
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

117 | P a g e

www.ijacsa.thesai.org

Regression Testing Cost Reduction Suite

Mohamed Alaa El-Din

Arab Academy for Science,

Technology and Maritime Transport

(AASTMT)

Cairo, Egypt

Ismail Abd El-Hamid Taha

 Arab Academy for Science,

Technology and Maritime Transport

(AASTMT)

Cairo, Egypt

Hesham El-Deeb

Modern University for Technology

and Information (M.T.I) Cairo, Egypt

Abstract—The estimated cost of software maintenance

exceeds 70 percent of total software costs [1], and large portion of

this maintenance expenses is devoted to regression testing.

Regression testing is an expensive and frequently executed

maintenance activity used to revalidate the modified software.

Any reduction in the cost of regression testing would help to

reduce the software maintenance cost. Test suites once developed

are reused and updated frequently as the software evolves. As a

result, some test cases in the test suite may become redundant

when the software is modified over time since the requirements

covered by them are also covered by other test cases.

Due to the resource and time constraints for re-executing

large test suites, it is important to develop techniques to minimize

available test suites by removing redundant test cases. In general,

the test suite minimization problem is NP complete. This paper

focuses on proposing an effective approach for reducing the cost

of regression testing process. The proposed approach is applied

on real-time case study. It was found that the reduction in cost of

regression testing for each regression testing cycle is ranging

highly improved in the case of programs containing high number

of selected statements which in turn maximize the benefits of

using it in regression testing of complex software systems. The

reduction in the regression test suite size will reduce the effort

and time required by the testing teams to execute the regression

test suite. Since regression testing is done more frequently in

software maintenance phase, the overall software maintenance

cost can be reduced considerably by applying the proposed

approach.

Keywords—Software maintenance cost; reduced test suite;

reduced regression test suite; regression testing cost reduction.

I. INTRODUCTION

In regression testing as integration testing proceeds,
number of regression tests increases and it is impractical and
inefficient to re-execute every test for every program if one
change occurs.

Test suite reduction techniques decrease the cost of
software testing by removing the redundant test cases from the
test suite while still producing a reduced set of tests that
covers the same level of code coverage as the original suite.

Optimizing the cost of the regression testing without
compromising the fault exposing capability is always
challenging for the testing team. Testing team always face
constraints like lack of resources, squeezed testing schedule,
changing and ambiguous requirement, which in terms impacts
and reduces the effectiveness of regression testing. The Test

automation tool will help testing team speed-up the test
execution.

Due to the differences in the execution costs between the
test cases, the representative set with the smallest number of
tests may not be the one with the minimum execution cost. As
such, the cost of a test should be a more important
consideration for achieving cost-effective testing than the size
of the test suite. Thus, it is necessary to consider individual
execution costs when choosing the test cases.

 The traditional HGS algorithm is one of the most common
algorithms aiming to reduce the cost of regression testing. It is
proposed by Harrold, Gupta and Soffa to test suite reduction
“Selecting a representative set of test cases from a test suite,
providing the same coverage as the entire test suite” that has
received considerable attention. This algorithm assumes that
we could have

Ti (for i = 1, 2, 3, .., m) represent the subsets of T, with
each subset Ti containing all of the test cases that satisfy the i-
th test requirement. The HGS algorithm could determine the
representative test cases for each subset and include them in
the representative set. The HGS algorithm follows the
following four steps:

1) Initially, all requirements are unmarked.

2) for each requirement that is exercised by only one

test case each, add each of these test cases to the minimized

suite and mark it.

3) Consider the unmarked requirements in increasing

order of the cardinality of the set of test cases exercising a

requirement. If several requirements are tied since the sets of

test cases exercising them have the same cardinality, select the

test case that would mark the highest number of unmarked

requirements tied for this cardinality. If multiple such test

cases are tied, break the tie in favor of the test case that would

mark the highest number of requirements with testing sets of

successively higher cardinalities; if the highest cardinality is

reached and some test cases are still tied, arbitrarily select a

test case among those tied. Mark the requirements exercised

by the selected test. Remove test cases that become redundant

as they no longer cover any of the unmarked requirements.

4) Repeat the above steps until all testing requirements

are marked.

The traditional HGS algorithm suffers from some
disadvantages since no clear reason is shown for the initial

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

118 | P a g e

www.ijacsa.thesai.org

choice of the test cases as starting point. Also, it did not assure
the cover all tests with all possible cases of all the selection
statements.

II. PROBLEM STATEMENT

Given a set T of test cases {t1, t2, t3,, tn}, a set of
testing requirements {r1, r2,· · ,rm} that must be covered to
provide the desired coverage of the program, and the
information about the testing requirements exercised by each
test case in T, the test suite minimization problem focus on
finding a minimal cardinality subset of T that exercises the
same set of requirements as those exercised by the un-
minimized test suite T.

Most of the existing approaches to reduction aim to
decrease the size of the test suite disregarding the time/cost.
Yet, the difference in the execution time/cost of the tests is
often significant and it may be costly to use a test suite
consisting of a few long-running test cases. [2]

The reduction in the original test suite could be computed
according to the following formula:

C red [%] = ((CR – C min)/ CR) * 100 (1)

Where:

CR Original regression test suite
C min Reduced regression test suite

III. ALTERNATIVE APPROACHES

Many techniques have been proposed to obtain the near-
optimal solution for the test suite reduction problem. Even
though the representative sets produced by these techniques
are not guaranteed to be optimal, they can significantly
decrease both the size of the test suite and the cost associated
with its execution.

These approaches could include the usage of Greedy
algorithm, selective redundancy approach and irreplaceability
algorithm.

A. Greedy Algorithm

The Greedy algorithm is a commonly-used method for
finding the near-optimal solution to the test suite reduction
problem. This algorithm repeatedly removes the test which
covers the most unsatisfied test requirements from the test
suite set T to the requirements set until all of the requirements
are covered. Many existing test suite reduction methods are
based on the concept of the Greedy algorithm. In other words,
many algorithms repetitively choose the “best” test case to
obtain the near-optimal solution from the locally optimal
solutions. [3]

B. Test Suite Reduction with Selective Redundancy

Test suite reduction that attempts to selectively keep
redundant tests in the reduced suites. Experiments show that
this approach can significantly improve the fault detection
effectiveness of reduced suites without severely affecting the
extent of test suite size reduction. This assures the
achievement of high suite size reduction while simultaneously
allowing for low fault detection effectiveness loss. The

intuition driving is that when a non-reduced suite contains lots
of redundancy with respect to a coverage criterion, it may be
helpful to selectively keep some of that redundancy in the
reduced test suite so as to retain more fault detection
effectiveness in the reduced suite, hopefully without
significantly affecting the amount of suite size reduction. [4]

C. Irreplaceability Algorithm

This algorithm is based on the concept of test
irreplaceability which creates a reduced test suite with a
decreased execution cost. Leveraging widely used benchmark
programs, the empirical study shows that, in comparison to
existing techniques, the presented algorithm is the most
effective at reducing the cost of running a test suite. [5]

IV. RELATED WORK

Researchers, practitioners and academicians proposed
various techniques on test suite reduction, test case
prioritization, and regression test selection for improving the
cost effectiveness of the regression testing.

Rothermel and Harrold presented a technique for
regression test selection. Their algorithms construct control
flow graphs for a procedure or program and its modified
version and use these graphs to select tests that execute
changed code from the original test suite [6].

James A. Jones and Mary Jean Harrold proposed new
algorithms for test suite reduction and prioritization [5].
Saifur-Rehman Khan, Aamer Nadeem proposed a novel test
case reduction technique called Test Filter that uses the
statement-coverage criterion for reduction of test cases [8]. T.
Y. Chen and M. F. Lau presented dividing strategies for the
optimization of a test suite [4]. M. J. Harrold etal presented a
technique to select a representative set of test cases from a test
suite that provides the same coverage as the entire test suite
[8]. This selection is performed by identifying, and then
eliminating, the redundant and obsolete test cases in the test
suite. This technique is illustrated using data flow testing
methodology.

A recent study by Wong, Horgan, London, and Mathur [3],
examines the costs and benefits of test suite minimization.
Rothermel et al [2] described several techniques for using test
execution information to prioritize test cases for regression
testing, including: techniques that order test cases based on
their total coverage of code components, techniques that order
test cases based on their coverage of code components not
previously covered, and techniques that order test cases based
on their estimated ability to reveal faults in the code
components that they cover. Most of the techniques described
in the above papers assume that source code of the software is
available to the testing engineer at the time of testing. But in
most of the organizations the testing is done in black box
environment and the source code of the software is not
available to the testing engineers. A simple greedy algorithm
for the set-cover problem (and therefore for the test suite
minimization problem) is described in [4]. The work presented
in [9] uses a greedy technique for suite reduction in the
context of model-based testing. This work showed that while
suite sizes could be greatly reduced, the fault detection
capability of the reduced suites was adversely affected. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

119 | P a g e

www.ijacsa.thesai.org

situation increases the degree of complexity of the proposal
solutions for the test suite minimization problem.

Existing test suite minimization techniques are defined in
terms of test case cover-age as they attempt to minimize the
size of a suite while keeping some coverage requirement
constant. A related topic is that of test case prioritization.

In contrast to test suite minimization techniques which
attempt to remove test cases from the suite, the test case
prioritization techniques [8, 10, and 11] only re-order the
execution of test cases within a suite with the goal of early
detection of faults. In [11], the ATACMIN tool [6] was used to
find optimal solutions for minimizations of all test suites
examined. This work showed that reducing the size of test
suites while keeping all uses coverage constant could result in
little to no loss in fault detection effectiveness. In contrast, the
empirical study conducted in [12] suggests that reducing test
suites can severely compromise the fault detection capabilities
of the suites.

A new model for test suite minimization [7] has been
developed that explicitly considers two objectives: minimizing
a test suite with respect to a particular level of coverage, while
simultaneously trying to maximize error detection rates with
respect to one particular fault. A limitation of this model is that
fault detection information is considered with respect to a
single fault (rather than a collection of faults), and therefore
there may be a limited confidence that the reduced suite will
be useful in detecting a variety of other faults.

From the previous demonstration of the above related
work, it could be concluded that suite size and fault detection
effectiveness are opposing forces in the sense that more suite
size reduction would intuitively imply more fault detection
and effectiveness loss, since throwing away more test cases, in
effect, throws away more opportunities for detecting faults.
Thus, there seems to be an inherent tradeoff involved in test
suite reduction: one may choose to sacrifice some suite size
reduction in order to increase the chances of retaining more
fault detection effectiveness.

V. ENHANCED HGS ALGORITHM (EHGSA)

The research approach target is to get the original
regression testing and the reduced regression test suite
reduction with selective redundancy by modifying the HGS
algorithm. This approach is general and can be applied to any
test suite minimization technique. EHGSA finds the minimum
regression test with minimum machine time of the test suite
covering all possible paths primary variables values of the all
selection branch cases (IF) statements of both cases True/False
(T/F) of the program tested.

The EHGSA algorithm have several advantages since it
take into consideration all the possible braches cases of
selection statements included in the program being tested.
Also, it computes the real machine time for each branch case
and the total time for each test of the test suite. The pseudo
code of the EHGSA algorithm is illustrated in Fig. 1.

Begin:

Stage I: Create the Test Suite Text File

Input: n; // number of selection statements

 m: = 2n; // m is all possible tests ti

Open Test Suite Text File;

i:=0;

While (i < m)

 j:=0;

 While (j < n)

 convert i to binary number b;

 //ti: set primary values pj to binary i vales b

 set primary values pj to b bit j vale;

 j:=j+1;

 End While

 write Text Test Suite Line i ti;

i:=i+1;

End While

Close Test Suite Text File;

// Test Suite Text File created

Stage II:

Step 1: Establish Test Link List Class

Test Class Node Structure {

Test_ id;

Array Test_Coverage_marked_Selection_Cases;

Counter_Marked_Selection_Cases h;

Test_Machine_Time TT;

Pointer next_Node;

Pointer previous_Node; }

Step2: Apply Test Suit on Selection Statements

Open Test_Suite_Text File T as Input;

// Array Primary Values PV

Array PV[n];

i :=0;

While (! T.eof())

 Read (T , ti;);

 j := 0;

 While (j < n)

 Set PV[j] := ti(j,jj);

 j:= j +1;

 End While

 // Apply ti on Selection Statements Cases

 If (PV[k])

 // if statements staff

 // Coverage Cases

 // Calculate total machine test time of ti;

 End If

 Add test_ Node;

 i =i+1;

End While

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

120 | P a g e

www.ijacsa.thesai.org

Fig.1. EHGSA Pseudo Code

VI. IMPLEMENTATION

Pointing out the test suites with minimum machine time
where the test suite covers all possible paths of the selection
statements by applying algorithm in the following sample case
study (Fig. 2) with four if statements n=4, each test ti has n
primary variable values, p[i], (i = 0, 1, 2, 3).

Fig.2. Sample Case Study [4]

TABLE I. THE TEST SUITE FILE FOR ALL POSSIBLE PRIMARY

VARIABLES VALUES M X N. WHERE: N: NUMBER OF SELECTION STATEMENTS,
M = 2N

Test p[3] p[2] p[1] p[0]

t0 0 0 0 0

t1 0 0 0 1

t2 0 0 1 0

t3 0 0 1 1

t4 0 1 0 0

t5 0 1 0 1

t6 0 1 1 0

t7 0 1 1 1

t8 1 0 0 0

t9 1 0 0 1

t10 1 0 1 0

t11 1 0 1 1

t12 1 1 0 0

t13 1 1 0 1

t14 1 1 1 0

t15 1 1 1 1

// Regression Testing Reduction Proposal

Algorithm Step4:

// Find Test ti Max Coverage with Min

Machine Time

Coverage = {};

Uncoverage={ all possible Coverage};

Min_Subset_Tests = {};

// Read T Test Link List Nodes ti;

i:=0;

Max_Coverage := 0;

// Looking for Test ti with Max Coverage &

Min Machine Time

MT := Max_no;

// At Head Test_Link_List T

While (! T.eof())

 Read T.Node ti;

 If (h >= Max_Coverage and TT <= MT)

Max_Coverage := h;

 Test := ti;

 End If

i = i + 1;

End While

Min_Subset_Tests = Min_Subset_Tests + Test;

Coverage :::= Coverage + Test.Coverage;

Uncoverage := Uncoverage – Coverage;

Step5:

// Find Test ti cover Max Uncoverage with

Min Machine Time

While (Uncoverage != Null)

i:=0;

Max_Coverage := 0;

// Looking for Test ti with Max Coverage &

Min Machine Time

MT := Max_No;

// At Head Test_Link_List T

While (! T.eof())

 Read T.Node ti;

 If (Test_Coverage_marked_Selection_Cases

<=

 Uncoverage Max_Coverage and TT <=

MT)

 MT = TT;

 Test := ti;

 End If

i = i + 1;

End While

Min_Subset_Tests = Min_Subset_Tests + Test;

Coverage :::= Coverage + Test.Coverage;

Uncoverage := Uncoverage – Coverage;

End While

// Proposal Algorithm Output

Write Min_Subset_Tests;

End

1: read text test suite file line ti

(p[0], p[1], p[2], p[3]);

B1: if (p[0] > 0)

B1T: // Branch 1 True Statements

B1F: else

// Branch 1 False Statements

 End If

B2: if (p[1] > 0)

B2T: // Branch 2 True Statements

B2F: else

 // Branch 2 False Statements

 End If

B3: if (p[2] > 0)

B3T: // Branch 3 True Statements

 B4: if (p[3] > 0)

B4T: // Branch 4 True Statements

B4F: else

 // Branch 4 False Statements

 End If

B3F: else

 // Branch 3 False Statements

 End If

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

121 | P a g e

www.ijacsa.thesai.org

TABLE II. EHGSA ALGORITHM OUTPUT ALL POSSIBLE REGRESSION

TESTING WITH MACHINE TIME.M X ((2 * N) + 1).

Test/

Case

B1T B1F B2T B2F B3T B3F B4T B4F Time

t0 X X X 0.03

t1 X X X 0.03

t2 X X X X 0.043

t3 X X X X 0.042

t4 X X X 0.029

t5 X X X 0.029

t6 X X X X 0.042

t7 X X X X 0.041

t8 X X X 0.029

t9 X X X 0.029

t10 X X X X 0.042

t11 X X X X 0.41

t12 X X X 0.028

t13 X X X 0.028

t14 X X X X 0.041

t15 X X X X 0.040

The EHGSA Algorithm Final Result for the Reduction
Subset Tests is: t15, t0, & t14.

VII. TRADITIONAL HGS ALGORITHM RESULTS

Apply the HGS algorithm over the same selection
statements case study Fig2. The HGS is used the test suite
consists of only five test {t1, t2, t3, t4, t5} [4]. The HGs
algorithm used the following test suite.

TABLE III. THE HGS TEST SUITE INITIAL SUITE

Test p[0] p[1] p[2] p[3]

t0 1 1 0 0

t1 0 0 1 0

t2 0 1 0 0

t3 0 1 1 1

t4 0 0 1 1

TABLE IV. HGS ALGORITHM OUTPUT REGRESSION TESTS

Test/

Case

Bt1 Bf1 Bt2 Bf2 Bt3 Bf3 Bt4 Bf4

T1 X X X

T2 X X X X

T3 X X X

T4 X X X X

T5 X X X X

The HGS Algorithm Final Result for the Reduction Subset
Tests is: t1, t2, & t4.

VIII. EXPERIMENTAL RESULTS

The EHGSA algorithm stage one has generates the text test
suite file for all possible variables values PV.

The EHGSA algorithm stage two its input is the text test
suite file then generate the original regression testing: CR.

The EHGSA algorithm stage two has criteria to find the
Reduced Regression Test Suite CMIN of the original
regression testing: CR that coverage all possible selection
statement branch test cases with minimum cost (machine time)
"Regression Testing Cost Reduction Suite".

Apply the EHGSA algorithm over different programs
contains different number of selection statements SS has
following parameters:

 Number of Selection Statements: SS

 Number of Primary Variables: PR = SS

 Possible Primary variables Values of for both branch
cases T/F : PV = 2SS

 Possible selection Branch Test Cases : BTC = 2 * SS

 Original Regression Testing: CR = 2SS

 Reduced Regression Test Suite CMIN

The reduction in the original test suite could be computed
according to the formula (1)

TABLE V. EHGSA ALGORITHM EXPERIMENT RESULTS

SS PR PV BTC CR CMIN CRED[%]

4 4 16 8 16 3 81.25%

5 5 32 10 32 4 87.50%

6 6 64 12 64 5 92.19%

7 7 128 14 128 6 95.32%

8 8 256 16 256 7 97.27%

9 9 512 18 512 7 98.63%

10 10 1024 20 1024 8 99.22%

11 11 2048 22 2048 8 99.60%

The following figure illustrate the results in a bar chart
which clarify that the reduction in cost of regression testing
for each regression testing cycle is ranging highly improved in
the case of programs containing high number of selected
statements

Fig.3. EHGSA Reduction Cost Results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 5, No. 8, 2014

122 | P a g e

www.ijacsa.thesai.org

IX. CONCLUSION

Selecting the reduced testing cases, in appropriate accurate
approach; needs browsing all the possible paths of cases of the
selection statements included in the cod.

The paper proposed algorithm automatically generates the
test suite that cover all possible test primary variables values
of all cases true/false for all selection statement of the tested
program code. This algorithm computes the machine time of
each test case on a dynamic base using the linked list with test
node. The EHGSA finds the subset tests covering all possible
test paths of all selection statements with minimum machine
time which in turn reduced the regression testing cost.

REFERENCES

[1] Sriraman Tallam, Neelam Gupta,” A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization”, Proceeding PASTE ’05
Proceeding of the 6th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software and engineering 2005.

[2] Prof. A. Ananda Rao and Kiran Kumar J “An Approach to Cost
Effective Regression Testing in Black-Box Testing Environment”, May
2011

[3] S. Yoo and M. Harman, “Regression Testing Minimization, Selection
and Prioritization: a Survey,” Software Testing, Verification and
Reliability, Vol. 22, No. 2, March 2012.

[4] Dennis Jeffreyand and Neelam Gupta., “Test Suite Reduction with
Selective Redundancy”, Dept. of Computer the University of Arizona
Tucson, AZ 85721. IEEE Computer Society Washington, DC, USA

©2005

[5] Chu-Ti Lin, Kai-Wei Tang, Cheng-Ding Chen, Gregory M.
Kapfhammer., “Reducing the Cost of Regression Testing by Identifying
Irreplaceable Test Cases”, Aug 28, 2012

[6] H. Zhong, L. Zhang, and H. Mei, “An Experimental Study of Four
Typical Test Suite Reduction Techniques,” Information and Software
Technology, Vol. 50, No. 6, pp. 534-546, May 2008.

[7] Prashant Malangave and Dr. Dinesh B. Kulkarni, “Efficient Test Case
Prioritization in Regression Testing”, Walchand Collage of Engineering
Dept. of Computer Science & Eng, 2008

[8] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. on Software
Engineering and Methodology, Vol. 2, No. 3, pp. 270-285, July 1993.

[9] A. M. Smith and G. M. Kapfhammer, “An Empirical Study of
Incorporating Cost into Test Suite Reduction and Prioritization,”
Proceedings of the 24th ACM SIGAPP Symposium on Applied
Computing, Software Engineering Track, March 2009.

[10] Luciano S. de Souza1; Ricardo B. C. Prudˆ encio2, Flavia de A. Barros,”
Multi-Objective Test Case Selection: A study of the influence of the
Catfish effect on PSO based strategies”. Anais do XV Workshop de
Testes e Tolerância a Falhas - WTF 2014.

[11] Dennis Jeffrey, Neelam Gupta,” Test Suite Reduction with Selective
Redundancy” Proceeding of ICSM '05 Proceedings of the 21st IEEE
International Conference on Software Maintenance, Pages 549-558,
2005.

[12] Anannado Rao and Kirzn Kumar J,” An Approach to Cost Effective
Regression Testing in Black-Box Testing Environment”IJCSI
International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1,
May 2011.

http://www.academia.edu/705374/Efficient_Test_Case_Prioritization_in_Regression_Testing
http://www.academia.edu/705374/Efficient_Test_Case_Prioritization_in_Regression_Testing

