
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

25 | P a g e
www.ijacsa.thesai.org

New Framework For Improving Big Data Analysis

Using Mobile Agent

Youssef M. ESSA

Software Engineering Department,

Etisalat Corporation,

Cairo, Egypt

Gamal ATTIYA
Computer Science & Engineering

Dept., Faculty of Electronic

Engineering, Menoufia Uni.,

Menouf 32952, Egypt

Ayman EL-SAYED,

IEEE Senior Member

Computer Science & Engineering

Dept., Faculty of Electronic

Engineering, Menoufia Uni.,

Menouf 32952, Egypt

Abstract—the rising number of applications serving millions

of users and dealing with terabytes of data need to a faster

processing paradigms. Recently, there is growing enthusiasm for

the notion of big data analysis. Big data analysis becomes a very

important aspect for growth productivity, reliability and quality

of services (QoS). Processing of big data using a powerful

machine is not efficient solution. So, companies focused on using

Hadoop software for big data analysis. This is because Hadoop

designed to support parallel and distributed data processing.

Hadoop provides a distributed file processing system that stores

and processes a large scale of data. It enables a fault tolerant by

replicating data on three or more machines to avoid data loss.

Hadoop is based on client server model and used single master

machine called NameNode. However, Hadoop has several

drawbacks affecting on its performance and reliability against

big data analysis. In this paper, a new framework is proposed to

improve big data analysis and overcome specified drawbacks of

Hadoop. These drawbacks are replication tasks, Centralized node

and nodes failure. The proposed framework is called MapReduce

Agent Mobility (MRAM). MRAM is developed by using mobile

agent and MapReduce paradigm under Java Agent Development
Framework (JADE).

Keywords—Mobile Agent; JADE; Big Data Analysis; HDFS;

Fault Tolerance

I. INTRODUCTION

The collection of data sets are so large and complex that
become difficult to process using on-hand database
management tools or traditional data processing applications
referred to “Big Data”. The value of big data to an organization
falls into two categories: analytical use and enabling new
products. Extracting information and something intelligence
from these big data sets, commonly referred to as big data
analytics. Big data analytics can reveal insights hidden
previously by data too costly to process such as peer influence
among customers, revealed by analyzing shoppers’ transactions
and social and geographical data. Big data analytics is shown
to be useful in several scenarios; analytics enable web data
mining and enable extracting business intelligence. The
primary goal of big data analytics is to help companies to make
better business decisions. But, analysis of large data sets in
real-time requires a framework like MapReduce to distribute
the work among tens, hundreds or even thousands of
computers. So, many companies focused on using Hadoop for
big data analysis.

Hadoop is an open source software framework written in
Java by Doug cutting and Michael Cafarella [1]. Hadoop
enables distributed, data intensive and parallel applications by
dividing big data into smaller data blocks. These data blocks
are divided into smaller partitions such that each data block
processes a different partition in parallel [2]. By using Hadoop,
there is no limit of storing and processing data by
computational technique called MapReduce [3] and in [4-5],
the authors proposed a design of an adaptive scheme to
efficiently manage the power peaks for MapReduce clusters.
Hadoop provides a distributed file processing system that stores
and processes a large scale of data [6]. It enables a fault tolerant
by replicating data on three or more machines to avoid data
loss [7-8], but this method causes some problems. The first
problem is about increasing the amount of data that executes on
machine by replicating each block of data in two or more
machines. The second one, the full system is down when the
master machine failed.

So, in this paper presents a new strategy called MapReduce
Agent Mobility (MRAM) to improve big data analysis and
overcome the drawbacks of Hadoop. The proposed framework
is developed by using mobile agent and MapReduce paradigm
under Java Agent Development Framework (JADE).JADE is a
promising middleware based on the agent paradigm because it
supports generic services such as communication support,
resource discovery, content delivery, data encoding and agents
mobility [9,10].

Indeed, there are seven reasons for using mobile agents as
follows:

1) Reduce the network load,

2) Overcome network latency,

3) Encapsulate protocols,

4) Execute asynchronously and autonomously,

5) Adapt dynamically,

6) Naturally heterogeneous and robust, and

7) Fault-tolerant [11].

So, the mobile agent is used with Hadoop to overcome the
problems faced Hadoop. In the proposed strategy, mobile
agents send both code and data to any machine. The machine
can react dynamically for any changes in the environment.
Furthermore, if a machine or environment down, the mobile
agent can migrate to another machine with code and data.

http://en.wikipedia.org/wiki/Data_set
http://whatis.techtarget.com/definition/data-set
http://searchcrm.techtarget.com/definition/real-time-analytics
http://searchcloudcomputing.techtarget.com/definition/MapReduce

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

26 | P a g e
www.ijacsa.thesai.org

The rest of this paper is organized as follows: Section II
describes Hadoop architecture, workflow, and drawbacks.
Section III presents the basic concepts of JADE and Mobile
Agent. Section IV introduces the proposed framework namely
MapReduce Agent Mobility (MRAM). Section V presents a
comparative study and performance evaluation of the proposed
strategy and Hadoop. Finally, the paper is concluded in Section
VI.

II. HADOOP ARCHITECTURE AND WORKFLOW

This section presents both the architecture of Hadoop and
its workflow for big data analysis as follow:

A. Hadoop Architecture

Hadoop architecture consists of a Hadoop Distributed File
System (HDFS) and a programming framework MapReduce.
HDFS stores big files across machines in a large cluster. Each
file is stored as a sequence of blocks. Each block is sent to
three or more machines for fault tolerance. Hadoop uses
MapReduce method for processing data allocated on each node
[12, 13, and 14].

1) HDFS
HDFS is a very large distributed file system [15, 16] that is

available hardware and provides fault tolerance as well as have
high throughput. Many big companies believe that within a few
years, more than a half of the world’s data will be stored in
Hadoop. HDFS stores files as a series of blocks and replicates
the data blocks for fault tolerance. HDFS is designed to store
big data set, and provides global access to files in the cluster.
HDFS stores metadata on a dedicated server, called
“NameNode”. Application data is stored on other servers called
“DataNodes”. All servers are fully connected and communicate
with each other using TCP-based protocol [2, 15]. HDFS
architecture is broadly divided into following four parts as the
follows: NameNode, DataNode, JobTracker to determine the
location of data and Task Tracker overseeing overall Map
Reduce job execution.

a) NameNode

The NameNode is responsible of managing all metadata
and file system actions. It handles the file system namespace
operations like open, close, and renames both file and
directory. Also, it makes all decisions regarding replication of
blocks. NameNode maintains the tree of namespace and maps
the file blocks to DataNodes (i.e. the physical location of file’s
data). A single NameNode is considered a bottleneck for
handling requests in scientific application environments [12,
17].

b) DataNode

The DataNode stores data in the Hadoop file system, Each
DataNode stores data blocks on behalf of local or remote
clients. Each block is saved as a separated file in the node’s
local file system. On startup, DataNode connects to the
NameNode and performs a handshake. The purpose of the
handshake is to verify the name space IDand the software
version of DataNode. If NameNode does not match DataNode,
the DataNode automatically shuts down. After the handshake is
successful, the DataNode registers with the NameNode.
DataNodes persistently store their unique storage IDs. The

storage ID is an internal identifier of the DataNode which
makes it as recognizable even if it is restarted with a different
IP address or port. The storage ID is assigned to the DataNode,
when it registers with the NameNodeon the first time and never
changes later.The DataNode then responds to the requests that
coming from the NameNode, for the file system operations.
The DataNodes service the read, writing and file replication
requests based on the direction from which NameNode coming
[8, 18].

c) JobTracker

The JobTracker talks to the NameNode to determine the
location of the data. JobTracker schedules individual maps
reduces or intermediate merging operations to specific
machines. It monitors the success and failures of these
individual tasks. Also, it works to complete the entire batch
job. If a task fails, the JobTracker will automatically re-launch
the task, possibly on a different node, up to a predefined limit
of retries [17, 18].

d) TaskTracker

The JobTracker is the master overseeing the overall
execution of a MapReduce job. The TaskTrackers manage the
execution of individual tasks on each slave node. Although,
there is a single Task Tracker per slave node, each Task
Tracker can spawn multiple Java Virtual Machines (JVMs) to
handle many maps or reduces the tasks in parallel. The
TaskTrackers also transmit heartbeat messages to the
JobTracker, usually every a few minutes, to reassure the
JobTracker that is still alive [11, 17].

2) MapReduce
In MapReduce [13], the first step is the map job which

takes a set of data and converts it into another set of data,
where individual elements are broken down into tuples
(key/value pairs). The reduce job then takes the output from a
map as input and combines those data tuples into a smaller set
of pairs. The map function can run independently on each
key/value pair, exposing enormous amounts of parallelism.
Similarly, the reduce function can run independently on each
intermediate key, exposing significant parallelism as well.
Similar to other distributed systems, MapReduce also
constitutes a master and a set of workers.The master is called
JobTracker, while the workers are called TaskTrackers [14,
15].

B. Hadoop Workflow

The workflow of Hadoop is shown in Fig. 1. It has the
following steps:

1) Input text files to a platform.

2) Server portioning file to blocks with the same size,

then assigns a block of data to each computing node.

3) The compute node runs map on the input data and

producing intermediate data pair for every word, then sends its

intermediate data pairs to the node designated to perform the

reduce operation.

4) The reduce operation counts the number of

occurrences of each word using the values and emits it as a

key-value pair.

5) Server receives the results and outputs the list.

http://wiki.apache.org/hadoop/NameNode
http://wiki.apache.org/hadoop/NameNode
http://wiki.apache.org/hadoop/NameNode

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

27 | P a g e
www.ijacsa.thesai.org

Fig. 1. Workflow for Hadoop.

C. Hadoop Drawbacks

From the architecture of Hadoop and its workflow of data
computation, there are many drawbacks of Hadoop. These
drawbacks are:

1) Hadoop needs high memory and big storage to apply

replication technique.

2) Hadoop supports allocation of tasks only and do not

have strategy to support scheduling of tasks.

3) Still single master (NameNode) which requires care

4) Load time is long.

These drawbacks effect on both the performance and
reliability of Hadoop against big data analysis. Therefore, it is
necessary to develop a new framework or modify some
Hadoop features to overcome Hadoop limitations and improve
its performance and reliability. So, in this paper, a new
framework is proposed to overcome the drawbacks of Hadoop
and improve big data analysis.

III. BASIC CONCEPTS OF JADE AND MOBILE AGENT

A. JADE Architectural Model

In the recent years, there are many platforms that can
support agent mobility and developing distributed application.
JADE is a promising middleware based on the agent paradigm.
It supports generic services such as communication support,
resource discovery, content delivery, data encoding and so on
[9,10].The architectural of JADE contains both the libraries
required to develop application agents and the run-time
environment that provides the basic services. These services
include agent identification and agent communication. The
instance of JADE is called "Container" and the set of all
containers is called platform [10].

B. Mobile Agent

A mobile agent (MA) is a software abstraction that can
migrate during execution across a heterogeneous or
homogeneous network. It has the ability to suspend its
execution according to some factors and resume it in another
machine.

Characteristics of MA: There are several characteristics can
be defined the structure of the MA [19]:

State: the main characteristic of the MA. It can stop execution
on one machine and resume execution on another
machine. The state depends on two factors:

1) Execution state, which is a runtime state including its

program counter and stack.

2) Object state, which stores the current values of its

variables.
Implementation: it is the program code that defines the tasks

behavior. If java is used as MA platform, classes
present the implementation code. In this manner, there
are two ways to make the required classes available to
the MA:

1) Taking the entire required classes during its itinerary

and uses it any time anywhere.

2) Taking some of the required classes and once the MA

need a class that is not available, it retrieves it from remote

location. This operation called Code-On-Demand technique,

and it is a common technique in distributed network systems.
Interface: MA collaborates with other agents to handle the

assign job. The Interface is required to make the
communication possible between agents.

Unique Identifier: it is a unique ID define agent during its
lifetime. It used as a key that needed to refer for a
specific agent especially, when it travels all over the
network.

Itinerary: it is the group of addresses created once the MA life
starts that defines the agent journey around the
network.

Principals: it is the information of individual, organization or
corporation that MA belongs to. Principles are needed
to authenticate the MA who dispatched to several
destinations on the network.

Advantages of mobile agent: There are many advantages for
using mobile agent to solve many problems on
distributed application [9, 10].

Reduce network traffic: the cooperation in a distributed
system is often achieved using communication
protocols. These protocols transfer a large volumes of
data stored at remote hosts over the network to a
central processing site resulting in high network
traffic. At this case, mobile agent uses alternative
communication protocols.

Off-line tasks: network connections may be fail at any time.
Agents can solved this problem by perform off-line
tasks and send results to server application when it
come back online.

Support for heterogeneous environments: MA can work on
top of any operating system with the same its mobility
framework.

Fault tolerance: Mobile agents react dynamically and
autonomously to the changes in their environment. If

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

28 | P a g e
www.ijacsa.thesai.org

a host is being shut down or platform is down, all
agents executing on that machine will be warned and
given time to dispatch themselves and continue their
operation on another host in the network [20, 21].

Protocol Encapsulation: Protocol encapsulation allows the
components of distributed system to communicate and
coordinate their activities. MAs provide a solution to
the problem of upgrading the protocol code at all
locations in the distributed system.

IV. OUR PROPOSED FRAMEWORK

Our proposed framework is called MapReduce Agent
Mobility (MRAM). It combines of advantages of mobile agent
and MapReduce technique. MRAM framework improves big
data analysis and overcomes the drawbacks of Hadoop during
three steps.

A. First Step

Hadoop reduces CPU utilization by providing faults
tolerance via replication data. The MRAM provides a fault
tolerance when machine is failed by reacting dynamically to
system change and can move new agent to another machine
with code, data and status to continue executing task. In
Hadoop, each data block is sent to three or more nodes. New
strategy is completely different.

Fig. 2. Steps to solve machine fail problem.

Fig. 2 illustrates the steps to resolve this problem. The main
idea of this strategy is each machine in the framework sending
a copy of data and status to master machine every fixed time
period. In falling machine case, another copy of agent is
moving from master machine to a new machine. New agent is
carrying copy of code, data and status to completion task.

B. Second Step

The goal of second step is comparing performance of
Hadoop and MRAM. The idea of comparative study is
applying the same application on Hadoop and MRAM.

The workflow of the proposed MRAM framework is shown
in Fig. 3. It has the following steps:

1) Input text files to the platform.

2) Server portioning the file to blocks with the same size

3) An application server assigns a data block to each

computing node, but in our approach the server take a task as

the other nodes.

4) The computing node runs map on the input data and

producing intermediate data pair for every word. It then sends

its intermediate data pairs to application server directly to

perform the reduce operation.

5) The reduce operation counts the number of

occurrences of each word using the values and emits it as a

key-value pair and save the result in file or in consol.

Fig. 3. MRAM Workflow.

C. Third Step

This step uses features of mobile agent. Mobile agent can
react dynamically and autonomously to change in their
environment. Hadoop is still depending on single node that
runs all the services needed to MapReduce task distribution and
tracking. The all system is down when a single mode is failed
or down. The solution of this problem, the master node is
selected when a platform starts working. After that, the master
node build linked list involves meta-data. These meta-data
contains all information about tasks, dependences among them
and information about all machines.

Also, the master machine sends meta-data to all machines
through network connection. Subsequently, if any node
receives a job, this node is elected as a new master. When the
master machine is shutdown or platform is down, all agents
executing on master machine will be moved to another host
that having a highest IP-address when meta-data is published.
The agents continue executing tasks on new machine because it
carrying its code, status and data.

A new machine becomes as a master node that is
responsible for all acts of server expects to receive result from
machines such as Task Tracker and informs all machines about
a machine failed. After all agents finished executing tasks, it is
waiting to send the result to general server when it comes back
online as shown in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

29 | P a g e
www.ijacsa.thesai.org

Fig. 4. Steps to solve centralized node problem.

D. Advantages of MRAM

The MRAM framework has several advantages derived
from the features of mobile agent and MapReduce technique.
The advantages of MRAM are:

1) Support allocation and scheduling tasks.

2) Provides fault tolerance and don't need high memory

or big disk to support it.

3) Load time for MRAM is less than that of Hadoop.

4) Solve single master (centralized node) problem by

using features of mobile agent.

5) Improve execution time because of no need to huge

processing to replication data.

V. COMPARATIVE STUDY AND PERFORMANCE ANALYSIS

It is noted that MRAM improves reliability of Hadoop
using mobile agent and investigate the performance of Hadoop
and MRAM. The idea of comparative study is applying the
same application in the same environment on Hadoop and
MRAM.

A. Implementation Environment

In this paper, the Measurements have been carried out by
using the following hardware and software components. The
specifications of the used hardware and software are shown in
Table I, and as follows:

1) Hardware Components: Hardware contains one

server namely “Server” and three nodes namely “PC1”,

“PC2” and “PC3” connected via a LAN.

2) Software Components: Hadoop and MRAM are the

main software components. The word count application or

multiply two arrays application is applying on each platform.

B. Durability of platforms

As mentioned before, there are three weaknesses for
Hadoop. The first weakness, Hadoop is still single master
which require care. The second one, Hadoop reduces the CPU
utilization by providing faults tolerance via replication data.

TABLE I. SOFTWARE AND HARDWARE EQUIPMENTS

Server PC1 PC2 PC3

Model IBM x3650 IBM

CPU
Intel Dual Core2Quad 2.56

GHZ

Intel Dual Core2Due 2.53

GHz

RAM 16GB 2 GB

Hadoop

version
0.20 0.20

OS Linux Linux

Sun JRE JRE 7u25 JRE 7u25

JADE 4.1 4.1

TABLE II. DATA ABOUT STATES OF TASK.

Time
interval in
second

0.25 0.5 1 2 4 8

1
st
 snapshot

of objects
i=1
j=1988

i=1
j=1983

i=1
j=2088

i=1
j=2001

i=1
j=2001

i=1
j=1912

Last
snapshot

i=3
j=2240

i=5
j=1255

i=8

 j=338

i=17
j=150

i=38
j=613

i=65
j=2236

Last status
sent

i=1
j=1886

i=2

j=1246

i=4
j=1676

i=8
j=2420

i=19
j=1271

i=37
j=871

Sure, these factors effect on the reliability of Hadoop. So
the solution is via mobile agent as in MRAM and will clarify
each solution separately as follow.

1) Faults Tolerance Techniques
Table II contains the data used to measure the appropriate

times periods that sends the in all of them the data and status
about tasks. The Framework is using two arrays each one
consist of two-dimensional. Theses matrix is multiplying in this
step and measuring execution time in different states. First
dimension is defined by i and second dimension by j.

The status and data takes in each time period for each array.
So, the first measurement value takes after the program began,
and then used a fixed period of time to take the status and data
of the task. We assume the worst case that occurs if a machine
is down just before taking a status and data. All values in table
on the basis of this case.

From the Table II, the relationship between time and the
amount of data processing is a proportional relationship. Also,
the relationship between time and amounts of processes losses
is proportional relationship.

Fig. 5 illustrates size of sent data in every period of time,
where the amount of data sent is decreased when the period of
time increased. But this in turn affects the reliability of the
system because when the time period increased will be the
possibility of processes losses are larger as shown in Fig. 6.
Also, the time needed to send data is greater when the amount
of data sent is increased.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

30 | P a g e
www.ijacsa.thesai.org

Fig. 5. Effects on Sent data size when using various time periods.

Fig. 6. Processes losses comparison in different platforms.

Fig. 7. Effects on Exchange data time when using various time periods.

Based on the above factors, the framework founds the best
fixed period of time used in the application is to be transfer
data every second. So, the amount of losses processes rates is
slightly larger for periods prior to them. In addition, we find the
amount of losses processors increases in the periods after
which at high rates of up to more than double. When uses a 0.5
second, the losses processes less than a second. But, if we look
at other factors we find at 0.5 second the amount of data sent is
larger and thus data sent takes a longer period of time to send
as shown in Fig.7.

In Hadoop, there are two techniques uses to executing task
when a machine is failed. In first technique, the first copy of
task starts processing after replicas tasks. But when this
machine down the second copy of task is start executing from
the beginning. Also, the third copy of tasks is beginning
executing when the second machine is failed. The first
technique is referred to “HadoopF”. In contrast, the idea of
second technique is the all duplicates task are start working
concurrently after replication process. HDFS takes the first
copy of task was executed and cancelled another copies of task.
The second technique is referred to “HadoopC”.

Fig. 8. Cost values for HadoopF, HadoopC and MRAMwhen a machine is
failed.

Fig. 9. Cost values for HadoopF, HadoopC and MRAM when two machines
are failed

The cost values for MRAM, HadoopF and HadoopC is
described in two cases: The first case when one machine is
failed shown in Fig. 8 and second case when two machines are
failed shown in Fig. 9. The cost is defined by “time”. Indeed,
the execution time of MRAM is 6.10805 minutes and Hadoop
is 6.48875 minutes in optimum system. HadoopF cost is the
total time spent in executing task on machines before its failing
and this time is referred to (tf). Also, the time spent in
executing task on the final machine is added to cost and this
time is referred to (ts). In addition to that, the time between the
first machine fall and the task beginning in the second machine
is added to cost and this time is referred to (tcom). The cost of
HadoopF is described by the equation (1).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

31 | P a g e
www.ijacsa.thesai.org

HadoopC cost is completely different from HadoopF
because all replicas tasks in HadoopCare working concurrently.
In this scenario, HDFS takes the result from the first task has
been executed. The time spent from task executed in fastest
machine is referred to (Tfa). HDFS cancels all others duplicated
task and total cost is the summation of time used in all
machines until the fastest machine has been finished to
executing task. The cost of HadoopC is described by the
equation (2).

CostHadoopC = 3* Tfa (2)

The cost of MRAM is dependable on the execution time for
task (Te) and total communication time between machines (Tc)
and it is described by the equation (3).

In Fig.8, the MRAM framework is the lowest cost when
one machine is failed. Also, we see that the HadoopF cost is
less than HadoopC because the cost of HadoopC is summation
of time from all duplicated task in three machines. In HadoopF,
the cost value is the summation of execution time in two
machines only.

From Fig.9, the MRAM is the lowest cost from HadoopF
and HadoopC when two machines are failed. The reason for
that, MRAM does not lose the output data and status because
there is another copy of them sent to the master machine.
Indeed, the cost of HadoopF is larger than HadoopC due to the
HadoopF adds the time spent between machine fall and starts
task execution on another machine to total cost.

2) Performance Analysis
The word count application is applying on each platform in

this step. It is a simple program given a text file and count
repeated time for each word, after that save the output as a list
in the form of (<Word>, <Count>). It is possible to process
each line of a text file completely independently on the other
lines. The data then is combined in a central location and the
results are printed out. The idea to evaluate the performance of
two platforms is measure total time takes to complete assign
job. The complete job is executed with different size of data on
both Hadoop and MRAM. The execution time for each state is
calculated. The load time and mapping task for Hadoop is
larger than load time for MRAM because Hadoop takes time
for replication processing. It means that each task is sent to
three or more machines for fault tolerance, but in MRAM the
task sent to only one machine and the mobility supports fault
tolerance without needing for replication task. Also, the two
platforms using the same algorithm map reducing to evaluate
execution time. The total time in MRAM is less than that of
Hadoop as shown in Fig.10. MRAM gives the possibility for
the server or control node to execute task as another nodes in
platform, but not exist in Hadoop.

Fig. 10. Performance comparison between MRAM and Hadoop.

3) Centralized Node
This step uses word count application. The total time as

shown in Fig.11is composed from the execution time, the time
spent from master machine to reconnect again and the time
required from new master to work this time is based on the
number of times master failed. The value of the time needed
from master machine to reconnect is fixed and assumed the
master machine is failed one time. This technique is described
by the equation (4).

TTotal =Texecution + TMigration + Tm+ Tstartup (4)

Fig. 11. Performance of MRAM when master machine failed.

Where the Migration time (TMigration) is the time required for
the agent migrating from the master machine to the target
machine and his return. Tm is the time spent from master
machine to back online again. The startup time is the time spent
from new master to start work, this time is based on the times
of master machine failed. The word count application was
applied in this step and has been assumed Tm= 1 minute.

Machine=0

2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 3, 2014

32 | P a g e
www.ijacsa.thesai.org

4) Summary of results
Table III illustrates the differences between Hadoop and

MRAM through the fetched results from experiments. The
table shows various comparative factors such as architecture,
startup time, performance, reliability, and the mobility support,
and … etc.

TABLE III. SUMMARY ABOUT DIFFERENCES BETWEEN TWO PLATFORMS

Factors

Platforms

Hadoop MRAM

Architecture Client/Server Distributed Agent

Startup time Long Less

Performance Less Better

Reliability Reliable More Reliable

Algorithm Map-Reduce Map-Reduce

Mobility N/A Support

Management disk Support N/A

Allocation Tasks Support Support

Scheduling Tasks N/A Support

Methodology Object-Oriented Object-Oriented

Language Java Java

VI. CONCLUSION

In this paper, a new framework called MRAM is developed
using mobile agent and Map Reduce paradigm under JADE.
Our proposed framework is developed to improve big data
analysis and to overcome the drawbacks of Hadoop. In the
proposed Framework, mobile agents send both code and data to
any machine and react dynamically for any changes in
environment. In addition, the mobile agents have ability to
move with code and data, if the machine or environment is
down. Furthermore, Hadoop is still single master which
requires care, this problem is solved in MRAM through send
met-data contains map of network and all data about tasks and
dependences between them. Also, MRAM improves
performance by giving the server or control node, the
possibility to execute tasks as the others nodes. Another
disadvantage of Hadoop, it doesn’t support scheduling tasks or
does not work with dependent tasks, but MRAM support this
feature. A new strategy is written in JAVA programming
language based on JADE, This means it can run on different
machines and different operating system without any problems.

REFERENCES

[1] Hadoop web site, http://hadoop.apache.org/, Jan. 2014.

[2] Kala Karun. A, Chitharanjan. K, “A Review on Hadoop–HDFS

Infrastructure Extensions”, In Proceedings of IEEE Conference on

Information and Communication Technologies (ICT2013), pp.132-137,

11-12 April, 2013, doi: 10.1109/CICT.2013.6558077.

[3] Jian Tan, Xiaoqiao Meng, Li Zhang, “Coupling Task Progress for

MapReduce Resource-Aware Scheduling”, In Proceedings of IEEE
INFOCOM, pp.1618-1626, 14-19 April, 2013, doi:

10.1109/INFCOM.2013.6566958

[4] Zhu, Nan; Liu, Xue; Liu, Jie; Hua, Yu, "Towards a cost-efficient
MapReduce: Mitigating power peaks for Hadoop clusters," Tsinghua

Science and Technology, vol.19, no.1, pp.24,32, Feb. 2014
doi: 10.1109/TST.2014.6733205.

[5] Anchalia, P.P.; Koundinya, A.K.; Srinath, N.K., "MapReduce Design of

K-Means Clustering Algorithm," International Conference
onInformation Science and Applications (ICISA), pp.1,5, 24-26 June

2013, doi:10.1109/ICISA.2013.6579448.

[6] S. Ghemawat, H. Gobioff, and S. Leung. “The google file system”, In
Proceedings of the nineteenth ACM symposium on Operating systems

principles”, SOSP ’03, pp. 29–43, New York, NY, USA, 2003.

[7] Yongwei Wu; Feng Ye; Kang Chen; Weimin Zheng, "Modeling of
Distributed File Systems for Practical Performance Analysis," IEEE

Transactions onParallel and Distributed Systems, vol.25, no.1, pp.156-
166, Jan.2014, doi:10.1109/TPDS.2013.19.

[8] K.Shvachko, H.Kuang, S.Radia, R.Chansler, “The Hadoop Distributed

File System”, 26th IEEE symposium on Mass Storage Systems and
Technologies (MSST), pp.1-10, 3-7 May, 2010.

[9] JADE web site, http://JADE.tilab.com, Jan. 2014.

[10] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE: A white paper”,
TILAB Journal, Vol.3, No.3, pp.6-19, 2003.

[11] D.Schoder, T. Eymann, “Technical opinion: The real challenges of

mobile agents”, Communications of the ACM, Vol. 43, No. 6, pp. 111-
112, June 2000.

[12] G.Mackey, S.Sehrish, J.Wang, “Improving Metadata Management for

Small Files in HDFS”, In Proceedings of IEEE International Conference
on Cluster Computing and Workshops, pp.1-4, 31 Aug.- 4 Sept., 2009.

[13] J. Dean, S. Ghemawat, “MapReduce: A Flexble Data Processing Tool”,

Communications of the ACM, Vol.53, No.1, pp.72-77, January, 2010.

[14] V.Martha, W.Zhao, Xiaowei Xu, “h-MapReduce: A Framework for
Workload Balancing in MapReduce”, IEEE 27th International

Conference on Advanced Information Networking and Applications,
pp.637-644, 25-28 March, 2013.

[15] J.Shafer, S.Rixner, Alan, “The Hadoop Distributed Filesystem:Balancing
Portability and Performance”, In Proceedings of IEEE International

Symposium on Performance Analysis of Systems & Software (ISPASS),
pp.122–133, 28-30 March, 2010.

[16] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop

Distributed File System”, 26th IEEE Symposium on Mass Storage
Systems and technologies(MSST), pp. 1-10, 3-7 May, 2010.

[17] C.Lam, “Hadoop in Action”, Manning Publications Co.,

USA,ISBN:9781935182191, Dec. 2010.

[18] S.Perera, T.Gunarathne, “Hadoop MapReduce Cookbook”, Packt
Publishing, ISBN:1849517282,Jan. 2013.

[19] D. Lange, M. Oshima, “Programming and Deploying Java Mobile Agent

with Aglets”, Addison-Wesley, pp.18-20, 1998.

[20] P. Braun and W. Rossak, “Mobile Agents – Basic Concepts Mobility
Models and the Tracy Toolkit”, Morgan Kaufmann Publishers, 2005.

[21] L. Guanyu ; W. Baofeng; Y. Yang; A. Lihua , “Researches on
Performance Optimization of Distributed Integrated System Based on

Mobile Agent”, The Sixth World Congress on Intelligent Control and
Automation, pp. 4038- 4041, June 2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5488875
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5488875
http://jade.tilab.com/
http://cacm.acm.org/magazines/2000/6
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5281774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5281774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5281774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446240

