
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

56 | P a g e
www.ijacsa.thesai.org

A Greedy Algorithm for Load Balancing Jobs with

Deadlines in a Distributed Network

Ciprian. I. Paduraru

Department of Computer Science,

University of Bucharest

Bucharest, Romania

Abstract—One of the most challenging issues when dealing

with distributed networks is the efficiency of jobs load balancing.

This paper presents a novel algorithm for load balancing jobs

that have a given deadline in a distributed network assuming

central coordination. The algorithm uses a greedy strategy for

global and local decision making: schedule a job as late as

possible. It has an increased overhead over other well-known

methods, but the load balancing policy provides a better fit for

jobs.

Keywords—scheduling; greedy; coordination; network

I. INTRODUCTION

Distributed architecture of computers can represent the
underlying of a web or network-based service used for
processing user requests. In this context, the performance of
the processing system is closely related to user experience and
service availability, and can therefore play an important role in
the success or failure of the respective service on the market.
As sufficient hardware resources for processing a large
number of requests are generally expensive, a good algorithm
for the distribution of load - between the processing units in
the distributed system - is necessary to save costs in addition
to increase clients’ satisfaction.

This paper proposes an algorithm for load balancing of
jobs in a distributed network assuming central coordination.
Jobs are non-preemptive, received by a single machine in the
distributed network (master) and sent to workers. Each job has
a given deadline which is assigned by the owner of the
request. The master must decide if the job can be executed by
one of the workers considering its deadline and an error
window, and if it does, then who the best worker to execute it
is. Once received by a worker, it must decide where on its own
waiting list of jobs the new job should be added. The
algorithm can work both for homogeneous and heterogeneous
workers. It all depends on the ability of a worker to determine
the execution time of a job. If workers can estimate how much
time it will take to execute a given job within the considered
error window then we can have heterogeneous machines in the
distributed system. Various methods for doing such estimation
are presented in [1]. One method is to assign to each job a
length-class and test each worker in the system how much
time it will take to execute each kind of length-class. There is
a linear search overhead determining the best fit for a new job
but it makes the load balancing better and provides better
results. Also, we assume that there is a communication link
between the master machine and each worker, and we can

estimate the average communication time for each job. For
simplicity, this communication time is included in the
execution time of a job.

The rest of the paper is organized as follows: In Section 2
there is a discussion about research made on load balancing or
scheduling algorithms with deadlines. Section 3 presents how
the algorithm is designed and a pseudocode for its
implementation. Results obtained from running a simulator
over some test samples are given in Section 4. Conclusions are
presented in the last section.

II. RELATED WORK

At the time when this paper is written there is no paper
dealing with load balancing tasks with deadlines in a
distributed network with central coordination. However, there
are various papers presenting techniques for load balancing /
scheduling of tasks which are a point of inspiration and a
possible comparison for the algorithm presented here.

Some theoretical aspects with high-importance for this
paper are presented in [5]. A conclusion is that Earliest
DeadLine First (EDF) policy is not optimal for non-
preemptive tasks or when there are multiple processors in a
system. [2] Presents a new algorithm for load balancing in grid
architecture for fair scheduling. It addresses the fairness issues
by using mean waiting time. It schedules the tasks by using
fair completion time and reschedules them by using mean
waiting time of each task to obtain load balance. In [3], there
is a comparison between two important task schedulers such
as EDF scheduler and Ant Colony Optimization Based (ACO)
scheduler. Paper [4] presents a greedy algorithm for
scheduling jobs with deadlines and profits with the main
objective to maximize the profit, for a single processing unit.

III. ALGORITHM DESIGN AND IMPLEMENTATION

Jobs are received and sent further by the master machine.
The algorithm doesn’t move any job from a worker to another
because each time when we give a job to a worker, we know
that it can satisfy its deadline constraint. Also, as Section 1
states, jobs are non-preemptive. There are two separated views
of the algorithm:

 Master view: responsible for assigning a new job to a
worker if there is one available to execute this job
satisfying its deadline constraint.

 Worker view: responsible for managing a data structure
that holds jobs and extracting / executing these jobs.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

57 | P a g e
www.ijacsa.thesai.org

A data type that defines a job can be defined as:
JobType={timeToExecute, deadline, timeToStart, timeToEnd,
dataContext}. timeToExecute is the time needed by an worker
to execute the job, while dataContext is the data associated
with the job execution. timeToStart represents the time when a
job can start on a worker. timeToEnd is the computed value of
timeToStart + timeToExecute.

A. MASTER VIEW

At this level, the main idea is to send a new job to the
worker which can start it as late as possible but still satisfying
the deadline constraint. It is a greedy solution which can keep
workers available for earlier deadlines. Considering that
function GetTimeToStart returns the time when a worker can
start a job given as parameter (-1 is considered to be the return
result for not being able to execute it and satisfy its deadline
goal) then the pseudocode that master runs when a new job is
received is presented below.

OnNewTaskArrived(JobType task)

 bestWorkerId = -1

 bestWorkerTime = 0
 foreach worker W do

 {

 Wtime = Controller[W]->GetTimeToStart()

 if Wtime != -1 AND bestWorkerTime < Wtime

 {

bestWorkerTime = Wtime

bestWorkerId = W

 }

 if bestWorkerId != -1

 {
SendTask(job, bestWorkerId)

 }

 else

 {

 // Code for refused job

 }

 }
The Controller array is stored on master and represents the

state of each worker – the data structure which stores
informations about the currently assigned jobs for each client,
excluding the “dataContext” field which is only needed by
workers. This is actually logic part of worker’s view.

B. WORKER VIEW

There are two issues at worker’s view: the GetTimeToStart
function implementation (called by the master and having its
context data stored on the master in the Controller array) and
how a worker manages its internal data structure to execute
jobs.

Same greedy idea as in section 3.1 is used here: schedule a
new job as late as possible (Figure 1). Workers are using a
linked list to store the assigned jobs. In this linked list, jobs are
sorted in ascending order by the value of field timeToStart.
The value of this field for a new job should ideally be:
deadline – timeToExecute, because the main objective is to
promote free spaces for new jobs that have earlier deadlines.
But if this is not possible due to existing jobs, then it should be
set to the last gap found between assigned jobs that allows us
to execute the new job and satisfy its deadline.

T1 T2 T3

New job
Current

clock time

Deadline of
the new job

Gap 1 Gap 2 Gap 3 Gap 4

Fig. 1. Adding a new task to an existing list of jobs (T1, T2 and T3).

Considering that the width of the rectangle represents the execution time of a

job, then gaps with index 1 and 3 can fit the new job. The end of gap 3 will be
preferred for the new job to schedule it as late as possible.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

58 | P a g e
www.ijacsa.thesai.org

Pseudo-code for this operation is presented below. The

mList variable represents the linked list where the jobs are
stored. mList.end/mList.start represents the last/first element in
the list. If there is no other assigned job in the list or we can
schedule the new job after the last one, then the ideal value for
timeToStart will be deadline – timeToExecute. Otherwise, the
algorithm tries then to fill the first gap found starting from the
end of the list and going to its beginning. Each time we
compare two consecutive elements in the list (T and prevT)
and check if the new job can be added between the timeToEnd
of prevT and the minimum between its deadline and the
timeToStart of T. If we find such a position then we set the
timeToStart as late as possible in this gap. Finally, if no gap
was found yet, we try to add it in the gap starting from current
clock time to the beginning of the first job in the list. The
implementation of GetTimeToStart will also cache the
timeToStart, timeToEnd and the position in the linked list
where it should be added (mLastCachedPos). This information
will be sent together with the job in the SendTask function to
avoid doing the linear search twice.

On each worker there is a function which continuously
polls for jobs in the jobs list and grabs them for execution. The
trick is to allow grabbing and execution of the first job from
the list even if the current clock time is less than its
timeToStart field. Doing this will keep the machines busy. It is
possible that some of the jobs with a deadline close to current
clock time will be refused, but it has the same probability
(assuming a normal distribution of jobs in time) that other new
jobs will benefit from this.

The complexity of searching for the best place to add a
new job inside a worker is linear in the number of existing
jobs on that worker. The worst case happens where there are
many jobs received in a short time interval while the jobs
execution time is higher than the arrival time rate of new jobs.

IV. SIMULATION RESULTS

To test the performance of the proposed algorithm, a
simulation was made in order to see its behavior in
comparison with other two load balancing algorithms. The
first one sends the jobs in a round robin policy while the
second one to the worker that can execute the job as late as
possible. Both have just a simple policy at the worker’s view:
add the new job to the end of the queue if it can be executed
before its deadline expires. Ideally, the load balancing
should use the resources correctly by keeping the hardware
busy most of the time and minimizing the number of refused
jobs.

Final results were obtained by averaging a number of test
samples which creates 1000 of jobs with a normal distribution
of execution times between 10 and 200 milliseconds. The
arrival time rate of new jobs was between 1 and 10
milliseconds. Deadline time extension of each job (time since
a new job was received to when it should finish) was also
chosen by a normal distribution in interval [10, 2000]
milliseconds (considering the job execution time too).
Samples where run on 24, 16, 12, 8 and 4 machines in a local
network (workers) each having single hardware process
dedicated for our job execution. The process of receiving and
assigning a new job to a worker was done by a separate
machine called master.

Figure 1. shows how many jobs where refused depending
on the number of machines and the algorithm used. The results
graph shows that the proposed algorithm is better than the
other two methods, despite its overhead. The difference
between it and the other two algorithms increases with the
number of machines used. When using 16 machines, the
number of jobs refused by the other two algorithms is with
49% higher than the proposed algorithm.

With 24 machines, the proposed algorithm succeeded to
obtain 0 refused jobs while the other two solutions had 18/21
refused jobs. The samples used creates jobs in a short time
interval (defined at the beginning of this section) to represent a
worst case scenario for the proposed algorithm. When jobs
have longer execution time and the arrival time has a different
time distribution in the proposed algorithm can perform even
better than this because there is less overhead spent on
decision making.

GetTimeToStart(job)

 // Step 1:

 // Check the back of the list first

 If mList.isEmpty() OR

 mList.last().timeToEnd<=(job.deadlinejob.timeToExec)
 {

 job.timeToStart=job.deadline – job.timeToExec;

 mLastCachedPos = mList.end;

 return job.timeToStart;

 }

 // Step 2:

 // Check for gaps between tasks, starting from last to first

 foreach job T in mList (reverse order)

 {

 prevT = T->prev
 if prevT == NULL continue

 deadlineImp=min(job.deadline,T.timeToStart)

 if prevT.timeToEnd+job.timeToExec<= deadlineImp

 {

 job.timeToStart = deadlineImp – job.timeToExec

 mLastCachedPos = position of T in mList

 return newJob.timeToStart

 }

// Step 3:

// Check for a gap between current clock time and first job
// begin

Tfirst = mList.first()

deadlineImp = min(job.deadline, Tfirst.timeToStart)

if (clock() <= (deadlineImp – newJob.timeToExec))

{

 mLastCachedPos = mList.first()

 job.timeToStart = Tfirst.timeToStart – job.timeToExecute

 return job.timeToStart

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

59 | P a g e
www.ijacsa.thesai.org

Fig. 2. The average number of refused jobs (1000 was the total number of

jobs) in test samples by each algorithm.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel algorithm for load balancing
jobs having deadlines in a distributed network with central
coordination. By using two different greedy strategies, one
from master view and the other from worker’s view, the
proposed algorithm provide an increased performance than the
classical methods for load balancing jobs. Keeping the same
hardware and being able to increase the performance with over
49%, as the results sections shows, represents an important
issues for most of the web services on the market.

One important topic to study in continuation is to consider
that each job also has a profit assigned and find a load
balancing policy that maximize the profit instead of
considering equal profits for jobs like the proposed algorithm
does.

REFERENCES

[1] Ciprian Paduraru, “A New Online Load Balancing Algorithm in
Distributed Systems”, 14th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, Timisoara, Romania,
2012

[2] U.Karthick Kumar, “A Dynamic Load Balancing Algorithm in
Computational Grid Using Fair Scheduling”, IJCSI International Journal

of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011

[3] M.Kaladevi and S.Sathiyabama, “A Comparative Study of Scheduling
Algorithms for Real Time Task”, International Journal of Advances in

Science and Technology,

Vol. 1, No. 4, 2010

[4] Antonina Kolokolova, “A Greedy Algorithm for Scheduling Jobs with
Deadlines and Profits”, Scheduling case study, Lecture notes

[5] C. L. LIU and JAMES W. LAYLAND, “Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”, Journal of the
Associatlon ior Cornputmg Machinery, Vol. 20, No. I, January 1973

[6] Peter Brucker, “Scheduling Algorithms Fifth Edition”, Springer,

October 2006.

[7] Kirk Schloegel, George Karypis and Vipin Kumar, “A unified algorithm

for load-balancing adaptive scientific simulations”, Proceeding
Supercomputing '00 Proceedings of the 2000 ACM/IEEE conference on

Supercomputing Article No. 59 IEEE Computer Society Washington,
DC, USA

[8] Abbas Karimi, Faraneh Zarafshan, Adznan b. Jantan, A.R. Ramli, M.

Iqbal b.Saripan, “A New Fuzzy Approach for Dynamic Load Balancing
Algorithm”, (IJCSIS) International Journal of Computer Science and

Information Security, Vol. 6, No. 1, 2009.

[9] Reinhard Lüling , Burkhard Monien, “A Dynamic Distributed Load
Balancing Algorithm with Provable Good Performance”, Proceedings of

the 5th Annual ACM Symposium on Parallel Algorithms and
Architectures, 1993.

0

100

200

300

400

500

600

700

800

900

4 8 12 16 24

Proposed
algorithm

Greedy
worker
selection

Round robin

