-random 
numbers was done using both generator functions in Python’s 
library Lib/random.py and the random number library in C that 
takes variable seeds such as: current system time to generate 
pseudo-random numbers. Then, according to the most frequent 
frequence. 

We performed and examined Frequent Sequence Stream 
(FSS) algorithm using the big data stream under a common 
implementation framework to test their performance as 
accurately as possible.  The algorithm was implemented using 
both C and Python, and compiled using gcc on Cygwin 1.7.25 
for C code, and Python 2.7.5 for python code. We ran Python 
experiments on 2.6GHz dual-core Intel Core i5 with 8GB of 
RAM running OS X 10.9.2. Experiments of algorithms in C 
were ran on Intel 4th generation core i5 using 8GB of RAM 
running Microsoft Windows Server 2012. We did not observe 
notewothy differences between two compilers. 

A. The Calculation of Sequence Frequency  

In big data stream of size n, and a pre-defined subsequence 
size S. A subsequence X has a frequency of 100% when the 
number of occurrence of sequence X is ⌊n/S⌋. For example: 
stream of size 100,000 elements and a subsequence size of 7, 
the subsequence X has a frequency of 15% when it occurs 
2,142 times (⌊(n/S)* 0.15⌋).  

B. Results 

Using stream sizes 30,000, 100,000 and 1,000,000 Fig. 1 
shows the probabilities of retrieving the most frequent 
subsequences of size 3, with low frequencies: 5%, 4%, 3%, 2% 
and 1%. 

 
Fig. 1. Probabilities of extracting most frequent subsequences of size 3. 

Fig. 2 represents the probabilities for retrieving most 
frequent subsequences of size 7 with low frequencies using 
various stream sizes. 

Repeat 

 Get next sequence using sliding window of size S 
 Seq = uiui+1 ...ui+S-1 

if ( w1 ≠ 0 and SeqCan1 = Seq ): 

w1=w1+ β, c1=c1+1 
Else_if ( w2 ≠ 0 and SeqCan2 = Seq): 

w2=w2+ β, c2=c2+1 

Else_if ( w3 ≠ 0 and SeqCan3 = Seq): 
w3=w3+ β, c3=c3+1 

Else _if (SeqCan1 ≠ Seq and w1 ≠ 0) and (SeqCan2 ≠ Seq 

and w2 ≠ 0) and (SeqCan3 ≠ Seq and w3 ≠ 0): 
             Minimum [w1,w2,w3] =  Minimum[w1,w2,w3] - 1 

Else_if (w1 = 0 ): 

 w1 = β , c1 = 1 , CanSeq1 = Seq 

Else_if (w2 = 0 ): 

 w2 = β , c2 = 1 , CanSeq2 = Seq 

Else_if (w1 = 0 ): 
 w3 = β , c3 = 1 , CanSeq3 = Seq 

Move window by 1( i = i + 1). 

Until no more sequences 
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Fig. 2. Probabilities of extracting subsequences of size 7 using various 

stream sizes 

Moreover, in Fig. 3 we increased the subsequence size to be 
matched to 15 using various stream sizes: 30,000, 100,000 and 
1,000,000.  

 
Fig. 3. Probabilities for extracting subsequences of size 15 within various 
stream sizes. 

For larger subsequence frequencies like 10%, Fig. 4 shows 
the probabilities for retrieving subsequences of various sizes 
versus various stream sizes. 

Counters that represent the number of a subsequence 
occurrence are part of the FSS algorithm. For a stream size of 
100,000, and subsequences of low frequencies, Fig. 5 shows 
the accuracy of counter values returned by the FSS algorithm 
compared to the real number of occurrences within the big data 
stream.  

 
Fig. 4. Probabilities for retrieving subsequences of various stream and 

subsequences sizes 

 
Fig. 5. Accuracy of counter values using various subsequences sizes and 

stream size of 100,000. 

For a stream size of 1,000,000 and subsequences of low 
frequencies, Fig. 6 shows the accuracy of counter values 
returned by the FSS algorithm compared to the real number of 
occurrences. 

 
Fig. 6. Accuracy of counter values using various subsequences sizes and 

stream size of 100,000. 
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V. COMMENTS/FUTURE RESEARCH  

During experiments many values for β were tested and 
verified. The best value for β turned out to be S

2
. As for Multi-

Buffer based algorithm in work [5], stream sizes has an impact 
on the performance of the FSS algorithm as shown in Fig. 1, 
Fig. 2 and Fig. 3. The bigger the stream size the better the 
results.  

Moreover, we observed that the subsequence sizes have an 
influence on the output results of the FSS algorithm. The 
smaller subsequences’ sizes to be processed, the better 
accuracy of the results to be promoted. To explain this, for a 
stream size of 100,000, 1% frequency of a subsequence size 3 
is 333 times, 1% frequency of a subsequence size 7 is 142 
times, and a 1% frequency of subsequence size 15 is 66 times. 

By tracking changes of these sequence candidates and their 
associated weights, we find that the entire process can be 
divided into two important stages: stable stage and unstable 
stage explained in work [5]. For subsequences of high 
frequencies such as %10 and more, probabilities for retrieving 
those frequencies are very high compared to low frequencies. 

As for counter values, Fig. 5 and Fig. 6 show that the 
stream size factor influence the accuracy of the counter value 
returned by the FSS algorithm. Counter accuracy increases 
when the stream size increases.  In addition, frequencies of 
subsequence also impact the accuracy of the returned counter 
vales.  

Above experiments were performed using three sequence 
candidates (k = 3), we observed a minor enhancement when 
using more sequences candidates.  Moreover, more factors 
(range of data, number of candidates, number of frequent 
subsequences) could impact the accuracy of results but this 
needs to be verified by more experiments. Also, the optimal 
value of β, its relationship with subsequence’s size and 
subsequence’s frequency worth more investigations, and 
whither has β and number of top frequent subsequences are 
related. 
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