
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

170 | P a g e

www.ijacsa.thesai.org

Design and Implementation of an Interpreter Using

Software Engineering Concepts

Fan Wu

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

Hira Narang

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

Miguel Cabral

Department of Computer Science

Tuskegee University

Tuskegee, Alabama, USA

Abstract—In this paper, an interpreter design and

implementation for a small subset of C Language using software

engineering concepts are presented. This paper reinforces an

argument for the application of software engineering concepts in

the area of interpreter design but it also focuses on the relevance

of the paper to undergraduate computer science curricula. The

design and development of the interpreter is also important to

software engineering. Some of its components form the basis for

different engineering tools. This paper also demonstrates that

some of the standard software engineering concepts such as

object-oriented design, design patterns, UML diagrams, etc., can

provide a useful track of the evolution of an interpreter, as well

as enhancing confidence in its correctness

Keywords—Interpreter; Software Engineering; Computer

Science Curricula

I. INTRODUCTION

In this paper, an interpreter design and implementation for
a small subset of C Language using software engineering
concepts are presented. This paper summarizes the
development process used, detail its application to the
programming language to be implemented and present a
number of metrics that describe the evolution of the project.
Incremental development is used as the software engineering
approach because it interleaves the activities of specification,
development, and validation. The system was developed as a
series of versions (increments) where each version adds
functionality to the previous version [1].

The paper will also focus on the relevance of compilers
and interpreters to undergraduate computer science curricula,
particularly at Tuskegee University. Interpreters and compilers
represent two traditional but fundamentally different
approaches to implementing programming languages. A
correct understanding of the basic mechanisms of each is an
indispensable part of the knowledge that every computer
science student must acquire [2].

The paper is organized as follows: section II presents the
background and related work, and section III describes the
design and development process. The conclusions and future
work are discussed in section IV.

II. BACKGROUND AND RELATED WORK

A． Background

The main purpose of a compiler or an interpreter is to
translate a source program written in a high-level source
language to machine language. The language used to write the
compiler or interpreter is called implementation language. The
difference between a compiler and an interpreter is that a
compiler generates object code written in the machine
language and the interpreter executes the instructions. A utility
program called a linker combines the contents of one or more
object files along with any needed runtime library routines
into a single object program that the computer can load and
execute. An interpreter does not generate an object program.
When you feed a source program into an interpreter, it takes
over to check and execute the program. Since the interpreter is
in control when it is executing the source program, when it
encounters an error it can stop and display a message
containing the line number of the offending statement and the
name of the variable. It can even prompt the user for some
corrective action before resuming execution of the program.

The process is divided into 6 functional increments. Before
moving to the next increment, the current increment has to be
tested and validated. The increments are: 1. the framework, 2.
the scanner, 3. the symbol table, 4. parsing and interpreting
expressions and assignment statements, 5. parsing and
interpreting control statements, 6. parsing and interpreting
declarations.

Interpreters are complex programs, and writing them
successfully is hard work. To tackle the complexity, a strong
software engineering approach can be used. Design patterns,
Unified Modeling Languages (UML) diagrams, and other
modern object-oriented design practices make the code
understandable and manageable [3, 4, 5].

B． Related Work

While the area of interpreter design, as a subset of
compiler design is well-established and documented, it is not
typically the subject of formalized software engineering
concepts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

171 | P a g e

www.ijacsa.thesai.org

The application of object-oriented design principles to
parsers and compilers has been investigated by Reiss and
Davis [6]. Malloy, Power, and Waldon reinforce the argument
for the application of software engineering concepts in the
area of parser design [7]. Similarly, an incremental approach
to compiler design is proposed by Ghuloum [8].

Demaille [9] states that compiler construction is a
challenging process that requires material from virtually all
computer science courses on the core curriculum. While the
idea of compilers is usually furthered and explored in detail
later on in an upper level course such as Compiler
Construction, Xing [2] argues that the idea of interpreters
rarely gets the same “treatment”: There is no such a course
targeting on interpreter constructions in most undergraduate
computer science curricula at universities and colleges [9].

III. DESIGN AND IMPLMENTATION

A． Conceptual Design

The conceptual design of a program is a high-level view of
its software architecture. The conceptual design includes the
primary components of the program, how they‟re organized,
and how they interact with each other. An interpreter is
classified as a programming language translator. A translator,
as seen at the highest level, consists of a front end and a back
end. Both compilers and interpreters can share the same front
end, but they‟ll have a different back end. Fig. 1 shows the
conceptual design of the SimpleC interpreter. The front end of
a translator reads the source program and performs the initial
translation stage. Its primary components are the parser, the
scanner, the token, and the source.

The parser controls the translation process in the front end.
It continuously asks the scanner for the next token, and it
analyzes the sequences of tokens to determine what high-level
language elements it is translating. The parser verifies that
what it sees is syntactically correct as written in the source
program; in other words, the parser detects and flags any
syntax errors. The scanner reads the characters of the source
program sequentially and constructs tokens, which are the
low-level elements of the source language. The scanner scans
the source program to break it apart into tokens.

Fig. 1. Conceptual Design of the SimpleC Interpreter/Compiler

1) Syntax and Semantics
The syntax of a programming language is its set of

grammar rules that determine whether a statement or an
expression is correctly written in that language. The
language‟s semantics give meaning to a statement or an
expression. In Simple C, the statement (1):

 a = b + c; (1)

is a valid assignment statement. The semantics of the
language tells that the statement says to add the value of
variables „b‟ and „c‟ and assign the sum‟s value to the variable
„a‟.

A parser performs actions based on both the source
language‟s syntax and semantics. Scanning the source
program and extracting tokens are syntactic actions. Looking
for „=‟ token is a syntactic action, entering the identifiers „a‟,
„b‟, and „c‟ into the symbol table as variables, or looking them
up in the symbol table, are semantic actions because the parser
had to understand the meaning of the expression and the
assignment to know that it needs to use the symbol table.
Syntactic actions occur in the front end, while semantic
actions can occur on either the front end or the back end.

B． Basic Interpreter/Compiler Framework

As mentioned previously, the project will be divided into
functional increments, using software engineering concepts. In
the previous section, the conceptual design of the compiler
was briefly explained. In this increment, an initial
implementation of a rudimentary interpreter will be presented
after conceptual design.

The first part of this increment is to build a flexible
framework that supports both compilers and interpreters. The
framework will integrate fundamental interpreter and compiler
components in the second stage. Finally, end-to-end tests will
be run to test the framework and its components.

The goals for this increment are:

 A source language-independent framework that can
support both compilers and interpreters

 Initial SimpleC source language-specific components
integrated into the front end of the framework

 Initial compiler and interpreter components integrated
into the back end of the framework

 Simple end-to-end runs that exercise the components
by generating source program listings from the
common front end and messages from the compiler or
interpreter back end

1) Front End
The front end consists of the language-independent Parser,

Scanner, Source, and Token classes that represent the
framework‟s components. Consider the class diagram of the
frond end in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

172 | P a g e

www.ijacsa.thesai.org

Fig. 2. Front end package

The parser and the scanner are closely related. The parser
“owns” a scanner. The parser request tokens from its scanner,
and so it has a dependency on tokens. The scanner owns the
current token, it owns the source, and it passes the source
reference to each token it constructs. Each token then also
owns that. During its construction, a token reads characters
from the source.

2) Messages
The parser may need to report some status information,

such as an error message whenever it finds a syntax error.
However, the parser should not worry about where it should
send the message or what the recipient does with it. Similarly,
whenever the source component reads a new line, it can send a
message containing the text of the line and the line number.
Keeping the senders of messages loosely coupled to the
recipients of the messages minimize their dependencies. In
complex applications, loose coupling allows you to develop
components independently and in parallel [7].

3) Intermediate Tier
According to the conceptual design, the intermediate code

and the symbol table are the interface between the front and
back ends. Consider the following UML class diagram.

Fig. 3. Front end, intermediate, and backend packages

A framework Parser object in the front end package and a
Backend object in the backend package own intermediate code
and symbol table object as shown in Fig.3. Both classes,
Parser and Backend, have the same relationships to the classes
in the message package.

4) Back End
The conceptual design states that the back end will support

either a compiler or an interpreter. Just like the Parser and
Source classes in package front end, the Back End class in
package backend implements the MessageHandler helper
class. A compiler would implement the abstract method
process to generate object code while an interpreter would
implement the same method to execute the program.

5) Test and Validation
Up to this point a framework with components that are

language independent has been completed. The backend of the
framework can support either a compiler or an interpreter. To
test the framework, a SimpleC program is used as the input.
The output consists on the input program with line numbers
followed by the number of statements, number of syntax
errors, total parsing time, statements executed, run-time errors,
and total execution time. The error recovery will be added in
next increments.

C． Scanning

The second increment of the project consists on
implementing a scanner. The scanner is the component in the
front end of a compiler or an interpreter that performs the
syntactic actions of reading the source program and breaking
it apart into tokens. The parser calls the scanner each time it
wants the next token from the source program. The goals for
this increment are:

 Complete the design and development of the SimpleC
scanner.

 The scanner should be able to:

 Extract SimpleC words, numbers, and special symbols
from the source program

 Determine whether a word is an identifier or a SimpleC
reserved word

 Calculate the value of a number token and determine
whether its type is integer or real

 Perform syntax error handling

1) Syntax Error Handling
Every parser must be able to handle syntax errors in the

source program. Error handling is a three step process:

 Detection: Detect the presence of a syntax error.

 Flagging: Flag the error by pointing it out or
highlighting it, and display a descriptive error message.

 Recovery: Move past the error and resume parsing.

If an instance of one of the SimpleC token subclasses finds
a syntax error, it will set its type field to the
SimpleCTokenType enumerated value ERROR and its value
field to the appropriate SimpleCErrorCode enumerated value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

173 | P a g e

www.ijacsa.thesai.org

If the scanner finds syntax errors (such as an invalid character
that cannot start a legitimate SimpleC token), it will construct
a SimpleCErrorToken.

2) How to Scan for Tokens
The scanner has to read each character at a time, skipping

blank spaces. For example consider the following statement:

 int a = 3; (2)

After scanning the statement, the scanner has extracted the
following tokens:

 TYPE TEXT STRING

Word (reserved word) int

Word (identifier) a

Special symbol =

Number (integer) 3

Special symbol ;

The scanner reads and skips white space characters
between tokens. When it‟s done, the current character is
nonblank. This nonblank character determines the type of the
token the scanner will extract next, and the character becomes
the first character of that token. The scanner extracts a token
by reading and copying successive source characters up to but
not including the first character that cannot be part of the
token. Extracting a token consumes all the source characters
that constitute the token. Therefore, after extracting a token,
the current character is the first character after the last token
character. The SimpleC scanner can identify word tokens
(identifiers and reserved words), special symbol tokens („+‟,
“-“, etc.), and number tokens (unsigned integers and real
numbers).

3) Test and Validation
To test this increment a SimpleC tokenizer utility was

written. The tokenizer takes as input a SimpleC source
program and outputs a description of a token or an error
message in case of a syntax error. Fig. 4 shows the output of
the tokenizer for input file simplec_mult.txt.

001 // file-name simplec_mult.txt

 002 .

>>> DOT line=002, pos = 0, text=”.”

 003 int mult = 2 * 4;

>>> INT line=003, pos = 0, text=”int”

>>> IDENTIFIER line=003, pos = 2, text=”mult”

>>> ASSIGN line=002, pos = 3, text=”=”

>>> INTEGER line=002, pos = 4, text=”2”

>>> STAR line=002, pos = 5, text=”*”

>>> INTEGER line=002, pos = 6, text=”4”

 004 .

>>> DOT line=004, pos = 0, text=”.”

Fig. 4. Output of SimpleC Tokenizer

D． The Symbol Table

The parser of a compiler or an interpreter builds and
maintains a symbol table throughout the translation process as
part of semantic analysis. The symbol table stores information
about the source program‟s tokens, mostly the identifiers. As
mentioned in previous increments, the symbol table is a key
component in the interface between the front and back end.

Goals for this increment:

 A language-independent symbol table

 A simple utility program that parses a SimpleC source
program and generates a cross-reference listing of its
identifiers

1) The Symbol Table
The approach of this increment is to create the conceptual

design of a symbol table, develop interfaces that represent the
design, and finally write the classes that implement the
interfaces. To verify the correctness of the source code, a
cross-reference utility program will be used. It will exercise
the symbol table by entering, finding, and updating
information.

During the translation process, the interpreter creates and
updates entries in the symbol table to contain information
about certain tokens in the source program. Each entry has a
name, which is the token‟s text string. The entry also contains
information about the identifier. As it translates the source
program, the interpreter looks up and updates the information.

The symbol table entry for an identifier will typically
include its type, structure, and how it was defined. One of the
goals is to keep the symbol table flexible and not limited to
SimpleC-specific information. The basic operations a symbol
table must support are: 1. Enter new information, 2. Loop up
existing information, 3. Update existing information.

2) Conceptual Design of Symbol Table Stack
To parse a language like SimpleC, more than one symbol

table might be needed (one table for each function or class,
etc.). Because some procedures can be nested, the symbols
need to be maintained in a stack. Fig 5 shows the conceptual
design of the symbol stack. For this increment, only one table
will be used but the concept will be explained for possible
future extensions of the language. The symbol table at the top
of the stack maintains information for the program, function,
block, etc. that the parser is currently working on. As the
parser works its way through the SimpleC program and enters
and leaves nested functions and blocks, it pushes and pops
symbol tables from the stack. The symbol table at the top of
the stack is known as the local table.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

174 | P a g e

www.ijacsa.thesai.org

Fig. 5. The conceptual design of the symbol stack.

3) Test and Validation
The last step of the increment is to test the symbol table.

This goal can be accomplished by generating a cross-reference
of a SimpleC source program. The command line:

 execute –x example01.txt

is used to generate a cross-reference listing of the
identifiers found in the file “example01.txt”.

Fig. 6. Cross-reference table for simplec_assign_ex.txt

After the source program listing, all of the source
program‟s identifiers are listed alphabetically. Following each
identifier name are the source line numbers where the
identifier appears as shown on Fig. 6.

E． Expressions and Assignment Statements

In the previous increment, a symbol table was created. The
parser builds and maintains the symbol tables on the symbol
table stack during the translation process. The parser also
performs the semantic actions of building and maintaining
intermediate code that represents the source program in the
form of parse trees. The back end will then interpret the parse
trees in order to execute statements and expressions. The goals
for this increment are:

 Parsers in the front end for certain SimpleC constructs:
assignment statements, compound statements, and
expressions.

 Flexible, language-independent intermediate code
generated by the parsers to represent these constructs.

 Language-independent executors in the interpreter
back end that will interpret the intermediate code and
execute expressions and assignment statements.

1) Syntax Diagrams

Fig. 7. Assignment statement and compound statement

Fig. 8. Syntax diagrams for SimpleC expressions

Figs. 7 and 8 show the syntax diagrams that guide the
development of the parsers that will generate the appropriate
intermediate code.

2) Intermediate Code
A data tree structure represents the SimpleC intermediate

code. Therefore, the intermediate code takes the form of a
parse tree. A parse tree consists of sub-trees that represent
SimpleC constructs, such as statements and expressions. Each
tree node has a node type and a set of attributes. Each node
other than the root node has a single parent node. The
industry-standard XML can represent the tree structures in text
form.

3) Executing Expressions and Assignment Statements
Expressions and statements are executed in the back end of

the interpreter.

The intermediate code that represents the parse trees was
implemented using language-independent classes in the back
end. Consider the UML diagram if Fig. 9 for the statement
executor classes in the back end package.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

175 | P a g e

www.ijacsa.thesai.org

Fig. 9. Executor subclasses in the back end

4) Test and Validation
To test and validate this increment, a simple interpreter

was written. The simple interpreter takes as input a SimpleC
source program. Only assignment statements, compound
statements, and expressions are recognized by the interpreter.
Fig. 10 shows the output of file simplec_assign.txt.

Fig. 10. Output of simplec_assign.txt

F． Control Statements

The next increment focuses on parsing and interpreting
control statements. The goals for this increment are:

 Parsers in the front end for SimpleC control statements
if, while, and for.

 Flexible, language-independent intermediate code
generated by the parsers to represent these constructs.

 Reliable error recovery to ensure that the parsers can
continue to work despite syntax errors in the source
program.

The syntax diagrams shown in Fig. 11 were used to guide
the development of the parsers.

Fig. 11. Syntax diagrams for SimpleC control statements

1) Error Recovery
When the parser encounters an error, the three possible

options for error recovery are: 1. Terminate the program after
encountering a syntax error, 2. Attempt to parse the rest of the
source program, 3. Skip tokens after the erroneous one until it
finds a token it recognizes and safely resume syntax checking.

The first two options are undesirable. To implement the
third option, a parser must “synchronize” itself frequently at
tokens it expects. Whenever there is a syntax error, the parser
must find the next token in the source program where it can
reliably resume syntax checking [7].

2) Interpreting Control Statements
The interpreting capabilities of the program increase after

each increment. It is time to add new executor classes for
SimpleC control statements. The control statement executor
classes can be appreciated in Fig. 12.

Fig. 12. Control statement executors in the backend

3) Test and Validation
To test this increment, a syntax checker utility was written

to identify syntax errors. Also, the simple interpreter described
in the previous increment was expanded. The interpreter takes
as input a SimpleC source program. At this point, the program

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

176 | P a g e

www.ijacsa.thesai.org

identifies conditional statements and loop statements. Fig. 13
shows a sample output of a SimpleC if-statement.

001 // file-name simplec_if.txt

 002 .

 003 a = 2;

 004 b = 3;

 005 if(b > a)

 006 {

 007 a = a + b;

 008 }

 009 .

 8 source lines.

0 syntax errors.

 0.02 seconds total parsing time.

-------- OUTPUT --------

>>> LINE 003: a = 2

>>> LINE 004: b = 3

>>> LINE 007: a = 5

 4 statements executed.

 0 runtime errors.

 0.01 total execution time.

Fig. 13. Execution of a SimpleC if statement

G． Parsing Declarations

Parsing declarations expands the work in The Symbol
Table increment because all the information from the
declarations has to be entered in the symbol table. The goals
for this increment are:

 Parsers in the front end for SimpleC type definitions
and type specifications.

 Additions to the symbol table to contain type
information.

1) SimpleC Declarations
There are three basic types of variables in SimpleC; they

are: char, int, and float. The syntax diagram is shown in fig.
14.

Fig. 14. Syntax diagram for variable declarations

2) Types and the Symbol Table
The type specification parser developed in this increment

enters type information into the symbol table. The first step is
to design language-independent interfaces that treat a type
specification simply as a collection of attributes.

3) Parsing SimpleC Declarations
In previous increments it is assumed that identifiers were

variables. For this increment, an identifier‟s symbol table
entry must indicate how it was defined. Fig. 15 shows the
classes for parsing declarations.

Fig. 15. The classes for parsing declarations

4) Test and Validation
To test and validate the code written for this increment, a

SimpleC cross-reference utility similar to the one
implemented in The Symbol Table increment, is implemented.
The output of the cross-reference utility includes the line
number where an identifier is found and how it is defined, as
shown in Fig. 16.

==== CROSS-REFERENCE TABLE ====

*** PROGRAM simplec_assign.txt ***

Identifier Line numbers Type specification

--

 a 002 005 Defined as: integer

 b 003 006 Defined as: integer

 c 004 007 Defined as: real

…

Fig. 16. Sample output of cross-reference table

IV. CONCLUSIONS AND FUTURE WORK

A． Conclusions

In this paper, the design of an interpreter for the SimpleC
programming language in the context of a software
engineering project has been presented. The paper also has
demonstrated that some of the standard software engineering
concepts such as object-oriented design, design patterns, UML
diagrams, etc., can provide a useful track of the evolution of
an interpreter, as well as enhancing confidence in its
correctness. A similar project could be introduced at Tuskegee
University to meet some requirements not satisfied by shorter
projects. Some requirements include, but are not limited to,
writing a complete project using challenging algorithms and
data structures, use of different development tools, object-
oriented design, and team management which is an important
issue to consider given that only team work in software
engineering and database courses.

B． Future Work

Future work will focus on creating an interactive source-
level debugger for the SimpleC language that enables the use
of command lines to interact with the interpreter as well as an
Integrated Development Environment (IDE) with a graphical
user interface (GUI). If time is not a constraint, the interpreter
will be extended to a SimpleC compiler that generates object

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 7, 2014

177 | P a g e

www.ijacsa.thesai.org

code for the Java Virtual Machine (JVM). The compiled
programs will then be able to run on multiple platforms.

REFERENCES

[1] Sommerville, I. Software Engineering. Addisson Wesley, 9th edition,
2010

[2] C. Xing. “How Interpreters Work: An Overlooked Topic in
Undergraduate Computer Science Education,” Proc. In CCSC Southern
Eastern Conference, JCSC Vol. 25,Iissue 2. December 2009

[3] R. Mak. Writing Compilers and Interpreters: A Modern Software
Engineering Approach Using Java. Wiley, 3rd edition, 2009

[4] H. Deitel, Java: How to Program (early projects), 10th edition, Prentice
Hall Inc. , 2014.

[5] R. Sebesta, Concepts of Programming Languages, 10th Edition,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2012.

[6] S. Reiss, and T. Davis. “Experiences Writing Object-Oriented Compiler
Front Ends”. Tech. Rep., Brown University, January 1995.

[7] B. Malloy., J. Power, and J. Waldron. “Applying Software Engineering
Techniques to Parser Design: The Development of a C# Parser,” in Proc.
of SAICSIT 2002, pp. 74–81

[8] A. Ghuloum, “An Incremental Approach to Compiler Construction,” in
Proc. of the 2006 Scheme and Functional Programming Workshop,
2006, pp. 28.

[9] A. Demaille. “Making Compiler Construction Projects Relevant to Core
Curriculums,” In proceeding of: Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2005, Caparica, Portugal, June 27-29, 2005.

