
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

103 | P a g e
www.ijacsa.thesai.org

A web based Publish-Subscribe framework for

Mobile Computing

Cosmina Ivan

 Department of Computer Science

Technical University of Cluj Napoca

Cluj, Romania

 Abstract—The growing popularity of mobile devices is

permanently changing the Internet user’s computing experience.

Smartphones and tablets begin to replace the desktop as the

primary means of interacting with various information

technology and web resources. While mobile devices facilitate in

consuming web resources in the form of web services, the

growing demand for consuming services on mobile device is

introducing a complex ecosystem in the mobile environment. This

research addresses the communication challenges involved in

mobile distributed networks and proposes an event-driven

communication approach for information dissemination. This

research investigates different communication techniques such as

polling, long-polling and server-side push as client-server

interaction mechanisms and the latest web technologies standard

WebSocket, as communication protocol within a

Publish/Subscribe paradigm. Finally, this paper introduces and

evaluates the proposed framework, that is a hybrid approach of

WebSocket and event-based publish/subscribe for operating in

mobile environments.

 Keywords—mobile computing; Websockets; publish-subscribe;

REST

I. INTRODUCTION

In recent years, the growth of mobile devices such as
smartphone and tablets has led to an extensive use of mobile
applications in almost every sector of our life. The Gartner
research [1] forecast 2011 states, that the download of mobile
apps worldwide had increased by 117 percent from 2010 to
2011 and forecasts an astounding 185 billion downloads from
mobile app store by 2014, since the first launch in 2008. The
capabilities of these devices in doing more than just making
calls as well as sending and receiving text messages has
increased the demand for mobile applications in the enterprise,
as it becomes possible for enterprises to extend their services
to the fingertips of numerous consumers.

Generally, these mobile applications consume data as Web
services from a remote server- based architecture, which is the
backbone of most information systems. Today’s information
society is built upon collaborative platforms which gathers and
shares information across distributed networks, so the
backbone of these information systems consists of multiple
disparate system applications. The growing demand of
consumers in accessing services is causing these systems to
expand and some of these services can be hosted in the cloud
computing environment, in order to ensure availability,
reliability and scalability in service consumption. Cloud
computing is the era where IT services are outsourced from

providers over the internet on pay-according-to-use policy [2].
With the growing demand of consumer web services and the
expansion of systems that forms a gigantic distributed
heterogeneous infrastructure, there is an acute need for
frameworks that can reliably operate in the mobile
environment.

The remainder of the paper is organized as follows.
Section 2 reviews some of the key points that this study
explored and the existing research works within the identified
problem domain. Section 3 presents the proposed framework
design in addressing the research goals and challenges.
Section 4 describes the implementation details of the
architecture followed by the experiments designed to verify
the framework in accordance with the research goals. Finally,
section 5 concludes the thesis with the contributions of this
research.

II. PROBLEM SPECIFICATION AND LITERATURE REVIEW

While distributing the system applications provides more
flexibility and scalability, it often results into a growing
system complexity during services consumption in a mobile
environment. One of the major challenges in today’s
enterprise solution is to ensure integration among these
disparate and distributed system applications which are often
connected to legacy systems. In addition to that, mobile
devices are becoming an integral part of the growing digital
ecosystem and the primary means of accessing IT services.
The major challenges while disseminating data over a wireless
connection in a mobile environment are as follows: unreliable
network connection, higher degree of network latency, limited
network bandwidth.

This introduces more challenges to the system when
synchronizing the information flow between mobile clients
and the distributed system backend.

A. Problem specification

In addressing the above mentioned challenges in mobile
digital ecosystems, this research looks into developing a
framework for disseminating data over wireless networks and
proposes an architecture that allows system components to
independently propagate data (i.e. resource updates) and as
they propagate, the eventual consistency technique is
employed to synchronize the data . In this regard, this paper
looks into the Pub/Sub pattern as a mechanism for
propagating data close to real-time, moreover, the emergence
Web 2.0 has greatly embraced the Restful web services [3]
due to its web compliant API and lightweight solution for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

104 | P a g e
www.ijacsa.thesai.org

resource’s state management. Therefore, the proposed
framework is a hybrid of REST-based and event-based
Pub/Sub that deploys a combination of various client-server
interaction modes, such as polling, long- polling and server-
side pushing.

The main research goal in proposing such a framework for
mobile devices is to integrate REST web services within
Pub/Sub domain. In this respect, the research will look into
different Rest patterns in disseminating data, chose the most
suitable for an event-based Pub/Sub system and address the
above mentioned challenges in wireless network. The
secondary research goal is to reduce network latency,
bandwidth usage and also synchronizing resource’s state in the
face in intermittent connection loss, in terms of the proposed
implementation.

The remainder of the paper is organized as follows.
Section 2 reviews some of the key points that this study
explored and the existing research works within the identified
problem domain. Section 3 presents the proposed framework
design in addressing the research goals and challenges.
Section 4 describes the implementation details of the
architecture followed by the experiments in section 5 designed
to verify the framework in accordance with the research goals.
Finally, section 6 concludes the thesis with the contributions
of this research.

B. Literature review

A communication model that helps in dealing with the
information dissemination in a large scale mobile network is
Pub/Sub paradigm [4]. In this Pub/Sub architecture,
information providers as publishers disseminate information in
the form of events and information consumers ,as subscribers
register for events of their own interests. There can be an event
broker acting as a middleware which helps in dispatching
events to the respective subscribers.

Communication in Pub/Sub is inherently asynchronous and
transparent in nature as both entities (information provider and
subscriber) operate asynchronously through a dispatcher and
disseminate state changes to all interested subscribers through
one operation. In the basic model of a Pub/Sub system, both
providers and subscribers are connected through a set of
groups or channels through which subscribers are notified for
the events of their interest. Upon receiving event notification,
the publisher dispatches the event to the respective
subscribers.

As subscribers are not interested in all the events that are
published by the providers, there are various ways that the
subscriber can specify interest for a specific event. These
variations have led to different subscription models that are
currently seen in Pub/Sub system environments. The most
important subscription models are topic and content based
schemas.

One of the first generation subscription schemes is the
topic-based scheme. In this scheme, subscribers register for
notification based on the topic or subject of the events
corresponding to a particular group ,or a set of groups also
known as a logical channel [5]. Users subscribed to a
channel(s) will receive all published events of that channel.

The topic-based scheme has been proposed as a solution in
many industrial Pub/Sub environments, one of the most
mentioned systems is CORBA notification service and DDS
from OMG group, also among others, and TIB/RV, SCRIBE
and Bayeux are some of the systems that implement topic-
based scheme [5].

The Pub/Sub paradigm is better understood in the domain
of a messaging system and also known in the domain as
Pub/Sub messaging system, and has the capability of
managing messages in a similar way that a persistent database
is managed by a database system. Messages are coordinated
and integrated among the software components as software
applications changes over time, and are transferred from one
machine to another over the unreliable wireless network.

A more flexible but also complex paradigm in the Pub/Sub
scheme is content-based subscription. It provides more
flexibility to the subscriber by providing more control in
subscribing an event based on the actual content of the event.
It allows subscriber to impose set of constraints in the form of
condition in forming a query on an event notification (also
known as filter). Creating a notification using a filter provides
subscribers with a more sophisticated way for subscribing
events. However, this higher expressive capability in defining
subscription on the other hand, can be an added challenge in
implementing such a scheme, since matching publisher’s
events with subscriber become more complicated and the
resource consumption becomes higher, inappropriate to our
goals [5]. There are several examples of systems that
implement content- based subscription scheme such as Siena,
Jedi, and Rebeca [6].

The inherent limitations of wireless network makes the
messaging system suitable to operate as it repeatedly tries to
transmit message until it has been sent. The basic concepts in a
messaging technology revolve around the key terms of
message, channel and routing messages, and they will be
extensively used. Transmitting data in sending messages back
and forth has many advantages in a distributed application
system. Some of the major advantages [7] are:

Asynchronous communication - in asynchronous
communication a sender doesn’t need to wait for the response
to come in order to send the next request.

Throttling - a problem with messaging in Remote
Procedure Calls (RPC) is that the receiver may crash due to
the overhead of incoming messages. A messaging system has
control on the number of requests to be sent to the receiver to
process which saves the receiver from crashing.

Reliable communication - messaging system uses a store-
and -forward style in providing a reliable delivery of
messages.

C. Pub-sub in mobile environments

There are several papers that analyse the existing Pub/Sub
model and his implementation mostly for the content-based
subscription and suggests more enhanced approaches based on
various optimisations. These approaches can be adapted into a
mobile environment considering mobility issues of Pub/Sub
system elements.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

105 | P a g e
www.ijacsa.thesai.org

 In [1] was proposed a middleware approach for a Pub/Sub
implementation and its adaptation for a mobile environment.
The authors explains how an event broker as a mediator can
facilitate Pub/Sub communication in both centralized and
decentralized mobile environments and proposes an algorithm
for an optimized wireless network communication. The paper
addresses the challenges of mobile networks in terms of
network disconnection at any certain point and suggests the
replication of users’ subscription over multiple event brokers
in order to improve the availability and reliability of the
system in a mobile environment.

A scalable decentralized peer-based subscription approach
implementation of Pub/Sub system has been proposed by
authors of [8]. The study presents a topic-based deterministic
information dissemination scheme that provides transparency
for publisher and subscriber.

Another content-based Pub/Sub middleware approach has
been proposed in [9]. The concept of mobility has been
segregated into two parts – the physical mobility and the
logical mobility. Depending on logical mobility, a new
approach of ‘location dependent subscription’ using location-
dependent filter has been introduced by author. In addition, the
goal of [9] is to support mobile client applications in a
decentralized Pub/Sub environment where clients are
connected to one of the interconnected access points that serve
as message routers in a distributed network. The paper
implements a ‘mobility support service’ that provides this
support to a mobile client by introducing independent mobility
service proxies running at the access points of the Pub/Sub
system.

A logical orientation scheme in subscription model also
ensures a space optimized information Two key problems that
arise in mobile applications in Pub/Sub system that have been
addressed in [10] are namely scalability, in supporting large
number of mobile clients and adapting to application topology
as mobile components are subject to change their locations.
TOPSS and JEDI are two examples of Pub/Sub systems that
address scalability issue by implementing an efficient filtering
mechanism at the event broker.

Although different implementations of mobile Pub/Sub
systems have different prototypical and standard approaches,
the common goal in all of these implementations is achieving
an efficient data dissemination strategy. The objective of data
dissemination is to transfer dynamic information (state)
changes as a consequence of publishing new data and updating
existing data from publishers to mobile consumers [11].

In today’s heterogeneous networks that consist of Wi-Fi,
3G or 4G networks, most of the client consumers in Pub/Sub
systems are smart phones and tablets, running native apps or
mobile Web apps. From the developers perspective it is a
controversial issue when it comes to developing apps for
mobile devices. Native apps are developed solely for mobile
devices which are accessible via specific device platform such
as Android, Blackberry and iOS with a full access capability
into the core device features. Mobile Web apps on the other
hand provide the platform for single code based solution to be
deployed on mobile devices with similar and more improved
user experience as native apps. Thus , the mobile web app

design reduces the cost of building and maintenance of mobile
centric applications, and the mobile browser pattern has
become the de facto standard for mobile applications since the
Web is everywhere.

One key benefit of adopting mobile web methodology is
the use of the latest HTML5 oriented web technology
frameworks. Web frameworks such as Phone Gap and Sencha
[12] support diverse mobile operating systems and allow
mobile web developers to leverage their web technology skills
in creating appealing applications. Moreover, these
frameworks facilitate dynamic access capabilities to the device
native features.

D. Web communication techniques

As a result, mobile web applications nowadays are gaining
much popularity among the applications developers across
several device platforms as well as in Pub/Sub system
environment in disseminating information. Two of such
strategies are: pull and push. In the pull approach,
communication is initiated by information consumer whereas
the push approach relies on information producer in initiating
the communication [11]. Several web technologies are found
to implement pull and push strategies. Three of such strategies
expressed in their counterpart technologies, are conceptually
known as polling, long-polling and Web Sockets. A real-time
web application must receive up-to-date information. When
the client browser (consumer) sends HTTP requests to the
server (publisher) over a TCP connection, server
acknowledges the request and issue a response back to the
client.

Polling is one technique introduced in delivering real time
information, in which, the client browser sends HTTP requests
to the server at a regular time interval and every time the
server receives a request, responds back to the client. This
approach is suitable in a situation when the server update
interval is known to the client so that the client can be
synchronized to send request to the server based on the exact
interval of message delivery. There is also a growing need for
asynchronous communication in collaborative applications
where multiple users interact real-time among themselves. To
response to this need, the Ajax technique has been introduced
which enables web browsers to fetch dynamic information
from the server asynchronously using in-built JavaScript
functionalities such as XMLHttpRequest. However, although
Ajax solves the problem of collaborative communication, its
intense communication with the server causes significant
overhead especially when using the polling technique. As it is
difficult to predict update interval of message dissemination in
real-time application, polling data from the server with a long
interval can make the communication slower whereas polling
data with a short interval can result in many unnecessary
HTTP requests with empty responses which causes lots of
unnecessary HTTP responses.

Long-polling addresses the limitations of polling by
avoiding sending request in an interval. In long-polling, as the
browser initiates a HTTP connection with a server, the server
maintains the connection persistently for a certain period of
time and pushes the update message to the client whenever it
becomes available. If the update is not available within the set

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

106 | P a g e
www.ijacsa.thesai.org

period of time, the server sends an empty response message as
it times out and the connection is terminated. The browser
then has to re-open another HTTP connection to send the next
update request. In the asynchronous long-polling operation;
the server can push update messages to the browser without
the client prompting. However, performing long-polling in a
groupware application where data is constantly updated will
result in no improvement over the traditional polling technique
as long-polling throttles the connection with lots of
intermediate requests that consumes server resources [13].

Web Socket Technology. One of the latest web technology
concepts introduced in the HTML5 standards as a new
approach for the next generation web communication is Web
Socket. It provides a full-duplex bi-directional asynchronous
communication channel between web browser and web server
applications over a single TCP socket per end point [14]. In
addition, it has added the socket functionality to the browser to
eliminate many problems of existing technologies. The
complete Web Socket standard is the combination of the Web
Socket API and the Web Socket protocol.

The Web Socket API is a draft specification standardized
by W3C [14]. The API defines a communication interface
between the web application and the browser [13]. The
browser must expose the API to the web application so that
when initiating a Web Socket connection the application
invokes the following API to create a Web Socket object.
Using the object, application then invokes the Web Socket
API functions to open and close connection as well as send
and receive messages. Current the browsers that support Web
Socket standard are Firefox 6, Google Chrome 16, and
Internet Explorer 10 [14]. The Web Socket protocol has been
designed to improve the existing HTTP connection. Two
primary tasks that this protocol performs are establishing
connection through handshake and transferring data. The
initial handshake starts with a HTTP protocol. In the browser
request, the GET method indicates the end point of the
connection. The Web Socket server uses values from headers
sec-Web Socket-Key to calculate a hash value and send it to
the client to prove that the handshake was received and sec-
Web Socket-accept header field indicates whether or not the
server accepts the connection.

Once the handshake between the client and the server is
successfully established, the connection is ready for data
transfer. In the Web Socket protocol, data is composed of
sequence of frames which can be of type texts, interpreted as
utf-8 text, binary data and control frame. Control frames are
texts that are intended for signaling the connection for instance
when the connection should be closed. Since the Web Socket
protocol uses a HTTP compatible handshake, it can also use a
HTTP port as well as an underlying TCP protocol for network
communications. Several web-based systems are found
nowadays are using the Web Socket API and the protocol as
the key implementation tool. A web-based control application
using Web Socket is proposed in [15] that shows how a Web
Socket-based application can be built with just HTML5
without using any add-ons in the web browser. Another work
by [16] integrates the Web Socket API into an existing
framework to support distributed and agent-driven data mining
in an enterprise environment. The work is similar to R- Web

Socket except that it implements both the client and the server
side interface for Web Socket API and the implementation
uses Grizzy framework to provide scalability to the underlying
infrastructure.

E. Application development patterns

A good architectural pattern in developing software
applications can ensure a better performance for resource
constraint mobile device. In talking about application design,
we often encounter the term ‘MVC’ which is a short form of
Model-View-Controller. An architectural design that is based
on MVC produce a clear abstract framework in the system
development process. This provides a clean separation
between software components. An evolved version of MVC is
MVP, stands for Model-View-Presenter that focuses on
improving the presentation logic/UI logic. Unlike MVC, the
Presenter component in MVP contains the user interface
business logic of the View. Communication between View and
Presenter thus happen through a view interface. As the UI
logic of the View is dedicated to the Presenter, a direct request
from Presenter to View becomes possible. Presenter can
trigger the View updates without visiting though the View
component. This is often considered as a reason in taking
MVP pattern most suitable for web-based architecture. The
separation of concern in presentation logic helps Presenter to
ignore implementation details of the View and only concern on
the method to invoke of the View interface. This feature of
MVP provides a higher level of abstraction which made it a
successor to MVC.

The traditional web application supports sequential flow of
data where user had to fill a form and submit before showing
the html content on the page. With the advent of AJAX, the
modern UI of MVC/MVP supports event-driven style of data
flow. As the stream of events arrives, the job of dispatcher is to
determine the event type and pass it to the handler that can
handle events of that type. In a client-server interaction,
dispatcher and the event handlers may reside in the server side
In that case, events from client’s requests are queued up before
transmitting them to the server to be processed. In event-
driven, programs are like multiple individual modules that can
be triggered based on the event types. The program is
designed as a continuous loop that keeps listing for event and
calls the event handler (also known as callbacks) that matches
the event type.

F. Cloud computing

The foundation of cloud computing is seen as a remarkable
way in consuming web services in resource poor of mobile
device by offloading resource intensive computation and data
storage outside the device into resource rich remote machines
[18]. Computing in the cloud also provides scalable hosting of
IT backend services. Several approaches have been proposed
by myriads of research studies for the effectiveness of
offloading techniques. Since the wireless signal may attenuate
due to device mobility, these studies offer a notion of dynamic
offloading that is said to be feasible in such network
environment. [17] offers a cloud infrastructure that seamlessly
offloads execution from mobile device to a replicate copy of
mobile application software running in the virtual cloud
server. This approach of migrating computation from a device

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

107 | P a g e
www.ijacsa.thesai.org

to a device replica gives mobile user an illusion of using
powerful, feature rich device and also known as Clone Cloud.
Similar approach is proposed by [16]. This study proposed to
locate the cloud service software on a nearby resource-rich
computer(s) called cloudlets that is well connected to the
internet as well as to the mobile users. The approach of
bringing the cloud virtual machine close to the mobile users is
considered latency optimized in terms of latency and data
transfer cost. In offloading mechanism, a fine grain offloading
approach has shown in MAUI system [19] where instead of
offloading on the whole application software, which methods
to be executed remotely are decided in the runtime and thus
saves energy and increase the battery life of mobile devices.
Combining cloud computing and RESTful Web services
provides a new paradigm of mobile computing. In his research
specifies REST as a suitable architectural platform that lends
itself well in consuming cloud Web services in resource
constraint mobile device.

From the literature review, it can be concluded that the
channel based Pub/Sub is an ideal model for a distributed
system where applications are disparate and dispersed over the
network. The space decoupling nature of Pub/Sub enabled
mobile applications and the interacting parties who use these
applications to be anonymous and independent from each
other. Publisher can publish events at any time without
blocking themselves and subscribers are notified
asynchronously through a callback. Publisher doesn’t hold any
reference of subscriber which let the publisher to publish
events even when the subscriber is disconnected. This
decoupling in production and consumption explicitly removes
dependencies among the interacting participants and increases
the scalability.

The communication in Pub/Sub is asynchronous that well
adapts with the distributed environment such as mobile
environment. On the other hand, Web services have been a
great solution in integrating distributed and disparate system
applications. Due to clear semantics and uniform interface and
its supportability for different message formats, REST Web
Services has become the most suitable approach in consuming
services in mobile environment. REST avoids the single
access point in consuming services and thus increases the
service scalability.

Reviewing the challenges in mobile distributed
environment and the proposed solutions, this research attempts
to address the following open issues;

 How can we build a RESTful Pub/Sub system in
mobile environment?

 How much the system needs to comply with REST and
Pub/Sub features to call it RESTful Pub/Sub?

 And because of operating in mobile environment, how
can we ensure a system that is fault-tolerant and yet
efficiently disseminate information?

In the rest of the paper we will try to respond to these
questions in terms of a design solution, a prototype
implementation and set of scenarios in order to make a
realistic evaluation of our framework.

III. THE FRAMEWORK DESIGN

This section looks into different REST patterns in event
dissemination in accordance to the challenges mentioned in
problem statement and then propose a framework that is
adopted for mobile clients to consume RESTful Web Services
within an event-based Pub/Sub domain. The proposed
framework is designed in three main layers as shown in
Figure1.

The front-end of the framework represents mobile clients
who are publishers and/or subscribers of data at the Web
Service (WS) channels. The backend of the framework
contains Web servers as Protocol layer and Device layer,
Event Manager and the cloud hosted Web Services channels.
The Web servers and Event Manager act as a proxy layer
between mobile clients and WS channels. Since we adopt a
Pub/Sub model, data are disseminated in the form of events.
Similarly, a mobile client that publishes events is known as the
Event Producer (EP) and subscribers of these events are the
Event Consumer (EC). However, an event consumer can be an
event producer and vice versa. In this framework, topic-based
persistent event channels were adopted. In topic-based
persistent event channels, event producer publishes events to a
specific channel topic and the event consumers show their
interests for events by registering to a specific channel topic.

Event channels are collections of events represented by the
event topic. In the Pub/Sub model, events are published using
a single input channels that splits into multiple output channels
to multicast the events to each subscriber. In the application-
level, mobile client applications include User Interface (UI)
layout, the business logic, and the model for managing a local
storage. A stub component in the client model interacts with
the skeleton of the server application. The persistent event
channels are fronted with the Event Router component. , that
takes the responsibility of multicasting events to the mobile
subscribers. The client application includes a UI layout, the
business logic and the local storage capability.

The client stub provides the functionalities of the backend
server on the local device. On the contrary, the skeleton on the
backend server describes the functionalities of the server
application. The actual implementation of the skeleton is done

Fig. 1. The conceptual architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

108 | P a g e
www.ijacsa.thesai.org

Fig. 2. Pub/Sub Backend Components

at the persistent event channel. Further, the Event Manager
works as an intermediary between the skeleton and the
persistent event channel. All message exchanges between the
client device and the remote server takes place over the
standard TCP/IP transaction layer.

TABLE I. PUB-SUB MAPPING TO REST SERVICES

According to the Richardson’s Maturity Model (RMM)
[8], a RESTful dissemination of data can take four different
patterns based on REST Web Service’s maturity level also
known as the glory of REST.

In the context of the proposed framework in this thesis, the
patterns are hereby discussed as follows:

 Pattern A: Using HTTP POST (Level 0) - Event-
dissemination of this pattern follows level 0 of the RMM. In
this pattern, services are exposed using one URI; and
consumers can access the URI using a single HTTP POST
method. This is similar to SOAP based WS where requests are
sent to one URI and XML payloads are exchanged between
the sender and receiver.

Pattern B: Using HTTP GET or POST (level 1) - Event
dissemination of this pattern is based on level 1 of the RMM.
In this pattern, a service is exposed as many logical resources
with unique URIs contrary to single resource/service of level 0
(pattern A). A request is sent either using HTTP POST and/or
HTTP GET. In this pattern, operations can be performed using
HTTP POST. Sometimes HTTP GET is used in addition to
HTTP POST. However, HTTP verbs do not strictly follow
HTTP rules or REST constraints in this pattern.

Pattern C: Using HTTP CRUD Operations (level 2) -
Services in this pattern host numerous URI-addressable
resources. Unlike level 0 and 1 of the RMM, coordinating
interactions in this pattern utilizes all the HTTP verbs
(GET/retrieve, POST/create, PUT/update, DELETE/delete) in
performing the CRUD operations. A response message in this
communication utilizes the http status code

Pattern D: Using Hypermedia (level 3) - Pattern D is
similar to pattern C in a way that it utilizes all the HTTP verbs
in performing the CRUD operations except that it also utilizes
the hypermedia element of the HTTP stack of the Web
technology in the response message. Consuming services in a
Pub/Sub framework can be challenging when complying with
REST features described. This section describes how
interactions can take place in REST-based manner in the
proposed Pub/Sub based framework. Interactions between
Web services and the service consumer are described in terms
of major functionalities provided by the Pub/Sub service (as in

Table 1).

A. The backend architecture

The backend server is responsible for hosting Pub/Sub
Web Services. Web Services enables clients to create event
channels (event groups) and publish events to the channel,
subscribe to the channel(s) of their interests, be notified for
resource updates of the channel and also unsubscribe from the
channel. The system architecture takes a centralized topic
based Pub/Sub model. The major functional components of
the framework backend are shown in Figure 2, and further
discussed.

Protocol and Device Layer. When an event is published in
the event channel, it needs to be propagated as an update
notification among respective subscribers. A published event
is composed of event type, etype; published time, etimestamp
and event messages, emessage (payload).

A published event is received by the Listener before it is
transferred to the Event Manager (EM) process. It contains
separate request handler for compatible transport mechanism.

The expected transportation mechanism is the standard
HTTP connection and/or Web Socket connection. Since
mobile clients are using different types of device platforms,
the embedded browser of native device application may not
support either of this connection at any given time. To provide
device transportation compatibility, a Listener process
manages the request handlers for both HTTP and Web Socket.
The device layer is responsible for redirecting client requests
to the web services for appropriate operation execution using
the connector process. This helps mobile consumers to
maintain a presence at the proxy when they are disconnected

Pub –Sub

operation

REST model

Create Channel POST/channel

Subscribe Channel POST/channel/channel/topic/subscribe

Publish Events POST/channel/channel_topic/publish

Read Events GET/channel/channel_topic_eventMessages

Request for

Updates

HEAD/channel/channel_topic

Unsubscribe

Channel

DELETE/channel/channel_topic/unsubscribe

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

109 | P a g e
www.ijacsa.thesai.org

and thus resume the interaction with backend once the
connection has been restored.The skeleton component of
device layer provides the interface layer for Pub/Sub service,
describing the functionalities that the service provides.

The Event Queue (EQ) component of the device layer
buffers event update notifications received from Event
Manager. It also handles duplicate event notifications to cope
with network inconsistency. Event notifications are buffered in
the queue until it has been propagated to the client device in
FIFO style. An event is persistently removed from the queue
once it is delivered to the consumer. Notifications in the Event
Queue might become obsolete when event consumer is
disconnected for relatively a long period of time. An event that
is too old than the expected event longevity, need to be
discarded from the event queue. The Expiry checker in the
layer does a periodical checking in the event queue to ensure
that no event notification in the queue is obsolete. Device
layer also stores event data into the process storage based on
their notification ID.

Event Manager (EM). The Event Manager is responsible to
route event notifications to all the users who are subscribing to
the channel group. Once an event is published to the persistent
event channel, Event Manager invokes the Event Fetcher (EF)
to fetch the list of all subscribed users of that channel.
Consequently, the Event Router (ER) is invoked to actually
send event notifications to the users from the subscription list.
Dissemination of event updates takes a broadcast approach in
delivering data to all currently active subscribers.

The Event Manager is also responsible to discard
published events that arrives and does not match with the
existing channel groups. An unmatched event is discarded
when they are received at Event Manager. According to
[Huang, Y., Molina, G., 2001], this approach is also known as
event quenching. Discarding unmatched events considered to
be advantageous as it does not require Event Manager or any
of its replica (if any) to attempt transmitting irrelevant data to
the persistent event channel over the network. Moreover,
accomplishing this task at Event Manager also reduces
computational workload at Event Channels.

Persistent Event Channel (PEC). The Persistent Event
Channel handles consumer’s request for subscribing to the
channel, unsubscribing from the channel, publishing event
messages to the channel and also delivering event from the
channel. Event Channels maintain persistent data storage for
event messages published by event producer. All published
event requests are sent to duplicate event handlers to check for
duplicate event messages to avoid network connection delay.
This can be done by checking the event ID that has been
assigned by event producer’s application. An event with
unique event ID is stored in the channel storage persistently.
Each event in the channel is uniquely identified by its URL.
And thus each event resource can be accessed my consumer
by sending http requests using the standard http verbs such as
HEAD (meta-data), GET (read), PUT (replace), POST (create
and write).

B. The mobile client

In this architectural framework, mobile clients are thin

clients such as smartphone and tablets. Applications for these
devices are responsible to register themselves to a particular
channel group or group of channels based on the channel topic
by consuming the Pub/Sub web services hosted in the code.
Once a device registers itself, it continues to receive event
notifications for any updates made in the persistent channel. In
order to provide code flexibility and interoperability, the client
side application is designed following the Model-View-
Presenter (MVP). A stub component of the backend server is
hosted in the Model. The stub is responsible for all incoming
and outgoing transactions.

Once an event update arrives at the stub, the latter passes
the event to the View’s logic through the Presenter to be
displayed on interface layout. Likewise, event messages
produced by client actions (e.g. button click) are passed to the
stub through the Presenter which then transmits the data to the
backend server.

The Model component of the client application is designed
to contain a persistent storage for event notifications.
Moreover, it contains a queue for unpublished events; events
that are produced by the client actions but could not be
delivered due to the connection loss. These unpublished events
are removed from the queue once they are delivered to the
backend server. All interactions between the Presenter and the
Model take place though the stub. The major functionalities of
a stub are as follows (see Figure 3):

 Connection service. The stub is responsible to connect
mobile application to the proxy server. Whether the
communication should take place over WebSocket
connection or should it be http polling are decides by
the stub.

Service Manager. The stub provides the same interface of
the remote cloud hosted Pub/Sub web services. It binds
client’s application to the remote web services over Web. It
also enables client applications to invoke the consecutive
functionalities of the remote web services such as subscribing
to Channel, publishing data, retrieving data or unsubscribing
from channel in a way as if calling to local functions. All
event messages generated by these actions are encoded into
JSON format before they are transmitted between client and
proxy.

Fig. 3. Mobile client architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

110 | P a g e
www.ijacsa.thesai.org

 Resource Manager. The stub is responsible to store
update notifications to the local storage when it arrives
from proxy. States of the stored event notifications are
used to check for event updates at the proxy when
client application reconnects after an intermittent
connection loss. Stub also checks for the unpublished
events in the queue once after every connection
establishment

IV. PERFORMANCE EVALUATION

The experiments analysis and evaluation serve to
demonstrate the framework’s feasibility in various event
dissemination patterns and also to identify the best performing
scenario. The three major components in this experiment setup
include mobile users (event producer and consumer), Pub/Sub
Proxy layers (Protocol Layer, Device Layer and Event
Manager), Pub/Sub Persistent Event Channels.

 Mobile client: Mobile clients are running on ASUS
Transformer Prime tablet. The device specifications are
Android™ 4.0 Ice Cream Sandwich OS, NVDIA®
Tegra® 3 Quad-core CPU, 1 GB memory and 1.3 GHz
CPU Speed.

 Pub/Sub proxies: A Windows 7 desktop machine is
used to host Pub/Sub proxy layers, with 64-bit
Windows 7 Professional Intel® Core ™ i5-2400 CPU,
16.0 GB Memory and3.10 GHz CPU Speed.

 Pub/Sub Persistent Event Channels: A Windows 8
desktop machine is used to host Pub/Sub event
channels. The hardware specification is 64-bit
Windows 8 Enterprise Intel® Core ™ i5 CPU4.0 GB
3.2 Memory, GHz CPU Speed.

A. Client app performance test

The purpose of this experiment is to observe the system’s
performance in request/response on different client application
platforms. In this experiment, three different application
platforms that have been tested are Erlang client, JavaScript
Desktop browser and device embedded browser. Each of these
platforms establishes WebSocket connection to its backend
system.

Scenario. In this experiment, 5 kb of event messages has
been published from the initial sender to the Persistent
Channel and 1 kb of event messages has been pushed to
mobile clients by Event Router. As the event message
propagates from sender to the receiver, the Round-Trip-Time
(RTT) has been observed.

Discussion. Among the three client applications, the best
performance is observed on the Chrome browser running on
Desktop One possible reason that the app on Android
WebView performs slower than Chrome browser is because
WebView is linked to the Android application layer written in
Java. For every activity in WebView for example JIT (just-in-
time) compilation of JavaScript, the callback function is
invoked. Moreover, the integration of an external framework

in the application such as Phone Gap might have added an
additional execution time which in turn causes performance
deterioration

B. System (protocol) overhead

This test is conducted to observe the amount of overhead
the chosen dissemination approaches introduces on the system
in terms of latency in consuming a resource from the
Persistent Channel. The chosen approaches include client pull
over HTTP Ajax and server push over WebSocket. The
purpose of this test is to observe the time difference and
identify which approach performs better in event
dissemination.

Scenario. The event update message is stored in the
persistent channel. The experiment is conducted in two
scenarios. In the first scenario, mobile consumers who are
subscribing to a channel are configured to pull for event
updates from the channel every 2 seconds. In the second
scenario, as event updates arrives at Persistent Channel, Event
Router pushes the update to the subscriber’s end i.e. update
propagation does not require any requests arriving from the
subscribers.

Discussion. The result of client pull and server push is
shown in the Figure 5. The graph shows the time for
individual update propagation (50 samples) obtained from an
average of five iterations where the size of each event message
is 10 kb. From the graph, it can be observed that, time
consumption in first scenario where the message propagates
from event publisher to the server and having server send
update to the subscriber as a response for update request takes
much longer time comparing to the time of propagating event
from publisher to the server and having server push the update
to the subscriber. Time in event consumption is observed
almost 1.5 times faster in server push scenario compared to
client pull.

Fig. 4. RTT per request (multiple client platforms)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

111 | P a g e
www.ijacsa.thesai.org

C. Resource synchronization test

A framework that is designed to run part over
heterogeneous network for example in this case, part over
wireless network and part over LAN, one problem that arises
in accessing resources from a far node is the routing overhead.
In the proposed framework of this research, a client process is
maintained for each individual subscriber at the device layer
where the resources are stored temporarily.

If the client process is not maintained at the device layer
then the alternative approach in synchronizing client side
resource would be sending request for updates at the Persistent
Channel which is multiple hops away from the clients.
Therefore consumer’s resource state can be synchronized from
two different locations – Connector process of the device layer
and the Persistent Event Channels. Hence, the purpose of this
experiment is to observe system’s performance difference in
maintaining and not maintaining a client process at the device
layer.

Scenario. In conducting the experiment, a resource has
been published at the Persistent Channel. In first scenario, a
client process with a temporary storage is maintained, hence
the published resource has been pushed to the Connector by
Event Router and client resource is synchronized with the
backend resource at the device. In the second scenario,
published resource is made available to only Persistent
Channel. Hence client application is configures to synchronize
its local resource at the Persistent Channel

Discussion. The results from the experiment are
graphically presented in Figure 6. The graph shows the
synchronization time for 50 individual requests. Each
synchronization time plotted on the graph is an average time
of five iterations. A resource of size 5kb has been
synchronized between client’s local storage and the backend
storage based on client’s current resource id. Results shows
that the average time required to synchronize the resource
from device layer is 228.5 milliseconds while it is 588
milliseconds if synchronized from the Persistent Channel

Layer which is 2.6 times (157.3 %) slower. Hence,
maintaining a client process in a closer proximity of the client
device can result in a better performance in synchronizing data
in a distributed framework.

D. Bandwith Consumption Test

 This experiment analyzes the bandwidth consumption
over wireless network in disseminating resource updates to the
corresponding clients. The purpose of this experiment is to
compare the throughput of update dissemination over
traditional client pull approach with the server push based data
dissemination in Pub/Sub paradigm. The experiment
investigates the technique that helps in efficiently consuming
available bandwidth by avoiding unnecessary network traffic
in communication network. As the updates are propagated
from Pub/Sub server to clients, bandwidth is calculated at
server’s end for every incoming and outgoing interaction.

Scenario. In this experiment, a similar scenario of System
Overhead test has been adopted. This experiment is conducted
in two phases. In first phase, client app is configured to send
resource update request at a constant rate (i.e. every 2
seconds). Upon receiving the client request, Pub/Sub server
responds with an update notification of 2kb of message
payload and the updated resource. In case there is no update
available, sever acknowledge the requester with a message
“No update is available”. In second phase, Pub/Sub server
pushes the updated resource to the subscriber without
subscriber prompting for the update.

Discussion. Figure 7 shows the throughput in
kilobyte/second for individual resource propagation in client
pull and server push approach of event dissemination. In this
experiment, 10kb of data has been transferred between mobile
client and server. The average throughput obtained over http
polling is 5.8 kb/s when the average throughput over
WebSocket is 8.6 kb/s. Bandwidth consumption over
WebSocket results in at least 1.5 times higher compared to

http polling.

Fig. 6. Response time per request from the device layer and from Persistent

Channel

Fig. 5. Response time per request over http polling and WebSocket

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 4, 2014

112 | P a g e
www.ijacsa.thesai.org

V. CONCLUSIONS AND FURTHER DEVELOPMENTS

The research contributes in the domain of Web Services
based event dissemination in Pub/Sub domain as follows:
analyses different patterns of RESTful Web services within
Pub/Sub domain for disseminating consumer data, studies the
latest Web communication technologies and different data
dissemination patterns to address the challenges of network
latency in mobile environment, proposes a solution for
traditional pull-based architecture by adopting WebSocket as a
communication protocol and provides a platform for Pub/Sub
communication on mobile environments. Further research will
like to explore the following features as possible approaches
that could be added to the existing framework to achieve
greater performance improvements: using a decentralized
Pub/Sub system, maintaining a User Profile, using mobile
Web Service provisioning. These further developments are
succinctly described in the following:

1) Decentralized Pub/Sub system. The current Pub/Sub

framework is based on centralized event brokering system that

relies on a single event broker. If the event broker is down

then the event dissemination within the framework will be

compromised hence relying on a single event broker increases

the vulnerability of the entire system because it limits the

system by the capacity of a single server. Hence adopting

decentralized Pub/Sub model is a promising line of work. In

decentralized approach, the system consists of M number of

event brokers each responsible for a portion of N total

subscription and hence responsible to deliver event updates to

its own active subscription user's list.

2) Maintaining a User Profile. The proposed framework

is based on topic-based subscription scheme where users

subscribe to events of a channel based on the channel topic or

subject. However, subscription mechanism can be improved

by introducing a subscription scheme based on the actual

content of an event which provides more granularities in event

subscription through offering a fine filtering mechanism on

events. In this mechanism, maintaining a user profile can be

useful in defining filtering rules in event subscription.

Nevertheless, the proposed framework uses a flexible queuing

policy where the notifications are buffered until the subscriber

reconnects. A more complex and granular queuing policy

would buffer undelivered notifications based on the subscriber

defined propertied such as priorities and expiry dates of event

channels.

3) Mobile Web Service Provisioning. One of the major

trends of distributed system network and also a future

direction of this research is the emergence of mobile terminals

as Web Service providers also known as Mobile Hosts. When

lot of research focuses on provisioning Web Services from

resource constraint mobile device, some research works sees

the potential of using smart and more powerful mobile devices

with sufficient speed as the service delivery node in peer-to-

peer settings.
REFERENCES

[1] Gartner, 2011. Gartner says Worldwide Mobile Application Store
Revenue Forecast to Surpass $15 Billion in 2011.

[2] Lomotey, R.K.; Deters, R. "Reliable Consumption of Web Services in a

Mobile-Cloud Ecosystem Using REST", 2013 IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), On

page(s): 13 - 24, vol., no., pp.13,24, 25-28 March 2013

[3] Webber, J., Parastatidis, S., Robinson, I. 2010. REST in Practice,
O’Reilly Media. Retrieved on March 20

th
, 2012.

[4] Liu, C., Liu, Y., Ma, X., Gao, J. 2010, An Application scheme of
publish/subscribe system over clustering Mobile Ad Hoc Networks. P.

1-4.

[5] Baldoni, R. and Virgillito, A. 2005. Distributed event routing in
publish/subscribe communication systems: a survey. Technical Report

TR-1/06. The Computer Journal, vol.50(2), pp.444 -459

[6] Fiege, L., Muhl, G. 2000. Rebeca Event-Based Electronic Commerce
Architecture, Available: http://www.gkec.informatik.tu-

darmstadt.de/rebeca.

[7] Hohpe, G., Woolf, B. 2004. Enterprise Integration Patterns : Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley,
Boston. 2004.

[8] Anceaume, E., Datta, A.K., Gradinariu, M., Simon, G. 2002.

Publish/subscribe scheme for mobile networks, in: Proceedings of the
ACM Workshop on Principles of Mobile Computing 2002, pp. 74-81.

[9] Fiege, L.,Gartner , F.C.,Kasten , O., Zeidler , A. 2003. Supporting

Mobility in Content-Based Publish/Subscribe Middleware, p.103-122.

[10] Cugola, G.,Jacobsen, H. 2002. Using publish/subscribe middleware for

mobile systems.Mobile Computing and Communications Review 6(4):
25-33.

[11] Muhl, G., Ulbrich, A., Herrmann , K., Weis, T. 2004. Disseminating

Information to Mobile Clients Using Publish-Subscribe. IEEE Internet
Computing 8(3): 46-53.

[12] PhoneGap. 2012. Available: http://phonegap.com/

[13] Lubbers, P., Greco, F. 2010. HTML5 Web Sockets: A Quantum leap in
Scalability for the Web. Available: http://soa.sys-

con.com/node/1315473.

[14] WebSocket.org 2012. Available: http://www.websocket.org/

[15] Furukawa, Y. 2011.Web-based Control Application Using Websocket,
ICALEPCS2011, p.673- 675.

[16] Cassetti, O., Luz, S. 2011. The WebSocket API as supporting
technology for distributed and agent-driven data mining. Available:

http://www.scss.tcd.ie/~casseto/NGDM11-websockets.pdf.

[17] Satyanarayanan, M., Bahl, P, Caceres, R., Davies, N. 2009. The Case for
VM-Based Cloudlets in Mobile Computing, IEEE Pervasive Computing,

vol. 8(4), pp. 14-23.

[18] Chun, B. G., Maniatis, P. 2009. Augmented Smartphone Applications
Through Clone Cloud Execution, in Proceedings of the 12th Workshop

on Hot Topics in Operating Systems (HotOS XII), May 2009.

[19] Ashik, K., Kazi, R., Deters, D., 2012, “Supporting the Personal Cloud“,

IEEE Asia Pacific Cloud Computing Congress 2012, Shenzhen, China,
November 14-17, 2012.

Fig. 7. Throughput per request over http polling and WebSocket

