
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

1 | P a g e

www.ijacsa.thesai.org

An Information Hiding Scheme Based on Pixel-

Value-Ordering and Prediction-Error Expansion with

Reversibility

Ching-Chiuan Lin

Department of Information

Management

Overseas Chinese University

Taichung, Taiwan

Shih-Chieh Chen

Department of Information

Management

Overseas Chinese University

Taichung, Taiwan

Kuo Feng Hwang

Department of Information

Technology

Overseas Chinese University

Taichung, Taiwan

Abstract—This paper proposes a data hiding scheme based on

pixel-value-ordering and predication-error expansion. In a

natural image, most neighboring pixels have similar pixel values,

i.e. the difference between neighboring pixels is small. Based on

the observation, we may predict a pixel’s value according its

neighboring pixels. The proposed scheme divides an image into

non-overlapping blocks each of which consists of three pixels,

and pixels in a block are sorted in a descending order. Messages

are embedded into two difference values, where one is between

the largest and medium pixels and the other is between the

smallest and medium ones. In the embedding process, difference

values equal to 0 or greater than 1 are unchanged or increased by

1, respectively, and those equal to 1 are also unchanged or

increased by 1 if the message bit to be embedded is equal to 0 or

1, respectively. Calculating the difference value, one may extract

a message bit of 0 or 1 if it is equal to 1 or 2, respectively.

Recovering pixels is done by decreasing those difference values

by 1 if they are equal to or larger than 2. Experimental results

demonstrate that the proposed scheme may provide much larger

embedding capacity, comparing to existing study, and a satisfied

image quality.

Keywords—Reversible data hiding; Pixel-value-ordering;

Prediction-error expansion

I. INTRODUCTION

Digital image is a digitized medium stored in an electronic
file for presenting objects to people. If someone would like to
know more about the image, a separated voice or text file is
required, which is an inconvenient way. Alternatively, the
owner of the image may type texts on the image for giving
more information about the image to a viewer. This may
damage or distort the image and the amount of added texts is
limited. In addition, distorting an important image, e.g. a
medical image, is unaccepted, since a distorted medical image
may result in an incorrect diagnosis. Data hiding is a way of
imperceptibly embedding important information into a
medium, which may provide a way for annotating or
watermarking an image, or secret communication. An image
with embedded information is called a stego-image. Usually,
the stego-image is visually the same as its original image so
that people may not perceive the embedded objects.

When data are embedded into an image, the image may be
distorted. In general, the more data we embed, the more the

image would be distorted. Embedding capacity and image
distortion is a tradeoff. Therefore, a good data hiding scheme
should be able to embed as many messages as possible and
distort the cover image as slightly as it could. How to embed a
large amount of data into an image and achieve a slightly
distorted image is an important issue for data hiding
applications. The issue is more important if we want the
distorted image to be recoverable.

A famous scheme for reversibly embedding messages into
an image, based on difference expansion, was proposed by
Tian [1] in 2003. Based on differences between neighboring
pixels in an image are small, his scheme expands a difference
value between two neighboring pixels by increasing or
decreasing their pixel values. Specifically, if a difference value
 between pixels and is calculated as , the
difference is expanded to , where ⌊ ⌋
and ⌊ ⌋ if . Then, a message bit is
embedded into the expanded difference by setting
 , if is expandable, i.e. and are not over or under
saturated. Later, for an expandable difference, the embedded
message may be extracted by calculating
 , and
 and are recovered by ⌊ ⌋ and
 ⌊ ⌋ , where . Since
we cannot guarantee that every difference is expandable, a
location map recording whether a difference is expandable or
not is required. Fortunately, most differences are expandable
and the location map may be compressed in a satisfied
compression ratio so that it consumes only a small part of
embedding space. Later, a number of studies [2-5] inspired by
Tian’s scheme were proposed.

In 2006, a novel reversible data hiding scheme, based on
shifting pixel histogram, was proposed by Ni et al. [6]. They
calculated the number of pixels with the same pixel value and
obtained a pixel histogram where the peak point was selected
for embedding messages. Since most images contain few
pixels with very small or large pixel values, the histogram on
the right or left of peak point may be shifted one to the right or
left side, respectively, so that there would be available space
for embedding messages. A number of studies based on
shifting histogram were proposed. References [7-10] improved
Ni et al.’s scheme by shifting difference histogram, instead of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

2 | P a g e

www.ijacsa.thesai.org

pixel histogram. Since difference between neighboring pixels
usually is small, the peak point of difference histogram would
be much higher than that of pixel histogram. Generally, these
schemes have a higher embedding capacity comparing to those
based on shifting pixel histogram.

A group of studies [11-16] explored neighboring pixels in
an image and predicted a pixel value by its neighboring pixels.
Then they adopted the histogram of predicted error for
embedding messages. In general, the peak point of prediction
error histogram is higher than difference histogram.
Nevertheless, the embedding capacity of this kind of approach
depends on its predictive method.

This paper proposes a data hiding scheme based on pixel-
value-ordering and predication-error expansion. In a natural
image, most neighboring pixels have similar pixel values, i.e.
the difference between neighboring pixels is small. Based on
the observation, we may predict a pixel’s value according its
neighboring pixels. The proposed scheme divides an image
into non-overlapping blocks each of which consists of three
pixels, and pixels in a block are sorted in a descending order.
Messages are embedded into two difference values, where one
is between the largest and medium pixels and the other is
between the smallest and medium ones. In the embedding
process, difference values equal to 0 or greater than 1 are
unchanged or increased by 1, respectively, and difference
values equal to 1 are also unchanged or increased by 1 if the
message bit to be embedded is equal to 0 or 1, respectively.
Calculating the difference value, one may extract a message bit
of 0 or 1 if it is equal to 1 or 2, respectively. Recovering pixels
is done by decreasing those difference values by 1 if they are
equal to or larger than 2. Experimental results demonstrate that
the proposed scheme may provide much larger embedding
capacity, comparing to existing study, and a satisfied image
quality.

The rest of this paper is organized as follows. Section II
briefly reviews Li et al.’s scheme [15]. The proposed scheme
is introduced in Section III. Section IV demonstrates our
experimental results and compares the performance of the
proposed scheme with that of Li et al.’s. Finally, conclusions
are given in Section V.

II. RELATED WORK

Li et al. [15] proposed a data hiding scheme based on pixel-
value-ordering and predication-error expansion. First, their
scheme divides an image into non-overlapping blocks each of
which consists of four pixels and as shown in Fig.
1(a). The four pixel values in a block are sorted in an ascending
order as shown in Fig. 1(b) where and denote the
sorted pixels. Then calculate

 {

where
 and are the stego-pixel of and the message

bit to be embedded, respectively. In Fig. 1(c), the stego-pixel is

 (i.e.) and this block may not embed a

message bit since . Finally, the stego-pixels would

be . If (i.e.),
the embedding result would be unchanged, i.e.
 . In case of , the
embedding result would be or
 if the message bit to be
embedded is or , respectively.

20 25 22 23

(a)

20 22 23 25

(b)

20 22 23 26

(c)

Fig. 1. An embedding process example of Li et al.’s scheme

The recovery process is the reverse of its embedding
process. If one would like to extract an embedded message bit
from a stego-block and recover a stego-pixel to its original
pixel, he/she may calculate

 {

and

 {

 { }

The rationale of Li et al.’s scheme is based on the concept
of pixel values in a block are similar for a natural image.
Namely, the difference of pixel values in a block is small and
they predicted a difference value (denoted by) of one. If the
difference is larger than one (i.e. , they increased by
one so that there would be an available space of for
embedding a message bit into a block. Then if the message bit
 to be embedded is 0 or 1, is unchanged or set to 2,
respectively.

III. PROPOSED SCHEME

The proposed scheme includes the embedding and
extraction processes. The former embeds secret messages into
a cover image and obtains a stego-image, and the latter extracts
the embedded secret messages from the stego-image and
completely recovers it to its original image. Most studies avoid
the problem of saturated conditions (i.e. pixel value equal to 0
or 255 for a 256-gray-level image). It is worth mentioning that
the proposed scheme also includes a solution for solving the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

3 | P a g e

www.ijacsa.thesai.org

problem of saturated conditions. The two processes are
presented in the following, respectively.

A. Embedding process

This section shows the embedding process for a cover
image I with n pixels. Let the secret message, with bits, to be
embedded be a bit string , where

 { } and . The embedding process is

shown as follows.

1) For a gray-level image I, divide it into non-overlapping

blocks each of which contains three neighboring pixels denoted

by , , and , respectively, where
 .

2) For each block, sort their pixel values in a descending

order denoted by , , and , where ,

 , and , are the largest, medium, and smallest

values, respectively, in block .
3) Embed by setting stego-pixel values

 and

 of and , respectively, as

 {

 {

if or , where
 and are the prediction errors

of and , respectively. Mark a block with

 or
 as overhead information. Let

 be the required overhead information for
extracting the embedded messages, where is its length,
 { }, and .

4) Let be the sub-message embedded in step 3 and

 , where denotes concatenating. For each block

 with , embed and by

performing (1) and (2). Overhead information would not be

generated in this step since

 in this

step.

5) Finally, the stego-image is obtained.
In step 2, if the pixels in block are sorted in an ascending,

the embedding process in steps 3–4 would still be workable.
However, for simplicity, the embedding process selects the
descending order.

 The proposed scheme applies the medium value in

a block to predict its neighboring pixel values and

 . The rationale is that, in a natural image, most image

blocks are smooth. Thereby we may expect that pixel values of
 and are similar to that of and the

prediction error would be small. This implies that we would
obtain more embedding space for embedding a message than
without prediction.

The problem of recording saturated blocks with pixels
modified is taken into account in step 3, and it is recorded by
the overhead information embedded in the blocks mentioned in
step 4. Note that we would not encounter the problem of
saturated blocks in step 4.

B. Extraction process

Whenever a decoder gets the setgo-image , he/she may
follow the following process to extract the embedded message
and completely recover image to its original image I. In the
process, the decoder could determine whether a saturated block
needs to be recovered or not, from the extracted overhead
information. The extraction process is presented as follows.

1) Divide setgo-image as it was divided by the encoder

in the embedding process.

2) As in the embedding process, for each block , sort their

pixel values
 ,

 , and
 in a descending order denoted

by
 ,

 , and
 , where

 ,
 , and

are the largest, medium, and smallest stego-pixel values,

respectively, in block .
3) For each block with

 ,

calculate

 and

 and extract

 {

 (3)

 {

 (4)

where is a bit of mixed messages and . Then
perform

 {

 {

Extract from those blocks with
 . Note that the bit order of is determined by the block
index. Specifically, if is extracted from block , would
be extracted from block where .

4) Given in step 3, recover stego-pixels and extract

message bits from those blocks with
 or

 .

5) According to the block index, rearrange the message

bits extracted from blocks, in steps 3 and 4, with

or to get the sub-message . Another sub-

message may be extracted from blocks, in step 3, with

 . Finally, is obtained

and the original cover image I is completely recovered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

4 | P a g e

www.ijacsa.thesai.org

Block H/M

0 145 148 147 148 147 145 1 149 147 144 144 149 147

1 147 148 149 149 148 147 01 149 148 146 146 148 149

2 146 146 145 146 146 145 1 146 146 144 146 146 144

3 254 250 254 254 254 250 254 254 249 254 249 254

4 1 2 4 4 2 1 0 5 2 1 1 2 5

5 1 2 4 4 2 1 1 5 2 0 0 2 5

6 0 2 3 3 2 0 3 2 0 0 2 3

Fig. 2. An example of the proposed scheme

(a) Lena (b) Baboon (c) Airplane

(d) Pepper (e) Gold (f) Boat

Fig. 3. Test images

C. An example of the proposed scheme

An example with 7 blocks is given in this section to
illustrate the proposed scheme. The example image is a gray-
level one with pixel values between 0 and 255.

In the embedding process, the divided blocks are shown in
Fig. 2, where column H/M denotes both overhead information
and message bits to be embedded. Pixel values in a block are
sorted in a descending order and the largest and smallest pixel
values in a block are marked by red and blue color,
respectively. Let the message to be embedded be .
The first processed block is, in step 3, block 3 which embeds
nothing, and is embedded into block 4 by setting

 and

 =1. Then is embedded into

block 5. Block 6 is a saturated block and its pixels is remained
unchanged, and in this step. For simplicity, assume
the overhead information is .

In step 4, is embedded into blocks 0 and 1, and
is embedded into blocks 1 and 2. Note that block 1 embeds two
bits, one is from the second bit of and the other is from the
first bit of . After is embedded, the embedding process is
completed.

Moving to the extraction process, we divide setgo-image
into non-overlapping blocks as it was divided by the encoder in
the embedding process and sort pixel values in a descending
order for each block. First, in step 3, mixed messages of and
 , , are extracted from blocks 0–4 by performing (3)
and (4) and these blocks are recovered by performing (5) and
(6). Next, the overhead information is extracted from
blocks 0–3, since in these blocks.

For simplicity, assume that means that block 5 needs
to be recovered. Then a bit of 1 is extracted from block 5, and
the block is recovered. After all messages are extracted and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

5 | P a g e

www.ijacsa.thesai.org

 (a) Lena (b) Baboon

 (c) Airplane (d)Pepper

 (e) Gold (f) Boat

Fig. 4. Comparing performance of the proposed scheme with Li et al.’s scheme

50
52
54
56
58
60
62
64
66
68
70
72
74

0 3 6 9 12 15 18 21 24 27 30 33 36

P
SN

R
 (

d
B

)

Capacity (Kbits)

Lena

Proposed Li et al.

50
52
54
56
58
60
62
64
66
68
70
72
74

0 2 4 6 8 10 12 14 16 18

P
SN

R
 (

d
B

)

Capacity (Kbits)

Baboon

Proposed Li et al.

50
52
54
56
58
60
62
64
66
68
70
72
74

0 5 10 15 20 25 30 35 40 45 50

P
SN

R
 (

d
B

)

Capacity (Kbits)

Airplane

Proposed Li et al.

50
52
54
56
58
60
62
64
66
68
70
72
74

0 4 8 12 16 20 24 28 32 36 40 44

P
SN

R
 (

d
B

)

Capacity (Kbits)

Pepper

Proposed Li et al.

50
52
54
56
58
60
62
64
66
68
70
72
74

0 3 6 9 12 15 18 21 24 27 30 33 36 39

P
SN

R
 (

d
B

)

Capacity (Kbits)

Gold

Proposed Li et al.

50
52
54
56
58
60
62
64
66
68
70
72
74

0 3 6 9 12 15 18 21 24 27 30 33 36

P
SN

R
 (

d
B

)

Capacity (Kbits)

Boat

Proposed Li et al.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

6 | P a g e

www.ijacsa.thesai.org

Fig. 5. Comparison of maximum embedding capacity

stego-pixels are recovered, is obtained from
blocks with or by rearranging the

extracted bit string according to their block indexes. Similarly,
 is obtained from the above mixed messages
but removing and the last bit (i.e. the first bit of).
Finally, is extracted and the cover image
is completely recovered.

From the above example, we observe that both stego-
blocks 5 and 6 are saturated blocks. However, stego-block 5
needs to be recovered and, in the extraction process, the block
must be distinguished from stego-block 6 which was not
changed in the embedding process. The problem about whether
a saturated block needs to be recovered or not may be solved
by the embedded overhead information. In step 3 in the
extraction process, we first extract messages from stego-blocks
with

 or
 , since these blocks would

not be saturated ones. Then we decode overhead information
from blocks with . As long as the

overhead information was decoded, we can recognize which
saturated blocks need to be recovered. Note that blocks with
 or embed user’s messages, if any,

instead of overhead information in step 3 in the embedding
process. The example in the section has illustrated how the
overhead information is embedded into and extracted from a
stego-image.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of proposed scheme, we
implemented the proposed scheme in Java on a personal
computer and embedded randomly generated secret messages
into cover images, as shown in Fig. 3, which were downloaded
from [17]. All cover images are grayscale with 256 levels and
the dimension is . A test image may be divided into
⌊ ⌋ non-overlapping blocks. In the
extreme condition, if a block embeds two bits, the embedding
capacity of an image may be up to 174762 bits. Each

and in a block may be modified no more than one. For a

256-gray-level image with n pixels, the image quality, or the

similarity between a stego-image and its cover image, is
evaluated by peak signal to noise ratio (PSNR) calculated as

In the above equation, MSE is mean square error calculated
as

 ∑

where and
 denote cover and stego-pixel values,

respectively.

We also implemented Li et al.’s scheme, on the same
platform, to compare the performance of our scheme with their
scheme’s. An image applying the proposed scheme may obtain
a larger number of blocks comparing to applying Li et al.’s.
Therefore, the image may provide a larger embedding capacity
if it applies the proposed scheme.

A smooth image (e.g. Airplane) may contain a larger
number of smooth blocks comparing to a complex image (e.g.
Baboon). Here a smooth block is an image block with similar
pixel values, and it may result in a smaller prediction error. The
proposed scheme embeds a message bit into a block with
prediction error equal to one which is a smaller prediction error.
Since Baboon and Airplane are smooth and complex images,
respectively, their prediction errors are usually larger and
smaller, respectively, than the other test images.

Fig. 4 illustrates the comparison of performance between
the proposed and Li et al.’s schemes in terms of image quality
(PSNR) and embedding capacity. The figure shows, in a low
embedding capacity, the two schemes have similar
performance. We can observe that the PSNR is higher than 50
dB for each test images in Fig. 4, and the proposed scheme
may provide image quality similar to Li et al.’s scheme but a
much higher embedding capacity than their scheme.

In the worst condition, if is increased by one and

 is decreased by one, we have

0

10

20

30

40

50

60

Lena Baboon Airplane Pepper Gold Boat

M
ax

im
u

n
 C

ap
ac

it
y

(K
b

it
s)

Images

Proposed Li et al.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

7 | P a g e

www.ijacsa.thesai.org

 and
 . This means the proposed scheme may guarantee the
image quality higher than 49.89 dB for a 256-gray-level image.
Even in this condition, the difference between a cover image
and its stego-image would not be detected by human eye.

Fig. 5 shows the comparison of maximum embedding
capacity between the proposed and Li et al.’s schemes. For the
test images in Fig. 3, the embedding capacity of the proposed
scheme is more than twice as high as Li et al.’s. A reason is
that we may embed, at most, two message bits into a block,
whereas Li et al.’s scheme may embed, also at most, only one
message bit into a block. In addition, the proposed scheme
could provide more blocks than Li et al.’s. The proposed
scheme may satisfy more applications’ requirement if they
need a higher embedding capacity and satisfied image quality.

V. CONCLUSIONS

We have introduced an information hiding scheme, with
reversibility, based on pixel-value-ordering and prediction-
error expansion. The proposed scheme divides an image into
non-overlapping blocks each of which contains three pixels
and sorts pixels in a block in a descending order. After
embedding, the property of pixel-value-ordering in a block is
invariant so that the image can be recovered. Comparing to Li
et al.’s scheme, the proposed scheme can achieve more blocks
for embedding. In addition, a block may embed up to two
message bits. Consequently, the proposed scheme can obtain a
higher embedding capacity and satisfied image quality.
Experimental results show that the proposed scheme achieves
an embedding capacity more than twice as high as Li et al.’s
scheme on the same level of image quality. The proposed
scheme is a good candidate for reversible data-hiding
applications which need a high embedding capacity and low
distortion.

REFERENCES

[1] J. Tian, “Reversible data embedding using a difference expansion,”
IEEE Transactions on Circuits and Systems for Video Technology, vol.
13, pp. 890–896, August 2003.

[2] A. M. Alattar, “Reversible watermarking using the difference expansion
of a generalized integer transform,” IEEE Transactions on Image
Processing, vol. 13, pp. 1047−1156, August 2004.

[3] C. C. Chang and T. C. Lu, “A difference expansion oriented data hiding
scheme for restoring the original host images,” Journal of Systems and
Software, vol. 79, pp. 1754−1766, December 2006.

[4] D. M. Thodi and J. J. Rodríguez, “Expansion embedding techniques for
reversible watermarking,” IEEE Transactions on Image Processing, vol.
16, pp. 721−730, March 2007.

[5] O. M. Al-Qershi and B. E. Khoo, “High capacity data hiding schemes
for medical images based on difference expansion,” Journal of Systems
and Software, vol. 84, pp. 105–112, January 2011.

[6] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 16, pp.
354–362, March 2006.

[7] C.-C. Lin and N.-L. Hsueh, “A lossless data hiding scheme based on
three- pixel block differences,” Pattern Recognition vol. 41, pp. 1415–
1425, April 2008.

[8] C.-F. Lee and H.-L. Chen, “Adjustable prediction-based reversible data
hiding,” Digital Signal Processing, vol. 22, pp. 941–953, December
2012.

[9] W.-L. Tai, C.-M. Yeh, and C.-C. Chang, “Reversible data hiding based
on histogram modification of pixel differences,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 19, pp. 906–910, June
2009.

[10] C.-C. Lin,W.-L. Tai, and C.-C. Chang, “Multilevel reversible data
hiding based on histogram modification of difference images,” Pattern
Recognition, vol. 41, pp. 3582–3591, December 2008.

[11] P. Tsai, Y.-C. Hu, and H.-L.Yeh, “Reversible image hidings cheme
using predictive coding and histogram shifting,” Signal Processing, vol.
89, pp. 1129–1143 , June 2009.

[12] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible
watermarking algorithm using sorting and prediction,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 19, pp.
989–999, July 2009.

[13] W. Hong and T.-S. Chen, “A local variance-controlled reversible data
hiding method using prediction and histogram-shifting,” Journal of
Systems and Software, vol. 83, pp. 2653–2663, December 2010.

[14] W. Hong, T.-S. Chen, Y.-P. Chang, and C.-W. Shiu, “A high capacity
reversible data hiding scheme using orthogonal projection and prediction
error modification,” Signal Processing, vol. 90, pp. 2911–2922,
November, 2010.

[15] X. Li, J. Li, B. Li, and B. Yang, “High-fidelity reversible data hiding
scheme based on pixel-value-ordering and prediction-error expansion,”
Signal Processing, vol. 93, pp. 198–205, January 2013.

[16] B. Ou, X. Li, Y. Zhao, and R. Ni, “Reversible data hiding using
invariant pixel-value-ordering and prediction-error expansion,” Signal
Processing: Image Communication, in press.

[17] http://sipi.usc.edu/database/

