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Abstract—In this paper, we consider the generalized linear 

complementarity problem (GLCP). Firstly, we develop some 

equivalent reformulations of the problem under milder 

conditions, and then characterize the solution of the GLCP. 

Secondly, we also establish the global error estimation for the 

GLCP by weakening the assumption. These results obtained in 

this paper can be taken as an extension for the classical linear 
complementarity problems. 
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I. INTRODUCTION  

Let mappings ( )F x Mx p  , ( )G x Nx q  . The general-

ized linear complementarity problem, abbreviated as GLCP, is 

to find vector * nx R  such that 

* * 0 * *( ) , ( ) , ( ) ( ) 0,TF x K G x K F x G x                (1) 

where ,M N
m nR  , , mp q R , K  is a polyhedral cone in 

mR , that is, there exist ,s mA R 
t mB R  , such that 

{ | 0, 0}.mK v R Av Bv     

It is easy to verify that its polar cone 0K  assumes the 
following from 

0

1 2 1 2{ | , , }.m T T s tK u R u A B R R          

The solution set of the GLCP is denoted by *X , which is 
assumed to be nonempty throughout this paper. 

The GLCP is a direct generalization of the classical linear 
complementarity problem (LCP) and a special case of the 
general variational inequalities problem(GVI)([1]). The GLCP 
was deeply discussed [1, 2, 3, 4] after the work in [5]. The 
GLCP plays a significant role in economics, engineering, 
supply chain network equilibrium, etc. ([6, 7, 8, 9]). For 
example, the balance of supply and demand is central to all 
economic systems; mathematically, this fundamental equation 
in economics is often described by a complementarity relation 
between two sets of decision variables ([9]). Furthermore, the 
classical Walrasian law of competitive equilibria of exchange 
economies can be formulated as a generalized nonlinear 
complementarity problem in the price and excess demand 
variables ([7]). At the same time, the GLCP be also found 
applications in contact mechanics problems, structural 
mechanics problems, obstacle problems mathematical physics, 
traffic equilibrium problems, etc ([9]), and has been received 
much attention of researchers. 

Up to now, the issues of solution structure and numerical 
solution methods for GLCP were fully discussed in the 
literature (e.g., [2, 3, 4, 5, 10, 11, 12]). To our knowledge, 
Mangasarian and  Shiau ([13]) are the first one who gave the 
solution structure and error estimation analysis to LCP. Latter, 
Mathias and Pang ([14]) established the solution structure and  
global error estimation for the LCP with a P-matrix in terms of 
the natural residual function, and Mangasarian and Ren gave 

the same error estimation of the LCP with an 
0R -matrix in 

[15].  

Using the implicit Lagrangian function, Luo et al. ([16]) 
established a global error estimation for the LCP with a 
nondegenerate matrix. Obviously, the GLCP is an extension of 
the LCP, the following questions are posed naturally: How 
about the error estimation for the GLCP? Can the existing 
error estimation for the LCP be extended to the GLCP? Thus, 
this motivates us to extend the solution structure and error 
estimation conclusions of the LCP to the GLCP. 

On the other hand, the error estimation for the GLCP was 
also fully analyzed (e.g., [4, 10, 11]). This paper is a follow-up 
to [4, 10], as in these papers will establish the global error 
estimation of the GLCP under weaker conditions than that 
needed in [4]. 

The paper is organized as follows. In Section 2, we present 
some equivalent reformulations of the problem under milder 
conditions, and detect the solution characterization of the 
GLCP under milder conditions. The global error estimation is 
also established for the GLCP in Section 3. Section 4 
concludes this paper. These constitute which can be taken as 
extensions of those for LCP. 

Some notations used in this paper are in order. Vectors 

considered in this paper are all taken in Euclidean space nR
equipped with the standard inner product. The 2-norm of 

vector in the space is denoted by || || . We use 
n

R


 to denote 

the nonnegative orthant in nR ,  use x and x to denote the 

vectors composed by elements 

( ) : max{ ,0},( ) : max{ ,0},1i i i ix x x x i n      , 

respectively, and use
*

dist( , )Xx to denote the distance 

from a point x to the solution set 
*

X . For simplicity, we also 

use 0x   to denote a nonnegative vector nx R if there is no 
confusion. 
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II. THE SOLUTION STRUCTURE FOR GLCP 

In this section, we mainly present the characterization of 
the solution for GLCP. First, we give the needed assumptions 
and some known results from [4] for GLCP. 

Assumption 1  For , ,A M N  are the matrices defined in (1). 

(A1) The matrix T
M N  is semi-definite (not necessarily 

symmetric); 

(A2) The matrix TA  is column-full rank. 

Remark 1. Under Assumption(A2), TA  has full-column 

rank and it has left inverse 1( )AA A• , which is also its pesudo-

inverse of TA . On the other hand, the condition that the matrix 
TA  has full-column rank is weaker than that the matrix 

( , )A B• •  has full-column rank discussed in [4]. 

Under Assumption (A2), we can establish the following 

equivalent formulation of the GLCP([4]). i.e., x  is a solution 

of the GLCP if and only if x  is a solution of the following 
system 

( ) 0,

( ) 0,

( ( )) ( ) 0,

( ) 0,

( ) 0,

AF x

BF x

F x G x

UG x

VG x








 




• 

where  
1 1 1 1

1 1 1 1

1 1

{ [( ) ] [ ] },

{ { [( ) ] [ ] }

  [( ) ] [ ] }.

L L L L

L L L L

L L

U A B A A I B A A I A

V A A B A A I B A A I A

B A A I B A A I I

    

    

  

    

    

   

• • • •

• • • • •

• • • •

 

From (2), using the first equality and the last equality, and 
combining the first and the second inequality in (2), for any

nx R , we can obtain 

1 1

1 1

1 1

1 1

1 1

1 1

( ( )) ( )

( ( )) { { [( ) ]

[ ] }

[( ) ] [ ]} ( )

[ ( )] { [( ) ]

[ ] } ( )

[ ( )] {[( ) ] [ ]} ( )

[ ( )] [

L L

L L

L L

L L

L L

L L

F x G x

F x A A B A A I B

A A I A

B A A I B A A I G x

AF x A B A A I B

A A I A G x

BF x A A I B A A I G x

AF x UG

  

 

  

  

 

  

  

  

  

  

  

  



•

• • • • •

•

• • • •

• • • •

•

• • • •

• ( )] 0.x 

 

Thus, system (2) can be further written as 

( ) 0,

( ) 0,

( ( )) [ ( )] 0,

( ) 0,

( ) 0.

AF x

BF x

AF x UG x

UG x

VG x








 




•
                           (4) 

Combining (2) with (3), we can establish the following 

optimization reformulation of the GLCP, and one has that *x  

is a solution of the GLCP if and only if *x  is its global optimal 
solution with the objective vanishing: 

min ( ) ( ) ( )

s.t. ,

H x Mx p Nx q

x

  



•

                       (5) 

where  ( ) 0, ( ) 0, ( ) 0, ( ) 0
n

AF x BF x UG x VG xx R       . 

Under Assumption (A1), ( )H x is a convex function, and 

  is also a convex set. Thus, (5) is a standard convex 
optimization, we know that its solution set coincides with its 
stationary point set, i.e., the solution set of the following 

variational inequality problem: find *x   such that 

* *( ) ( ) 0, ,x x Mx q x    •                           (6) 

where ,   M M N N M q M q N p   • • • • .  

Theorem 1 Suppose that Assumption (A1) and (A2) hold, 

and 
0x is a solution of the GLCP. Then 

 *

0 0 0
( ) 0, ( ) ( ) 0 .X x X M x x x x Mx q     

•  

Proof.  Set  

 0 0 0 .( ) 0,( ) ( ) 0W w X M w x w x Mx q      •
 

For any *x X , since 0,x x X , by (6), we get  

0 0( ) ( ) 0,x x Mx q  •                             (7) 

0( ) ( ) 0.x x Mx q  •                             (8) 

Combining (7) with (8), we can obtain  

0 0( ) ( ) 0.x x M x x  •  

Combining this with Assumption (A1), we get  

0 0( ) ( ) 0,x x M x x  •                            (9) 

and conclude that  

0( ) 0.M x x                                   (10) 

Combining (9) and (8), one has 

0 0 0 0

0

( ) ( ) ( ) ( )

                               ( ) ( ) 0.

x x Mx q x x M x x

x x Mx q

    

   

• •

•
 

Combining this with (7), we have 

0 0( ) ( ) 0.x x Mx q  •  

Combining this with (10), we obtain x W . 

On the other hand, for any w W , since  

0 0 0( ) 0,( ) ( ) 0,M w x w x Mx q    •  

for any x X , using the fact that 0x is a solution of the GLCP 

, combining (6), we obtain 

0 0 0 0

0 0 0

0 0 0 0

0 0

( ) ( )

[( ) ( )] [ ( ) ( )]

[( ) ( )] [( )]

( ) ( ) ( ) ( )

( ) ( ) 0,

x w Mw q

x x w x M w x Mx q

x x w x Mx q

x x Mx q w x Mx q

x x Mx q

 

      

    

     

   

•

•

•

• •

•

 

Thus, *w X .  

Theorem 2 If 1x  and 2x  are two solutions of the GLCP. 

Then, 1 2 2 1( ) ( ) ( ) ( ) 0.Mx p Nx q Mx p Nx q     • •  
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Proof.  Since
1x  and 

2x  are two solutions of the GLCP.  

By Theorem 1, we have 

21 2 1 0 0( ) ( ) ( ) 0x x x xM M M x x      . 

Combining this with the fact that 
1x  and 

2x  are two 

solutions of the GLCP, we have 

1 1 2 2( ) ( ) 0,( ) ( ) 0,Mx p Nx q Mx p Nx q     • •  

one has 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 2 1

( ) ( )( )

 2( ) ( )

 2[( ) ( )] [( ) ( )]

 2[( ) ( ) ( ) ( )].

0 x x M N N M x x

x x M N x x

Mx p Mx p Nx q Nx q

Mx p Nx q Mx p Nx q

  

  

      

    



 

• • •

• •

•

• •

     (11) 

Using the similar technique to that of (3) , we can deduce 

1 2 2 1( ) ( ) 0,( ) ( ) 0.Mx p Nx q Mx p Nx q     • •       (12) 

Combining (11) with (12),  and the desired result follows. 

Theorem 3 The solution set of GLCP is a convex set. 

Proof.  If solution set of the GLCP is single point set, then 

it is obviously convex. In this following, we suppose that 1x  

and 2x  are two solutions of the GLCP. By Theorem 1, we 

have 

0 0

0 0

1 2

1

20 0

( ) 0, ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

T

T

x xM x M x

M q x

M q

x x

x xx

   

  

  

         (13) 

For vector 1 21 [0,1]( ) ,x x x      , by (13), we have 

0 1 2

2

0

0 01

( ) [ ]

                ( ) ( )

            

(1 )

(

    0.

1 )

M M

M x M

x x x x

xx

x

x

 

 

   

   







   (14) 

0 0

0

1 0

0 02

1 2 0

0

( ) ( )

( ) [ ]

( ) ( )

   ( ) (

(1 )

(1 ) .) 0

T

T

T

T

x x x

x x x x

x

M q

M q

M xq

q x

x

M xx

 





 



  



  





 
                          (15) 

Combining (14), (15) with the conclusion of Theorem 1, 
we obtain the desired result. 

III. THE ERROR ESTIMATION FOR GLCP 

In this section, we will present a global error estimation for 
the GLCP under weaker conditions than that needed in [4]. 
Firstly, we can give the needed error bound for a polyhedral 
cone from [17] and error bound for a convex optimization 
from [18] to reach our aims. 

Lemma 1 For polyhedral cone 

1 1 1 1
{ , }|

n
P x D x dR B x b    

with 
1

,
l n

D R


  
1

,
m n

B R


  
1

l
d R  and 

1

m
b R , there 

exists a constant 1 0c   such that 

1 11 1 1
dist( , ) [ ( ) ], .

n
x P c D x d B x b x R


     ‖ ‖‖ ‖  

Lemma 2 Let P be a convex polyhedron in 
n

R and  be a 

convex quadratic function defined on 
n

R .  Let S be the 
nonempty set of globally optimal solutions of the program: 

min ( )

s.t.

x

x P




 

with 
opt being the optimal value of   on S . There exists a 

scalar 
2 0c   such that 

(1

2

/2)

dist( , ) max{dist( , ),| [ ( ) ] |,

                               | [ ( ) ] | }, .

opt

n

opt

x S c x P x

x x R

 

 





 

  
 

Theorem 4 Under Assumption 2.1 (A1) and (A2), then 

there exists constant 0  such that 

*

(1/2)

dist( , ) [ ( )] ( )

                          ( )  | [ ( ) ( )] |

                           | [ ( ) ( )] | .,

[ ( )]{

} n

x X AF x BF x

VG x F x G x

F x G x x R

UG x






 

 

  

‖ ‖‖ ‖

‖ ‖

‖ ‖

•

•

 

Proof. For problem (5), under Assumption 2.1 (A1), 

( )H x  is a convex function, and we know that *x  is a solution 

of the GLCP if and only if *x  is its global optimal solution 

with the objective vanishing, i.e., 0( .)
opt

H x   For any nx R , 

a direct computation yields that 

3

* (1/2

3 4

3 4

)

(1/2)

dist( , ) max{dist( , ), | [ ( )] |, | [ ( )] | }

                 max{ { [ ( )] ( ) [ ( )]

                     ( ) }, | [ ( )] |, | [ ( )] | }

                 max{ ,1}{ [ (

x X c x H x H x

c c AF x BF x UG x

VG x H x H x

c c AF x

 

 

 

 

  





‖ ‖‖ ‖‖ ‖

‖ ‖

‖

(1/2)

)] ( )

[ ( )] ( )

                      | [( ( )) ( )] | | [( ( )) ( )] | },

BF x

UG x VG x

F x G x F x G x





 



 

 

‖‖ ‖

           ‖ ‖‖ ‖

• •

    (16) 
where the first inequality follows from Lemma 2 with 

constant 3 0c  , and the second inequality uses Lemma 1 with 

constant 4 0c  . Using (16), letting 3 4max{ ,1},c c   the 

desired result follows. 

Remark  2.  Combining Remark 1. Assumption 1 (A2) in 
Theorem 4 is weaker than the Assumption (A2) in Theorem 
4.1 in [4], and the Assumption (A1) in this paper coincides 
with Assumption (A1) in [4]. In addition, Theorem 4 is 
sharper than Theorem 4.1 in [4]. 

In the end of this paper, we will consider a special case of 
GLCP which was discussed in [13, 14, 15, 16]. 

When , ( )nK R F x x  , then 
0 nK R  , and GLCP 

reduces to the LCP of finding vector * nx R  such that 

* * * *0, 0,( ) ( ) 0.Tx Nx q x Nx q                  (17) 
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Combining (17) with Theorem 4, we can immediately 
obtain the following conclusion. 

Corollary 1 Suppose the matrix N is semi-definite (not 

necessarily symmetric), and ( )F x x . Then there exists 

constant 
1 0   such that 

*

(1/2)

1dist( , ) ( ) | [ ( )] |

                           | [ ( ) .] | ,

{

} n

x X x Nx q x Nx q

x Nx q x R


  



    

   

‖ ‖‖ ‖ •

•
 

Proof. By 
nK R , we have , 0A I B  , from ( )F x x , 

we have , 0M I q  , where I is an identity matrix. 

Combining this with definition of ,U V in (2), we can obtain 

, 0.U I V  Combining these with Theorem 4, then the 

desired result follows. 

Remark 3. It is clear that the assumption in Corollary 1 
above coincides with that in Theorem 2.7 in [13]. Furthermore, 
the conclusion in Corollary 1 is stronger than that in Theorem 
2.7 in [13]. 

When 
nK R , GLCP reduces to the vertical linear 

complementarity problem([19])of finding vector * nx R  such 
that 

* * * *0, 0,( ) ( ) 0.TMx q Nx q Mx q Nx q            (18) 

Combining (18) with Theorem 4, we have the following 
conclusion hold. 

Corollary 2 Under Assumption 2.1 (A1). Then there exists 

constant 2 0   such that 

*

(1/2)

2dist( , ) ( ) ( )

                    | [( ) ( )] |

                    | [( ) ( )] | , .

{

} n

x X Mx p Nx q

Mx p Nx q

Mx p Nx q x R


 





   

  

    

‖ ‖‖ ‖

•

•

 

Proof. By nK R , one has , 0A I B  . Combining this 

with definition of ,U V in (2), one has , 0.U I V  Combining 

these with Theorem 4, then the desired result follows. 
Remark 4. Obviously, Assumption 2.1(A1) in Corollary 2 

above is weaker than that in Corollary 2 in [19], since the 

condition which rank  ,
T

T TM N n is removed. 

IV. CONCLUSIONS  

In this paper, we presented the solution characterization 
for GLCP, and established global error estimation on the 
GLCP under weaker conditions than that needed in [4], which 
is the extension of this for LCP. Surely, under milder 
conditions, we may also established the solution structure and 
error estimation for GLCP such as the mapping being 
nonmonotone involved in the GLCP, this is a topic for future 
research. 

ACKNOWLEDGMENT 

This work was supported by the Logistics Teaching and  
Research Reformation Projects for Chinese Universities 
(JZW2014048, JZW2014049), the Shandong Province 
Science and Technology Development Projects 
(2013GGA13034), the Natural Science Foundation of 
Shandong Province (ZR2011FL017). 

REFERENCES 

[1] M.A. Noor, “General variational inequalities”, Appl. Math. Letters, 1(2), 
pp. 119-121, 1988. 

[2] Y.J. Wang, F.M. Ma, J.Z. Zhang, “A nonsmooth L-M method for 

solving the generalized nonlinear complementarity problem over a 
polyhedral cone”, Appl. Math. Optim., 52, pp. 73-92, 2005. 

[3] X.Z. Zhang, F.M. Ma, Y.J. Wang, “A Newton-type algorithm for 

generalized linear complementarity problem over a polyhedral cone”, 
Appl. Math. Comput., 169, pp. 388-401, 2005. 

[4] H. C. Sun, Y.J. Wang, “Further discussion on the error bound for 

generalized linear complementarity problem over a polyhedral cone”, J. 
Optim. Theory Appl., 159(1),pp.93-107, 2013. 

[5] R. Andreani, A. Friedlander, S.A. Santos, “On the resolution of the 

generalized nonlinear complementarity problem”, SIAM J. Optim., 12, 
pp. 303-321, 2001. 

[6] F. Facchinei and J.S. Pang , Finite-dimensional variational inequality 

and complementarity problems, Springer, New York, NY, 2003. 

[7] L. Walras , Elements of pure economics, Allen and Unwin, London, 

1954. 

[8] L.P. Zhang, “A nonlinear complementarity model for supply chain 
network equilibrium”, Journal of Industrial and Managment 

Optimization, 3(4), pp.727-737, 2007. 

[9] M.C. Ferris, J.S. Pang, “Engineering and economic applications of 
complementarity problems”, Society for industrial and applied 

mathematics, 39(4), pp.669-713, 1997. 

[10] Y. Z. Diao, “An error estimation for management equilibrium model”, 
International Journal of Computer and Information Technology, 2(4), 

pp.677-681,2013. 

[11] S.S. Xie, P. Wang, L. Wang, H.C. Sun, “An algorithm for the nonlinear 
complementarity problem on management equilibrium model”, 

International Journal of Computer and Information Technology, 2(6), 
pp.1136-1140, 2013. 

[12] L. Wang, “A global convergence algorithm for the supply chain network 

equilibrium model”, International Journal of Advanced Computer 
Science and Applications, 3(2), pp.15-18,2012. 

[13] O.L. Mangasarian and T.H. Shiau, “Error bounds for monotone linear 
complementarity problems”, Math. Programming, 36(1): 81--89, 1986. 

[14] R. Mathias and J.S. Pang, “Error bound for the linear complementarity 

problem with a P-matrix”, Linear Algebra & Appl., 132: 123-136, 1990. 

[15] O.L. Mangasarian and J. Ren, “New improved error bound for the linear 
complementtarity problem”, Math. Programming, 66: 241-255, 1994. 

[16] Z.Q. Luo, O.L. Mangasarian, J. Ren and M.V. Solodov, “ New error 

bound for the linear complementarity problem”, Math. Operations 
Research, 19: 880-892, 1994. 

[17] A.J. Hoffman, “On the approximate solutions of linear inequalities”, 

Journal of Research of the National Bureau of Standards, 49, pp. 263-
265, 1952. 

[18] T. Wang and J.S. Pang, “Global error bounds for convex quadratic 

inequality systems”, Optimization, 31, pp. 1-12, 1994. 

[19] J.Z. Zhang, N.H. Xiu, “Global s-type error bound for the extended linear 

complementarity problem and applications” , Math. Program., Ser. B, 
88: 391- 410, 2000. 

 


