
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

60 | P a g e
www.ijacsa.thesai.org

Teaching Introductory Programming
Agent-based Approach with Pedagogical Patterns for Learning by Mistake

Ljubomir Jerinic

Department of Mathematics and Informatics

Faculty of Science, University of Novi Sad

Novi Sad, Serbia

Abstract—From the educational point of view, learning by

mistake could be influential teaching method, especially for

teaching/learning Computer Science (CS), and/or Information

Technologies (IT). As learning programming is very difficult and

hard task, perhaps even more difficult and extremely demanding

job to teach novices how to make correct computers programs.

The concept of design pedagogical patterns has received

surprisingly little attention so far from the researchers in the

field of pedagogy/didactics of Computer Science. Design

pedagogical patterns are descriptions of successful solutions of

common problems that occur in teaching/learning CS and IT.

Good pedagogical patterns could help teachers when they have to

design new course, lessons, topics, examples, and assignments, in

a particular context. Pedagogical patterns captured the best

practice in a teaching/learning CS and/or IT. They could be very

helpful to the teachers in preparing their own lessons. In this

paper a brief description of special class design of pedagogical

patterns, the group of patterns for learning by mistakes, is

presented. In addition, usage of helpful and misleading

pedagogical agents, which have been developed in Agent-based

E-learning System (AE-lS), based on pedagogical pattern for

explanation Explain, and pedagogical pattern for learning by
mistakes Wolf, Wolf, Mistake, is described.

Keywords—Pedagogical Pattern; Pattern Design; Learning;

Programming; Computer science education; Programming;

Software agents; Electronic learning; Computer aided instruction

I. INTRODUCTION

Conventional pedagogy believes that the one of good way
to teach students is to have them repeatedly practice some
tasks. In recent work of Lindsey E. Richland, Nate Kornell and
Liche Sean Kao [1] the advantages of learning through error
was discussed. According to this approach, it is important to
avoid mistakes while learning so that our mistakes are
accidentally reinforced. That approach assumes that the best
way to teach children is to have them repeatedly practice (test
for example) as far as it takes.

Once they know (learn or guess or rich somehow) the right
answer, that correct response is embedded into the brain.
However, this error-free process turns out to be inefficient:
Students learn material much faster when they made mistake
first, especially in programming. In other words, getting the
wrong answer helps us remember the right one.

Nobody likes making mistakes. Nevertheless, unless you
want to go through life as a complete recluse, you are
guaranteed to make one every now and them. If you learn from
mistakes correctly, they could push you forward. You can only

learn from a mistake after you admit you have made it, or get
the explanation way you have made it.

However, from the educational point of view, learning by
mistake could be powerful teaching technique and/or method.
If the lecturer1 create appropriate situation and put student in it,
where student can make interesting mistakes, it could be used
for educational purpose, and this method is called the learning
by mistake technique of teaching. Of course, the lecturer could
use some fine facts to make students to made mistake, and after
explanation way you made it, you learn, i.e. do not make the
same error again.

Joseph Bergin [2] defined pedagogical patterns as follows
“Patterns are designed to capture best practice in a specific
domain. Pedagogical patterns try to capture expert knowledge
of the practice of teaching and learning. The intent is to capture
the essence of the practice in a compact form that can be easily
communicated to those who need the knowledge. Presenting
this information in a coherent and accessible form can mean
the difference between every new instructor needing to relearn
what is known by senior faculty and easy transference of
knowledge of teaching within the community.”

This paper covers one point of view in design and
implementation of Pedagogical Patterns, the group of patterns
for learning by mistakes method in teaching.

The rest of this paper is organized as follows. Section 2
provides an overview of the existing theory and application
related to teaching/learning by mistakes. In the field of e-
learning and tutoring systems, two categories of software
agents are of the special interest: harvester and pedagogical
agents. Section 3 provides an overview of the existing work
related to e-learning systems and pedagogical agents.

Section 4 introduces pedagogical patterns, pattern language
for describing patterns, and pedagogical pattern Explain, and
two distinct sub-types of pedagogical agents: helpful and
misleading is introduced. Whereas helpful agents provide the
correct guidance for a given problem, misleading agents try to
steer the learning process in a wrong direction, by offering
false hints and inadequate solutions. The rationale behind this
approach is to motivate students not to trust the agent’s
instructions blindly, but instead to employ critical thinking,
and, in the end, they themselves decide on the correct solution
to the problem in question.

1
 In this paper term lecturer is used to denote teachers, professors, instructors,

tutors, i.e. it denotes the person who teach.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

61 | P a g e
www.ijacsa.thesai.org

In Section 5, a stand-alone e-learning architecture, called
Agent-based E-learning System (AE-lS) and some examples
are described. AE-lS are designed to help learners in learning
programming and programming languages. In Section 7,
describe design and definition of pedagogical pattern for
learning by mistakes Wolf, Wolf, Mistake. Some examples of
use that pedagogical pattern is presented in Section 8. Finally,
overall conclusions and future research directions are given in
Section 9.

II. TEACHING/LEARNIG BY MISTAKES

For years, many educators have championed “errorless
learning," advising teachers (and students) to create study
conditions that do not permit errors. For example, a classroom
teacher might drill students repeatedly on the same
multiplication problem, with very little delay between the first
and second presentations of the problem, ensuring that the
student gets the answer correct each time.

People remember things better, longer, if they are given
very challenging tests on the material, tests at which they are
bound to fail. If students make an unsuccessful attempt to
retrieve information before receiving an answer, they
remember the information better than in a control condition in
which they simply study the information [1]. Trying and failing
to retrieve the answer is actually helpful to learning. It is an
idea that has obvious applications for education, but could be
useful for anyone who is trying to learn new material of any
kind.

Lecturer could ask students (students could try to answer)
questions at the back of the textbook chapter, or to give them
eLearning topic test, before teaching and students could try to
answer. If there are no questions available, lecturer could
convert the section headings to questions. For example, if the
heading is Loop-Control, ask students “What is Loop-
Control?” If the answers are wrong, teach the chapter/topic and
ask the same questions, when the lecture is finished. If the
answers are good lecturer should praise students. If the answers
are wrong, lecturer gives instructions, extra questions, hints,
and discuss why the answers are wrong. For answers that are
very wrong, lecturer gives students additional time to try to
learn and master the material lectured. Even if answers are
wrong, these mistakes are more useful to the students, much
more valuable than just learning the material. Getting the
answer wrong is a great way to learn.

These are general-purpose strategies for teaching/learning
by mistakes, and it is used for design of pedagogical pattern
Wolf, Wolf, Mistake, described in Section 6. Moreover, this
strategy is employed and utilized for helpful and misleading
pedagogical agents, described in Section 5.

III. TEACHING PROGRAMMING WITH PATTERNS AND

AGENTS

Software agents, or simply agents, can be defined as
autonomous software entities, with various degrees of
intelligence, capable of exhibiting both reactive and pro-active
behavior in order to satisfy their design goals. From the point
of e-learning and tutoring systems, two types of agents are of
the special research interest: harvester and pedagogical agents.

Harvester agents are in charge of collecting learning material
from online, often heterogeneous repositories [3].

Haake and Gulz [4] define pedagogical agents as “lifelike
characters presented on a computer screen that guide users
through multimedia learning environments” (p. 28). Heller and
Procter [5] points out that main goal of usage of pedagogical
agents are to motivate and guide students through the learning
process, by asking questions and proposing solutions.

A stand-alone e-learning architecture, called Agent-based
E-learning System (AE-lS). AE-lS are designed to help
learners in learning programming and programming languages.
AE-lS consist of three main components:

 Harvester agents;

 Classifier module; and

 A pair of pedagogical agents.

The harvester agents are in charge of collecting the
appropriate learning material from the web. Their results are
fed into the Classifier module, which performs automatic
classification of individual learning objects. Finally, a pair of
specially designed pedagogical agents - one helpful and one
misleading - is used to interact with students and help them
comprehend the underlying learning material.

The helpful pedagogical agent provides useful hints for the
solution of the given problem to the student, trying to direct
student to the correct solution, or to help student to understand
some topic, giving explanations. On contrary, misleading
pedagogical agent try to steer and guide the solving/learning
process in the “wrong” direction, giving some hints or
explanation which could produce bed results. The student is
never sure with which agent (s)he is interacting, this approach
encourages students not to follow the agent’s/tutor’s
instructions blindly, but rather to employ critical thinking and,
at the end, they themselves decide on the proper solution to the
given problem or the suitable accepting and understanding
presented topic.

Originally, the ideas of using harvester, as well as the two
types of pedagogical agents were discussed in [6]. This paper
presents a concrete implementation of these ideas, in
connection with pedagogical pattern approach.

IV. PEDAGOGICAL PATTERNS

What are Pedagogical Patterns? Patterns are designed to
capture best practice in a specific domain. Pedagogical patterns
[2] try to capture expert knowledge of the practice of teaching
and learning. The intent is to capture the essence of the practice
in a compact form that can be easily communicated to those
who need that knowledge and experience. In essence, a pattern
solves a problem. This problem should be one that recurs in
different contexts. In teaching, we have many problems such as
motivating students, choosing and sequencing appropriate
materials and resources, evaluating students, and the similar.

These problems do recur and in slightly different form each
time. Each time a problem, pops up there are considerations
that must be taken into account that influence our choice of
solution. These forces push us toward or away from any given

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

62 | P a g e
www.ijacsa.thesai.org

solution to a problem. A pattern is supposed to present a
problem and a solution. The problem together with the forces
must apply to make that solution beneficial to the problem.

A. Pattern Languages - The Pattern Format

A pattern language is a set of patterns that work together to
generate complex behavior and complex artifacts, while each
pattern within the language is itself simple. Pattern languages,
on the other hand, promise to drive fundamental and lasting
improvements. One very successful pedagogical pattern
language is Seminars by Astrid Fricke and Markus Vöelter [2].
It describes how to design and deliver a short course. Little in
this language (or any pattern language) is novel, but it brings
together in one place expert knowledge that is often forgotten
and sometimes overlooked.

Besides its title, a pattern contains at least the following
five sections:

 The Context section sets the stage where the pattern
takes place.

 The Problem section explains what the actual problem
is.

 The Forces section describes why the problem is
difficult to solve.

 The Solution section explains the solution in detail.

 The Consequences (positive and negative) section
demonstrates what happens when you apply the
solution.

The Figure 1 shows the pattern sections and the order in
which the pattern should be written.

Fig. 1. Pattern language sections and their writing order

B. Explanation Pattern for Explanation in eLearning

Classification and intent. Explanation pattern is based on
Builder creational pattern [11]. Its intent is to help separate the
construction of a complex object from its representation. Such

a separation makes it possible to create different
representations by the same construction process.

Motivation. Suppose an eLearning designer wants to
develop an explanation generator that can generate
explanations for different students. In general, current level of
mastering the subject is different for different students at any
given moment. That fact is reflected in the student model of
each student. Novice students should get more general and easy
explanations, while more complex and detailed explanations to
more advanced students have to be provided [7]. The problem
is that the number of possible explanations of the same topic or
process is open-ended.

Using the Builder pattern provides a solution. The
explanation generator in eLearning LMS could be designed
with an ExplanationBuilder, an object that converts a specific
knowledge level from the student model to an appropriate type
of explanation, which is exposed in Figure 2. In this paper,
ExplanationBuilder given in [7] is expanded and extended with
helpful and misleading suggestions and hints, used for
realization of helpful and misleading pedagogical agents.

The lecturer arranged and organized the appropriate
explanations. Whenever the student requires an explanation,
the explanation generator passes the request to the
ExplanationBuilder object according to the student's
knowledge level. Specialized explanation builders, like
EasyExplanationBuilder or Advanced-ExplanationBuilder, are
responsible for carrying out the request.

Structure. Figure 2 shows the general structure of the
Explain pattern, based on Builder pattern. Unlike similar form,
given in [7], Explain pattern is extended with helpful and
misleading suggestions, hints, and clues.

Consequences. Using Explanation pattern lets designers
vary a product's internal representation, e.g., the contents of the
explanation. The pattern provides isolation of the code for
representation from the code for construction. Construction of
the product is a systematic process, and is under the director's
control.

Known uses. Examples of using the Explanation pattern in
Intelligent Tutoring Systems (ITS) design include different
generators, such as explanation generator, exercise generator,
and hint generator. In GET-BITS model [8], explanation
generator is can construct explanations for a predefined set of
users, which is configurable (e.g., beginners, midlevel,
advanced, experts...) [9]. Hints for solving problems are
generated in much the same way. In Eon tools, different
contents are presented to the student during the teaching
process depending on different Topic levels, which represent
different aspects or uses for the topic (e.g., introduction,
summary, teach, test, beginning, difficult,…) [10]. Extended
Explain pattern is used in Agent-based E-learning System (AE-
lS) [6].

Related patterns. Builder pattern is similar to the Abstract
Factory pattern [11]. Explain pattern is based on Expose the
Process [2].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

63 | P a g e
www.ijacsa.thesai.org

Fig. 2. Using the Builder pattern in designing explanation generator

C. Pedagogical Agents

The link between the student and the set of code
completion tasks is provided in form of pedagogical agents. As
noted earlier, two different types of pedagogical agents are
used – one helpful, and one misleading in designing of Agent-
based E-learning System (AE-lS).

As a crucial design step, both agents are hidden from the
student behind the same interface, and take turns in interacting
with the student at random time intervals. Therefore, the
student is never sure with which agent he/she is interacting.
The rationale behind this approach is straightforward: to
motivate students not to trust the agent’s hints blindly. Instead,
they should critically analyze both the problem in question and
the proposed hint, and, in the end, they them-selves decide on
the proper solution.

In much of the scientific literature, as well as the actual
software products, it is common to represent pedagogical
agents as lifelike, animated characters. On the contrary, we feel
that there is no real value in this approach. Primarily, many re-
sources need to be put into designing and implementing a
visually appealing character. However, although maybe “fun”
to look at in the beginning, over the time the visual character
and its built-in animations stand in the way of getting the job
done. They distract the user/student from concentrating on the
problem in question, and, in the extreme case, may negatively
affect his/her willingness to use the system.

Pedagogical agents helpful and misleading are designed to
increase student’s productivity as primary goal. Consequently,
no special attention for visual representations is considered.
Purely, well-known characters from Office Assistant gallery,
Clippy and Scribble, are used.

Both pedagogical agents are capable of adapting to each
individual student. The agents track a set of information about
the student, including his/her personal data, the ratio of correct
and incorrect solutions to each code completion problem, and
student’s grade for each topic.

Based on the accumulated data, the agents can mediate if
the student’s success rate becomes unacceptable. For example,
if the student gives to many wrong answers to questions
regarding for loops, the pedagogical agent will recommend
additional learning material or new examples, of course easier.

V. AE-LS EXAMPLE

Several important implementation requirements can be
drawn from the functionality of AE-lS described earlier. For
example, harvesting is a process that can and should be
distributed and executed in parallel. Then, students should be
able to interact with and use AE-lS through a web interface.
Moreover, like all web-based systems, AE-lS should be
resilient to hardware and software failures, malicious attacks,
etc. Given these implementation requirements, and its
popularity in developing software agents and multi-agent

Generator

Construct ()

IF knowledge level = novice

 THEN build explanation for novices

 ELSE IF knowledge level = advance

 THEN build explanation for advanced students

 ELSE...

ExplanationBuilder

CreateText ()

CreateGraphics ()

CreateSound ()

EasyExplanationBuilder

CreateText ()

CreateGraphics ()

CreateSound ()

Explanation for

Novices

helpful and/or misleading

hints for WHY

helpful and/or misleading
hints for HOW

...

AdvancedExplanationBuilder

CreateText ()

CreateGraphics ()

CreateSound ()

Explanation for

Advanced Students

helpful and/or misleading

hints for WHY

helpful and/or misleading

hints for HOW

...

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

64 | P a g e
www.ijacsa.thesai.org

systems, Java has been chosen as the implementation platform
for AE-lS.

A. Helpful and misleading hints

In order to provide the reader with a better insight into the
evaluation of AES, some examples of the prepared code
completion tasks are given next. The two given tasks are
tailored to the topics on “For Loops” and “Classes” in Java,
respectively. Helpful and misleading hints assigned to each
task are also presented and discussed.

The task tailored to the topic on “For Loops” in Java
requires the student to complete a program for calculating the
first 10 members of the Fibonacci sequence. The skeleton
program presented to students is shown in Figure 3 [6].

Fig. 3. Code completion task related to for loops.

Based on this skeleton, a set of helpful and misleading hints
for pedagogical agents have been prepared. The helpful agent
uses the following set of hints:

H1. for (int i = ?; i < 10; i++){} “What should be the

starting index? Remember that the first element of

the Fibonacci sequence has the index 0, while the

expression for calculating other elements is fi = fi-

1 + fi-2”

H2. for (int i = 0; i <= ?; i++){} “What should be the

ending index? Although you need 10 numbers,

remember that the index of the first element is 0.”

H3. for (int i = 0; i < 10; ?){} “Should you use ++i or

i++ to modify the value of i? Remember that this

modification is always executed at the end of the
for loop”

The misleading pedagogical agent uses the following set of
corresponding hints (Ivanovic et al., in press):

H4. for (int i = ?; i < 10; i++){} “What should be the

starting index? Hint: the first element of the

Fibonacci sequence is often denoted as f0”

H5. for (int i = 0; i <= ?; i++){} “What should be the

ending index? Hint: look at the initialization of

the array f - how many elements does it have?”

H6. for (int i = 0; i < 10; ?){} “Should you use ++i or

i++ to modify the value of i? Remember that the

instruction ++i first increases the value of i, and

then uses the new value in an expression.”

By suggesting that f0 is the first element of the Fibonacci
sequence in hint H4, the misleading agent tries to suggest the
improper usage of 0 for the initial value of i. In the general
expression fi = fi-1 + fi-2 this decision would cause the index to

go out of the array bounds. Similarly, in hint H5, the agent
suggests that the student should use 10 as the final value of i
(note the expression i<=?), disregarding the fact that Java
array indexes are 0-based. The final hint H6 is just trying to
confuse the student (i.e. to check whether the topic “For Loop”
mastered with comprehension or not), since obviously both
++i and i++ are correct.

The example given in Figure 3. is extended as following.
Lecturer should pay special attention in assembling and
incorporating the suitable and appropriate examples and tasks
for learning and testing the student’s knowledge. For example,
instead to give the usual task for realizing the concept of array
and the sum of some numbers (the use of topics “For Loop”
and/or “Recursion” in problem solving), the following problem
(task) is given to the students:

"One mad scientist wants to
make the chemical chain, made
of plutonium and lead atoms.
However, if two atoms of
plutonium are side by side, the
chain reaction and atomic
explosion will be. How many of
ways the safe chain could be
constructed of the length N, if
the mad scientist has N atoms of
lead and N atoms of
plutonium?",

The goal of above task is to practice the recursive technique
of programming and to compare their results with previously
done. This problem is given instead the ordinary problem like:

"Write Java method to realize
the following mathematical
function: fn= fn-1+3, f0=1."

The student’s task is to write a method that calculates some
function similar to the methods used in example for Fibonacci
sequence. The helpful agent uses the following set of hints:

H7. Try to remember what we have done last two

classes? Something about calculating “Fib…

seq…” and “Rec… method.”

H8. First, try to make model, i.e. appropriate series, of

the sequence of the atoms.

H9. Use that initial value is 1. What is the next value?

Find the connection between the first and the

second value.
H10. Try fn = fn-1 + 3, f0 = 1

The misleading pedagogical agent uses the following set of
corresponding hints:

H11. Try to remember what we have done last two

classes? Something about calculating

“rectangle…” and “Rec… method.”

Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

65 | P a g e
www.ijacsa.thesai.org

H12. It easy, you could try fi = fi-1 + fi-2. Yeah, that is

model of the sequence of these atoms.

H13. Use that initial value is 0. What is the next value?

Find the connection between the first and the

second value.

H14. Get stuck? Try fn = fn-1 + 3, f0 = 0

VI. PEDAGOGICAL PATTERNS FOR LEARNING BY MISTAKES

Learning by mistakes is very fine teaching techniques or
teaching method. In teaching Computer Science, Informatics,
Information Technologies, and similar disciplines based on
technique or technologies, and it is used very often. Joseph
Bergin proposed couple of general Pedagogical Patterns, which
are directly involved in learning by mistake method of
learning, with special implications in usage of them in teaching
Computer Science [12].

They are:

 Mistake - Students are asked to create an artifact such
as a program or design that contains a specific error.
Use of this pattern explicitly teaches students how to
recognize and fix errors. We ask the student to
explicitly make certain errors and then examine the
consequences.

 Grade It Again Sam - To provide an environment in
which students can safely make errors and learn from
them, permit them to resubmit previous assignments
for reassessment and an improved grade.

In addition, some other general Pedagogical pattern could
be used to explore the method of learning by mistakes, with
smaller modification [12]:

 Fixer Upper - the lecturer makes the errors and the
students correct them.

 Test Tube – the lecturer ask for explorations. Here
lecturer could ask for explorations of specific errors.

Couple of Composite Pedagogical Patterns could be used,
like:

 Design-Do-Redo-Redo (DDRR) - pattern by Marcelo
Jenkins [15], used in teaching Object-Oriented
Programming (OOP) to senior students based on a
multi-language approach. The idea is to teach OOP
concepts such as encapsulation, abstraction, and
polymorphism, independently of the OOP language
used. To do that, a Design-Do-Redo-Redo (DDRR)
pattern is used, in which students design an OOP
solution to a programming assignment and then
implement it in three different languages. They have to
elaborate differences and possible errors.

 Design-Implement-Redesign-Re-implement (DIRR) –
pattern by Steve Houk [16]. The pattern could be used
to bridge the gap from an old paradigm to a new
paradigm (from procedural to object-oriented),
emphasizes common programmers mistakes when they
tried to “compile” solutions form procedural point of
view to object-oriented directly, for example.

In the next chapter, one new Pedagogical Patterns for using
the learning by mistake method in teaching Computer Science
will be presented.

VII. PEDAGOGICAL PATTERN WOLF, WOLF, MISTAKE

Topic, which is taught, is divided into smaller pieces called
subtopics or fragments. Fragments are introduced systematic
using Spiral [12] or Semiotic Ladder [13] patterns. The goal of
the topic is to show usage of these fragments in solving certain
problems. After the whole material is presented, some
examples of implementation these fragments (or the methods
based on them) are shown to the students. They have active
participation in constructing the solutions. At the end, an
artifact such as a program, object and/or design, with a
particular error has been realized. Lecturer knows that mistake
is made, but say nothing about that. At the end of the class
lecturer just says that all examples have to be tested and
verified as homework assignment. Next time, lecturer asks
students do they found something in their homework
assignments. Lecturer is interested about their opinions on the
correctness of the solution that he presented last time. Students
should explain the nature and possible consequences of the
error, if they were find the mistake at all. Lecturer just
conducts the discussion. Using this form, students learn how to
recognize specific errors of construction and design, as well as
the importance of testing software.

In the rest of this Section, the definition of Pedagogical
Pattern Wolf, Wolf, Mistake is presented.

Title: Wolf, Wolf, Mistake

Problem/Issue: Novice students make mistakes in
programming, design, and particularly in problem solving.
Moreover, they are aware of that. Students “believe” that
teacher is a person who always tells the truth, so they accept
the facts and solutions without checking them. Moreover, the
students take and accept some facts without checking the
source of them, from Internet for example. Students often do
not know how to interpret the error messages, or what to do to
solve problems that are diagnosed. Debugging and Testing are
an essential skill, whether done with a sophisticated debugger,
or just by comparing actual outputs or results with
expectations, as well as to have the whole picture of the
problem and test properly the given solution from teacher.

Audience/Context: This is very applicable to the early
stages of learning programming. Syntax and semantic errors
are frequent and students need to become familiar with the
messages produced by compilers and run-time systems. In
addition, the students have to understand what these errors
indicate about the program. More over this pattern is good in
learning the students about importance of proper testing the
solution in problem solving. The pattern could also be used in
an analysis or design course in which certain specific, but
common, errors could be made easily.

Forces: Students, make errors in problem solving, more
than professionals and/or teachers. They are not prepared to see
the whole picture, yet. Students do not accept easily the fact
that testing the solution is very important.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

66 | P a g e
www.ijacsa.thesai.org

Teachers usually help students to pass up possible errors in
problem solving techniques, telling them about all cases that
have to be considered, before the solution is constructed.
Moreover, teachers know how to test the solution properly.
Therefore, the students became passive, not active participant
in learning process. They simply accept and memorize the
solution, instead to construct it, in sense to create new
knowledge of some topics.

Solution: Some carefully chosen example in problem
solving technique is presented to the students. Teacher creates
solution from the beginning (understanding of the problem) to
the end (making the code). The given solution has certain
(hidden) specific errors (usually a single error).

Teacher then asks students to carefully consider and
explore given solution, to test it, and to find is it good or not.

When the students find the error, give them the chance to
elaborate and discuss the cause and the consequences. Use
Gold Star [12] for the reward.

If students do not find the error, tell them that the solution
is not good in some cases. Give them extra time and/or some
hints, trying to activate them. Repeat the process until the
solution is found.

Discussion/Consequences / Implementation: Students
become more familiar with testing the given solutions. They
understand why the error occurs, and how to correct it.
Discovering the error, students could learn to avoid making it.
The goals are to teach students how to analyze the problem
properly as well as importance of the testing.

Examples for the use of this pattern should be carefully
prepared. Otherwise, if there are too many errors or mistakes
are too obvious, contra-effect could be produced.

This pattern can be used in many situations. In design part
of Software Engineering course, problem solving courses,
Object-oriented courses, and the like, the pattern could be
successful. Moreover, it can be used in introductory
programming course.

Special Resources: The instructor simply needs knowledge
of the problem he thought; therefore, he could hide the trap.

Related Patterns: Fixer Upper [12], Test Tube [12] and
Mistake [12].

Example/Instances: This pattern could be used effectively
in teaching some introductory CS course. If you wish to teach
the students about importance of analyzing the boundary cases
in program design, and why the testing software is not an easy
job, you may use this pattern.

For example, the pattern was used in Basic of Computer
Literacy course for non-professionals (like students with major
in Geography) at the University of Novi Sad. Topic on data
types and potential problems with them (such as division by
zero for numbers, for example) was taught at the beginning of
the course. After a while, branching and control structures were
done, and their usage in solving some problems is presented.
The students together with lecturer solve some problem using
these branching and control structures. The lecturer conducted

the output. Nevertheless, students, i.e. for the particular data
entry the program could crush, do not see the “hidden” special
case. They miss to observe the case, which leads in dividing by
zero. This case lecturer "wisely" ignore in the analysis of the
task. Next class, if the students still did not notice the mistake,
and lecturer admitted her/his “sin”, and explains the reason and
consequences of mistake. Couple weeks later, students get the
assignment very similar to previously, but in some other
context. They all do the assignment without a single mistake.

In addition to those mentioned above, this pattern could be
used effectively to teach students about pointers in languages
like C or C++, by having them make all of the common pointer
errors purposely. This particular use is somewhat dangerous on
computers that have memory mapped I/O and unprotected
operating systems. Both syntax and semantic errors can easily
be explored using this pattern.

One exercise from an old book [14] was to write a program
that produced every diagnostic mentioned in the manuals for a
given (FORTRAN) compiler. This is, not surprisingly, very
difficult to do. Impossible, for some compilers, as the
documentation and the compiler are not parallel.

Contraindications: Do not use this pattern too often. You
all know the fairy tale about a boy who cried wolf, wolf when
there was none – everybody believed because he is a little boy,
and they do not know to lie. He does it too many times, so
when the wolf came, no one believed him. You could lose
confidence and authority of experts in the eyes of students.

VIII. EXAMPLE OF PEDAGOGICAL PATTERN WOLF, WOLF,

MISTAKE

“Our goal is to transform how children learn, what they
learn, who they learn from.” (Mitchel Resnick, A Media Lab
for Kids: $27 Million from Isao Okawa Creates Center for
Future Children at MIT, MIT News. November 18, 1998.)

Therefore, our starting points are:

 We strongly believe that teaching is ART.

 Therefore, our first advice is to be a first-class artist on
your stage (the classroom).

 It means, try to be different from others teachers in
your environment, and engage your students to actively
participate in lecture.

 Use a constructivist approach rather than objectivist in
teaching.

 Use games and tools in teaching.

In addition, provide some home works for the students. For
example, you finished classes about word processing in some
course for computing literacy. After some time, give to the
students your CV generating by Research Gate (for example),
and ask them “How many times does my name appear in that
document?”

Alternatively, novice students make mistakes in
programming, design, and particularly in problem solving.
Moreover, they are aware of that. Students “believe” that
teacher is a person who always tells the truth, so they accept

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

67 | P a g e
www.ijacsa.thesai.org

the facts and solutions without checking them. Moreover, the
students take and accept some facts without checking the
source of them, from Internet for example. Students often do
not know how to interpret the error messages, or what to do to
solve problems that are diagnosed. Debugging and Testing are
an essential skill, whether done with a sophisticated debugger,
or just by comparing actual outputs or results with
expectations, as well as to have the whole picture of the
problem and test properly the given solution from teacher. For
example, the pattern was used in Basic of Computer Literacy
course for non-professionals (like students with major in
Geography) at the University of Novi Sad. Topic on data types
and potential problems with them (such as division by zero for
numbers, for example) was taught at the beginning of the
course. After a while, branching and control structures were

done, and their usage in solving some problems is presented.
The students together with lecturer solve some problem using
these branching and control structures. The lecturer conducted
the output. However, students, i.e. for the particular data entry
the program could crush, do not see the “hidden” special case.
They miss to observe the case that leads in dividing by zero.
This case lecturer "wisely" ignore in the analysis of the task.
Next class, students still did not notice the mistake, and lecturer
admitted her/his “sin”, and explains the reason and
consequences of mistake "she/he made". The usage of
pedagogical agents is provided, helpful and misleading.
Therefore, the students could try to re-solve task (Figure 4.).

Couple weeks later, students get the assignment very
similar to previously, but in some other context. They all do the
assignment without a single mistake.

Fig. 4. The usage of pedagogical agents is provided, helpful and misleading.

The lecturer have to provoke with the right questions/tasks,
to determine how students have progressed and understand
what you are teaches, as well to engage your students to
participate in lecturing actively, with aim of pedagogical
patterns and agents.

At the end, good lecturer do not forget to use good old
methods in teaching, like use of some physical device, such as
a toy, that has some of the characteristics of the concept being
taught. For example, use the Frisbees™, to explain the concept
of a parameter passing in function and the difference between
value and reference parameters in function calls - elementary
programming course.

IX. CONCLUSION AND FURTHER WORK

The Pedagogical Pattern Wolf, Wolf, Mistake is described.
The pattern could be systematized in category of General
Pedagogical Patterns. The example of usage of the pattern is
presented. In further work realization some more Pedagogical
Patterns for learning by mistake method will be realized, like
Blow-Up, Crash the System etc. Also the important part of
teaching Computer Science (and other scientific fields),

Explanation Pedagogical Patterns and will be investigated. In
addition, the pedagogical approach “Gradual Improvement and
Stepped Development with Fine-tuning” [17] based on
pedagogical patterns will be further researched and developed,
for teaching programming.

The agent technology has been recognized as a useful tool
in a wide variety of domains. From the point of view of e-
learning and tutoring systems, harvester and pedagogical
agents are of the special interest. Some examples of using e-
learning system named AE-lS that efficiently incorporate both
harvester and pedagogical agents based on pedagogical
patterns approach are given.

A more important functionality, however, is achieved by
defining two new sub-types of pedagogical agents - helpful and
misleading. As noted, the helpful pedagogical agent provides
correct suggestions and hints for the problem in question. On
the other hand, the misleading agent tries to steer the problem
solving process in a wrong direction, by offering false
suggestions and hints. The main motivation for this approach is
to motivate students not to follow the agent’s directions

How to

calculate

“Average
rating”?

It is easy, just

use Average ()
function.

Think. If you

get mark 5, or

6-10 or do not

come what
will be?

Task: Calculate Ranking

score of students in….

Student: How to calculate
“Average rating”?

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

68 | P a g e
www.ijacsa.thesai.org

blindly, but instead to analyze both the problem and the
suggestions thoroughly, employ critical thinking, and, in the
end, they themselves find the solution to the problem.
According to our knowledge, none of the existing e-learning
systems uses this kind of helpful and misleading pedagogical
agents, in combination with pedagogical patterns.

The further work will be in two directions. First direction is
definition of teaching agents. They help the teacher to build
eLesson based on Constructivism. Constructivism offers a
sharp contrast to teaching/learning [18]. First, the modern
education is based on active student and student-centered
teaching. Constructivism is a theory of learning based on the
idea that knowledge is constructed by the knower based on
mental activity. This approach is our contribution in replacing
objectivistic learning theory at University of Novi Sad in
teaching programming. In this view, students passively
"absorb" programming elements, commands and structures
presented by lecturer and documented in textbook,
presentation, blackboard, etc. Teaching consists of transmitting
sets of established facts, skills, and concepts to students. This is
classical objectivistic approach in teaching.

The second direction is definition of “new
pedagogy/didactics for teaching programming”, called
ePedagogy/eDidactics of programming, based on pedagogical
patterns: Gradual Improvement, Stepped Development and
Fine-tuning [17], to promote Constructivism. If you examine
the tables of contents of most eLearning systems, you find that
the underlying educational philosophy is one of Objectivism.
This theory holds that the student's mind is an empty slate that
the lecturer/teacher/instructor fills up. The systems approach to
this kind of eEducation has the creator of that system examine
the subject to be taught, divide it up into small bits, sequence
the bits in some logical order, and then put all students through
the same process of learning the material in that order.

For example, eTextbooks (most of eLearning materials are
some kind of electronic textbooks and called Tutorials) for
learning elementary programming suggest that IF statements
MUST come before LOOPING statements and so they contain
chapters devoted to everything about selection, before anything
is seen of repetition. These eLearning systems are reference
works, not learning materials. The objectivist theory ignores
the fact that such a methodology is deadly boring to most
students. First, it forces them to "learn" things they already
know. Second, it ignores any individual difference in learning
style or preference.

Constructivist educational philosophy, on the other hand,
views the student as knowledgeable and task driven. New
things are learned by integrating them into what is already
known and it is done primarily so that meaningful (to the
person) tasks may be carried out.

At the end, the “future” of using computers in education is
the last direction. Instructional computer programs (or the
usage of computers in education) are being developed since the
early ‘70s. Rapid development of Information Communication
Technology, introduction of computers into schools, and daily
use of computers by people of different vocation, education
and age, has made education a very important field to
researchers. Their main goals have been to develop programs

that can teach humans and to achieve individualization of the
educational process. The methods and techniques of Artificial
Intelligence have been successfully used in these systems,
since the end of last century. Hierarchical modeling,
interoperable and reusable software components, and ontology
are modeling techniques that have only recently penetrated into
the eLearning. In addition, these methods are used in new
“field” called "eEducation", a new approach to education with
the help of Information and Communication Technologies and
Computer Science. The following questions have to be
answered:

 Could we described "eEducation" = "eLearning" +
"eTeaching", by this “simple” equation? Alternatively,
do we need more "+"?

 Are we all (researchers, teachers and students) have
succeeded in eEducation (eLearning) so far? Do
"users" of eEducation (eLearning) systems are "better"
than traditional students are, in a since of learning
gain?

 Do we have right pedagogy (teaching
methods/strategies) for eEducation (eLearning)?

 Do we have right learning strategies (models/theories)
for eEducation (eLearning)?

 At the end, what is the future of eEducation
(eLearning)?

REFERENCES

[1] Richland, L. E., Kornell, N. and Kao, L. S., “The Pretesting Effect: Do
Unsuccessful Retrieval Attempts Enhance Learning?” Journal of

Experimental Psychology: Applied, 2009, Vol. 15, No. 3, 243-257.

[2] Bergin, J., Eckstein, J., Manns, M. L., Sharp, H., Maraquardt, K.,

Chandler, J., Sipos, M., Völter, M. and Willingford E., “Pedagogical
Patterns - The Pedagogical Patterns Project”, in Bergin J. (Ed.)

Pedagogical Patterns: Advice fir Educators, Joseph Bergin Software
Tools, 2012. (ISBN: 978-1-4791718-2-8)

[3] De la Prieta, F. and Gil A. B., “A Multi-agent System that Searches for

Learning Objects in Heterogeneous Repositories,” in Proc. PAAMS
Special sessions and workshops: Trends in Practical Applications of

Agents and Multiagent Systems, 8th International Conference on
Practical Applications of Agents and Multiagent Systems, Salamanca,

Spain, 2010, pp. 355-362.

[4] Haake, M. and Gulz, A., “Visual Stereotypes and Virtual Pedagogical
Agents,” Educational Technology & Society, vol. 11 no. 4, pp. 1-15,

Oct. 2008.

[5] Heller, B. and Procter M., “Animated Pedagogical Agents and
Immersive Worlds: Two Worlds Colliding,” in Emerging Technologies

in Distance Education, G. Veletsianos (Ed.), Athabasca, Canada: AU
Press, 2010, ch. 16, pp. 301-316.

[6] Ivanovic, M., Mitrovic, D., Budimac, Z., Vesin, B. and Jerinic, Lj.,

“Different Roles of Agents in Personalized Learning Environments,” In
Proc. of the 10th International Conference on Web-Based Learning -

ICWL 2011, Hong Kong, Dec. 8-10, 2011.

[7] Jerinic, Lj. and Devedzic, V., OBOA Model of Explanation Module in
Intelligent Tutoring Shell. SIGCSE Bulletin, Vol. 29, Number 3,

September, ACM PRESS, 133-135.

[8] Devedzic, V. and Jerinic, Lj., “Knowledge Representation for Intelligent

Tutoring Systems: The GET-BITS Model”, In: du Boulay, B.,
Mizoguchi, R. (Eds.) Artificial Intelligence in Education, IOS Press,

Amsterdam / OHM Ohmsha, Tokyo, 1997, 63-70.

[9] Devedzic, V. and Jerinic, Lj., “Explanation in Intelligent Tutoring
Systems”, Bulletins for Applied Mathematics, 1196/96, 1996, 183-192.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No.6, 2014

69 | P a g e
www.ijacsa.thesai.org

[10] Jerinic, Lj. and Devedzic, V., An object oriented shell for intelligent

tutoring lessons. Lecture Notes in Computer Science Vol. 1108, 1996,
69-77.

[11] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., "Design Patterns:

Elements of Reusable Object-Oriented Software", Addison-Wesley,
Reading, MA, 1994.

[12] Bergin, J.: Fourteen Pedagogical Patterns. In M. Devos and A. Rüping

(Eds.): Proceedings of the 5th European Conference on Pattern
Languages of Programms (EuroPLoP '2000), Irsee, Germany, July 5-9,

2000. UVK - Universitaetsverlag Konstanz 2001 ISBN 978-3-87940-
775-0, pp. 1-49, 2000.

[13] Kaasbøll, J. J., “Exploring didactic models for programming”, Tapir, pp.

195-203, 1998.

[14] Teague, R., “Computing Problems for FORTRAN Solution”, Canfield

Press, 1972.

[15] Jenkins, M., “Pedagogical Pattern #13: Design-Do-Redo-Redo (DDRR)
Pattern”, in Bergin J. (Ed.) Pedagogical Patterns: Advice fir Educators,

Joseph Bergin Software Tools, 2012. (ISBN: 978-1-4791718-2-8)

[16] Houk, S., “Design-Implement-Redesign-Re-implement (DIRR) –
Pattern”, in Bergin J. (Ed.) Pedagogical Patterns: Advice fir Educators,

Joseph Bergin Software Tools, 2012. (ISBN: 978-1-4791718-2-8)

[17] Jerinic, Lj. “Pedagogical Approach ‘Gradual Improvement and Stepped
Development with Fine-tuning’ in Teaching Programming”, in print.

[18] Jonassen, D., "Objectivism vs. Constructivism", Educational

Technology Research and Development, 39(3), pp. 5-14, 1991.

