
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

151 | P a g e
www.ijacsa.thesai.org

An Adaptive Hybrid Controller for DBMS

Performance Tuning

Sherif Mosaad Abdel Fattah, Maha Attia Mahmoud, Laila Abd-Ellatif Abd-Elmegid

Department of Information Systems

Faculty of Computers and Information

Helwan University

Helwan, Egypt

Abstract—Performance tuning process of database management

system (DBMS) is an expensive, complex and time consuming

process to be handled by human experts. A proposed adaptive

controller is developed that utilizes a hybrid model from fuzzy logic

and regression analysis to tune the memory-resident data structures

of DBMS. The fuzzy logic module uses flexible rule matrix with

adaption techniques to deal with fluctuations and abrupt changes in

the operation environment. The regression module predicts

fluctuations in operation environment so the controller can take

former action. Experimental results on standard benchmarks

showed significant performance enhancement as compared to built-
in self-tuning features.

Keywords—automatic database tuning; fuzzy logic; adaptive

controller; regression; self-tuning; DBMS

I. INTRODUCTION

Database management system performance tuning is a
complex process with multiple objectives and tuning parameters.
To know how to enhance such a process we need first to
understand its characteristics and components. DBMS
performance tuning can be generally described as a group of six
activities to optimize the performance of a database[1].

 Design Tuning tries to follow DB design best practices and
normalizing DB tables to reveal un-optimized design issues that
can degrade the performance. SQL Tuning tries to enhance the
formulation of SQL statements to optimize the execution of the
queries. Memory Tuning deals with allocating suitable values to
the DB memory-resident data structures such as Shared Pool,
Buffer Cache or Redo Log Buffer. I/O Tuning deals with I/O
read/write anomalies such as disk fragmentation levels and tries
to adjust its parameters for performance enhancements.
Connection Tuning monitors network bandwidth and traffic and
tries to optimize communication. OS Tuning investigates the
system parameters and tries to adjust operation parameters such
as virtual memory amount or size of memory page to enhance
the performance of the DB environment.

DBMS performance tuning isn't an atomic process and it has
a dynamic nature which makes its management harder and
expensive due to need for an expert Database Administrator
(DBA). The changes in the operation environment such as
number of concurrent users, queries load, available memory
space or network bandwidth can tend any performance tuning
model to be unfeasible and outdated quickly if it can't adapt with
these changes.

The term self-tuning databases[2] was coined for the aim of
having a database that can learn and adapt with its environment
with low or no interference from the human experts. To achieve
this goal we have to depend on dynamic and adaptive control
techniques such as fuzzy logic and nonlinear regression analysis.

In this paper, an adaptive hybrid controller (AHC) for DBMS
memory-resident data structures is introduced. The controller
utilizes hybrid model derived from fuzzy logic and regression
analysis. The controller periodically monitors and feeds
performance indicators of DBMS memory-resident data
structures into fuzzy logic engine. The fuzzy logic engine fires
corrective actions rules. The regression analysis module provides
the controller with the ability to predict abrupt changes in the
operation environment to further enhance the tuning process.

The rest of this paper is organized as follows: Section II
describes preliminary concepts. Section III reviews previous
work. Section IV introduces our proposed solution. Section V
illustrates the experimental evaluations and results. Finally,
Section VI concludes the paper and lists future work.

II. BACKGROUND

A. DBMS Memory-Resident Data Structures

DBMS memory resident data structures play a critical role in
the process of tuning the DBMS performance. As it may
decrease/increase the time and memory needed to execute
queries and transaction on the database. There are three common
data structures in any modern DBMS; Redo Log Buffer, Shared
SQL Pool and Data Block Buffer [3] we are going to introduce
the Data Block Buffer as it is the focus of this research in the
following section.

The data block buffer cache (DBB) is the space reserved in
memory for holding data blocks. The larger the DBB parameter
value, the more memory is available for holding data blocks. The
actual size of the DBB in bytes is computed as follows:

DBB = DB_BLOCK_BUFFERS x DB_BLOCK_SIZE (1)

The efficiency of the cache is measured by a metric called the

data block buffer hit ratio (DBB-HR) that records the percentage
of times a requested data block is available in the cache out of
the total number of requests. When a data block is read in cache,
it is called a logical read (LR). When the block is read from disk,
it is called a physical read (PR).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

152 | P a g e
www.ijacsa.thesai.org

 (2)

For less than 20 concurrent users DBB-HR should be

between 91% and 94%. Otherwise, it should exceed 94% in a
healthy DBMS instance [3].

B. Fuzzy logic

Fuzzy logic (FL) mimics the ability of human brain in the
usage of reasoning modes that are approximate rather than exact
[4]. In traditional computing models, decisions are based on
certainty and vigor but, this carries a cost of failure to deal with
non-linear and complex problems that involve uncertainty in its
characteristics. Examples to those problems can be,
understanding human speech, sloppy handwriting, summarizing
text or recognizing images.

Fig. 1. Fuzzy Control Process

With Fuzzy Logic, decision rules are mapped to words rather

than numbers. Computing based on words rather than exact
number has tolerance to deal with uncertainty[5]. Broadly

described, FL working scenario involves converting inputs of the

problem from numerical nature (exact) to word based

(approximate) nature in a process called Fuzzification. Then, the

fuzzified inputs are supplied to the fuzzy inference engine which

contains the inference rules to reach conclusions. Finally, the

outputs are transformed from their approximate nature to an

exact nature in a process called Defuzzification.

C. Regression Analysis

Regression analysis is a statistical technique used to predict
the value of dependent variable (Y) given the values of
independent variables (X1 … Xn)[6]. If the relation between the
dependent and the independent variables is following a linear
equation it is called linear regression and it can be represented by
the following equation[7]:

Where, a is intercept (the value of Y when x =0) and set (b1
… bn) represents slope of the line according to multiple (n)
dimensions [X1… Xn]

If the relation between the dependent and the independent
variables is following a non-linear equation it is called non-linear
regression. There are multiple models for nonlinear regression
for example exponential model, power model or polynomial
model[8].

III. RELEATED WROK

The work in databases performance tuning started from
decades and has been refined many times starting from the
relational databases design concepts such as normalization forms
and relational constraints to self-tuning databases ideas.

Ways in databases design tuning such as index pruning table
and materialized views were addressed in [9][10]. Physical
database tuning and the use of self-healing performance tuning
methodologies were introduced in [11][12]. In [13], an modular
approach was presented for providing self-healing database
functionalities.

Each module in the system is assigned to a specific
monitoring handler. In [14], a new way for physical data file
organization based on search queries was proposed. Search
queries are used to cluster similar records and to store them in
one cluster block. So, I/O operations can be optimized in the
physical layer. [1] Introduced a statistical approach to rank and
evaluate the effect of database performance tuning parameters. In
[15], operation research (OR) techniques were used to probe the
SQL queries to optimize database logical design structures
(schema) such as indexes or materialized views. [16] Introduced a
neural networks based controller. Data mining techniques were
used to analyze the database’s log file to extract operation
features.

Then, the result is used to train the neural network for
controlling database’s buffer cache levels. In [17], a fuzzy logic
controller was introduced to tune the performance of web servers
in terms of request response-time over multiple service level
classes. Each Service level class will be assigned response-time
level. The controller task is to maintain those service levels of
response-time for each class when the server is heavy loaded. The
work in [17] was extended in [18] to manage configuration of
virtual machines on cloud-computing environments according to
user’s quality of service classes.

IV. CONTRIBUTION

This research proposes a controller that employs hybrid
criteria between fuzzy logic and regression analysis to adaptively
tune the size of DBMS memory-resident data structures. The
following figure describes the main components of the proposed
controller:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

153 | P a g e
www.ijacsa.thesai.org

Fig. 2. Proposed System Architecture

In the next section we are going to explore AHC framework
in a modular approach.

A. Preprocessing Stage

1) Operation Profiler
That module is responsible for collecting the current error

values for each configured performance parameter. Performance
parameters are configured in XML file. The DB admin
configures the set of performance parameters along with their
reference values. The error calculation depends on the current
parameter value and its reference value equated as follows:

 (4)

c(res) stands for the current resource value, r(res) for its
reference value and e(res) for the error value.

2) Regression Analysis
Regression module is activated after a configured number of

tuning cycles to collect sufficient amount of data. Regression
type - linear or nonlinear - can be configured by the DB admin.
For linear regression equation (5) is utilized to calculate the next
value for the performance parameter. For, nonlinear regression
the polynomial regression[8] is utilized using the following
equation:

 (5)

As, a is the intercept and β is the regression coefficient for
variables X1 … Xk and y is the value to predict. Regression
module is used to predict next error value. The input error value is
the average between the current and predicted error values to help
the controller to deal with abrupt changes in the environment.

3) Input Normalization
The input error value is normalized to avoid overshooting

resource allocation due to peaks or dynamic resources changes.
The error e(res) and error difference Δe(res) are normalized using
the following equations [17]:

 (6)

 (7)

 stands for the normalized error, for normalized error
difference and γ for the constant weight which equals to 0.8. This
normalization technique homogenizes the current error value
with its past values while, giving more weight for the current
one. Note that the actual input to the resource controller module
is and . The sign is positive in
equation (6) as error values take different signs in fluctuations
and it is negative in equation (7) as the values of error difference
take the same sign in fluctuations.

B. Processing Stage

1) Fuzzification
The input values e(res) and Δe(res) are fuzzified using

triangular membership functions[5]. In triangular membership
function the membership is calculated according to equation (8).

Fig. 3. Input Membership functions Graph

 (8)

Where a, b (center) and c are triangle membership vertices
from left to right.

Table I. INPUT MEMBERSHIP FUNCTIONS

Membership Function a b c

Negative Large (NL) -∞ -1 -2/3

Negative Medium (NM) -1 -2/3 -1/3

Negative Small (NS) -2/3 -1/3 0

Zero (ZE) -1/3 1/3

Positive Small (PS) 1/3 2/3

Positive Medium (PM) 1/3 2/3

Positive Large (PL) 2/3 ∞

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

154 | P a g e
www.ijacsa.thesai.org

2) Inference Engine
The utilized inference mechanism is derived from [17] [18]

and adjustment value is calculated using equation (9):

 (9)

As represents the adjustment for the current resource

value, the current value of the resource in interval (i),

 , are the output optimization factors and the

inference engine output. , are illustrated in output

optimization section.

The following algorithm specifies steps for calculating

Input: e(res) , Δe(res).

Output:

Steps:

for each mf ϵ Input_MembershipFunctions

x = TriangularMembership(e(res), mf)

y = TriangularMembership(Δe(res), mf)

if x > 0 THEN

add x to e(res)_MembershipFunctions

if y > 0 THEN

add y to Δe(res)_ MembershipFunctions

rules = combine(e(res)_MembershipFunctions,

Δe(res)_ MembershipFunctions)

for each r ϵ rules

match = getMatrixMatch(r)
center = Center(match)

μr = MIN(r)

add center to Centers

add μr to WeightSet

Output = CenterOfGravity(Centers, WeightSet)

The following table represents the proposed rule matrix.

Columns and rows represent membership functions of Δe(res)
and e(res) respectively. Each element in the table construct a
rule for example, (NL,NL) > PL

Table II. RULE MATRIX FOR

ΔU(i)
Δe(res)

NL NM NS ZE PS PM PL

e(res)

NL PL PL PL PL PM PS ZE

NM PL PL PM PM PS ZE NS

NS PL PL PM PS ZE NS NM

ZE PM PM PS ZE NS NM NM

PS PM PS ZE NS NM NL NL

PM PS ZE NS NM NL NL NL

PL ZE NS NM NL NL NL NL

Suppose for e(res) = 0.075 and Δe(res) = 0.3 the following
membership functions have non zero membership

 ZE (e(res)) = 0.6 , PS(e(res)) = 0.3

And for Δe(res) PS(Δe(res)) = 0.75

Then, combinations are generated from previous rules:

Rule1 (ZE,PS) with μ = MIN(0.6,0.75) = 0.6

Rule2 (PS,PS) with μ = MIN(0.3,0.75) = 0.3

Rule1 gives us the match NS from the rule matrix which has a

center = -

Rule2 gives us the match NM from the rule matrix which has a

center = -

3) Defuzzification
In defuzzification, the output is calculated using the
Center of Gravity equation (10) [5]:

 (10)

According to our example will equal

C. Post-processing Stage

1) Output Optimization

 The output optimization factor (α) is used to handle process
delay during resource allocation. It is summarized as the time
between sending the new adjustment of a resource and the time
the resource value is actually updated[19].

α is calculated with the same criteria as but with

different membership functions and rule matrix.

Fig. 4. α membership functions Graph

Table III. MEMBERSHIP FUNCTIONS

Membership Function a b c

Zero (ZE) -∞ 0 1/6

Very Small (VS) 0 1/6 1/3

Small Medium (SM) 1/6 1/3 1/2

Small Large (SL) 1/3 1/2 2/3

Medium Large (ML) 1/2 2/3 5/6

Large (LG) 2/3 5/6

Very Large (VL) 5/6 ∞

The value of α is used to speed up or slow down the change
magnitude of the resource value. In fluctuations periods it is set
to small value to prevent overshooting in adjustment. When the
current value is going away from the reference value it is set to
relative large value to invert the change.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

155 | P a g e
www.ijacsa.thesai.org

Table IV. RULE MATRIX FOR Α

ΔU(i)
Δe(res)

NL NM NS ZE PS PM PL

e(res)

NL VL VL VL SM VS VS ZE

NM VL VL LG SL SM SM SM

NS VL VL LG ML VS SM SL

ZE LG ML SL ZE SL ML LG

PS SL SM VS ML LG LG VL

PM SM SM SM SL LG VL VL

PL ZE VS VS SM VL VL VL

 is the max adjustment value that can be allocated. It
is calculated as follows:

 (11)

Where c is the current resource value. This equation is based
on heuristic control rule[19] which states that the max resource
adjustment shouldn't exceed half of the current resource value for
stability of the system and to be proportional to the current error
value for adaptability of the system.

2) Resource Allocator
This module concludes the work of the control cycle by

sending the adjustment value(s) to the DBMS API for allocation
using SQL commands.

V. EVALUATION AND EXPERIEMENTS

TPC-C and TPC-H benchmarks[20] are used to conduct the
evaluation on data block buffer data structure; TPC-C is an
online transaction processing (OLTP) benchmark. It involves a
mix of five concurrent transactions of different types and
complexity. TPC-H is a decision support benchmark. It consists
of ad-hoc and concurrent queries. The operation environment for
the experiments runs on Windows server 2008 with ORACLE
10g database server installed. Our proposed system is deployed
as windows service. The user load is defined as 20 concurrent
users that start with 2 concurrent users in the first transaction
cycle and increase gradually by 2 until reaching 20 in the
following run cycles. The tuning cycle period for the controller is
set to 30 seconds (defined by trial and error to pose the minimum
overhead on the DBMS performance while keeping track of
workload changes). Regression is activated after 30 tuning
cycles. It is configured to be nonlinear with variables; number of
users per cycle and number of transactions per minute.

Figure 5 shows results for conducting TPC-C benchmark.
The average response for the DBMS without tuning was 87 ms
while the average response time after AHC tuning was 46 ms
with 52% better than without tuning.

Figure 6 shows results for conducting TPC-H benchmark.
The average response for the DBMS without tuning was 93.1 ms
while the average response time after AHC tuning was 46.5 ms
with 49% better than without tuning.

Fig. 5. TPC-C benchmark, comparing response time with and without tuning

Fig. 6. TPC-H benchmark, comparing response time with and without tuning

VI. CONCLUSION AND FUTURE WORK

This paper proposes an adaptive hybrid controller (AHC) for
tuning DBMS performance based on its resident data structures.
AHC is featured by both generalization and adaptability. AHC
generalization is achieved in three ways. First, operation profiler
and resource allocator are developed to deal with any type of
DBMS using Microsoft generic ADO API[21]. Second, the
proposed rule matrices can be totally configured and adjusted
using XML configuration file to adapt with different workload
scenarios in a generic way. Third, regression analysis module
allows the system to take former action with fluctuations and
abrupt changes in the operation environment and workload. It
can be configured by the DBA according to each resource case
giving more flexibility to deal with different scenarios. AHC is
adaptable in two ways. First, input normalization module
normalizes inputs with its past values to reveal the fluctuations
effect. Second, output optimization factors deal with process
delay effect and scale the output to prevent down or over
shooting in resources allocation.

0

20

40

60

80

100

120

140

160

3 5 7 9 11 13 15 17 19

R
e

sp
o

n
se

 T
im

e
 (

m
s)

User Load

Without
Tuning

With
Tuning

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16 18 20

R
es

p
o

n
se

 T
im

e
(m

s)

User Load

Without
Tuning

With
Tuning

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 5, 2014

156 | P a g e
www.ijacsa.thesai.org

Future work can include covering other memory-resident
data structures of DBMS. Using machine learning techniques
such as Neural Networks to equip our controller with the ability
to learn the characteristics of its operation environment and to
dynamically adjust its membership functions and rule matrices
according to characteristics of work load on the operation
environment.

References

[1] B. K. Debnath, D. J. Lilja And M. F. Mokbel, "Sard: A Statistical Approach
For Ranking Database Tuning Parameters," Ieee 24th International

Conference, 2008.

[2] R. V. Nehme, "Dtabase, Heal Thyself," Data Engg.Workshop, April 2008.

[3] S. S. Mittra, Database Performance Tuning And Optimization Using Oracle,

Springer, 2003.

[4] J. H. Lilly, Fuzzy Control And Identification, Wiley, 2010.

[5] J. Jantzen, Foundations Of Fuzzy Control, John Wiley And Sons, 2007.

[6] A. O. Sykes, "An Introduction To Regression Analysis," [Online]. Available:
Http://Www.Law.Uchicago.Edu/Files/Files/20.Sykes_.Regression.Pdf.

[7] A. Cottrel, "Regression Analysis: Basic Concepts," 2011. [Online].

Available: Http://Users.Wfu.Edu/Cottrell/Ecn215/Regress.Pdf.

[8] C. Ritz And J. C. Streibig, Nonlinear Regression With R, Springer, 2008.

[9] S. Agrawal, S. Chaudhuri And V. Narasayya, "Automated Selection Of

Materialized Views And Indexes For Sql Databases," Microsoft Research,
2007.

[10] Surajit, Chaudhuri; Vivek, Narasayya;, "Self Tuning Database Systems : A

Decade Progress," Microsoft Research, 2007.

[11] K. Philip, "Elements Of The Self-Healing System Problem Space," Ieee Data
Engineering Bulletin, 2004.

[12] P. Liu, "Design And Implementation Of Self Healing Database System,"

Ieee Conference, 2005.

[13] R. V. Nehme, "Database, Heal Thyself," Data Engg. Workshop, 2008.

[14] B. G. L. A. A. Kitsopanidis, "Enhancing Database Retrieval Performance
Using Record Clustering," Citeseerx, 2007.

[15] A. N. Chen, "Robust Optimization For Performance Tuning Of Modern

Database Systems," European Journal Of Operational Research 171, 2006.

[16] U. P. K. S. F. Rodd, "Adaptive Tuning Algorithm For Performance Tuning
Of Database Management System," International Journal Of Computer

Science And Information Security, Vol. 8, 2010.

[17] J. Wei And C.-Z. Xu, "Eqos: Provisioning Of Client-Perceived End-To-End

Qos Guarantees In Web Servers," Ieee Transaction On Computer, 2006.

[18] J. Rao, Y. Wei, J. Gong And C.-Z. Xu, "Dynaqos: Model-Free Self-Tuning
Fuzzy Control Of Virtualized Resources For Qos Provisioning," Ieee

Nineteenth Ieee International Workshop On Quality Of Service, 2011.

[19] F. G. Shinskey, Process Control Systems: Application, Design, And Tuning.,
Mcgraw-Hill, 1996.

[20] "Tpc," [Online]. Available: Http://Www.Tpc.Org/Tpcc/.

[21] Msdn, "Ado.Net," Microsoft, [Online]. Available:

Http://Msdn.Microsoft.Com/En-Us/Library/E80y5yhx(V=Vs.110).Aspx.

[22] A. M. Brown, "A Step-By-Step Guide To Non-Linear Regression Analysis
Of Experimental Data Using A Microsoft Excel Spreadsheet," Computer

Methods And Programs In Biomedicine , Vol. 65, P. 191–200, (2001).

