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Abstract—The wisdom of crowds refers to the phenomenon in 

which the collective knowledge of a community is greater than 

the knowledge of any individual. This paper proposes a network 

design for the fastest and slowest consensus formation under 

average node degree restrictions, which is one aspect of the 

wisdom of crowds concept. Consensus and synchronization 

problems are closely related to variety of issues such as collective 

behavior in nature, the interaction among agents as a matter of 

the robot control, and building efficient wireless sensor networks. 

However, designing networks with desirable properties is 

complex and it may pose a multi-constraint and multi-criterion 

optimization problem. For the purpose of realizing such efficient 

network topology, this paper presents an optimization approach 

to design networks for better consensus formation by focusing on 

the eigenvalue spectral of Laplacian matrix. In both the fastest 

and slowest networks presented, consensus is formed among local 

structures first, then on a global scale. This suggests that both 

local and global topology influence the networks dynamics. These 

findings are useful for those who seek to manage efficient 

consensus and synchronization in a setting that can be modeled 

as a multi-agent system. 

Keywords—wisdom of crowds; consensus problem; Laplacian 

matrix 

I. INTRODUCTION 

There is a strong interest in many fields to answer the 
following questions. How do interacting individuals with 
micro-motives produce the desirable or undesirable outcomes 
at the aggregate level? How are interactions among agents that 
produce some regularities of interest at the macroscopic level 
identified? Most of our social activities are substantially free of 
centralized management, and although people may care about 
how it all comes out in the aggregate, people’s own behaviors 
are typically motivated by self-interest. Therefore, in 
examining collective outcome, the observer shall draw heavily 
on the individual behaviors. It might be argued that 
understanding how individuals behave is sufficient to 
understand most parts of the social system. Although 
individual behaviors are important to understand, they are not 
sufficient to describe how a collection of agents generate 
desirable macroscopic outcome. To make the connection 
between microscopic behavior and macroscopic outcome of 
interests, the observer usually has to look at the system of 
interactions among agents described as the interaction network 
topology. 

There are social systems for which it is difficult to 
understand how they work or to find better ways to make them 

work. For instance, social systems often produce inefficient 
outcomes at the aggregate level in a way that the individuals 
who comprise the system cannot evaluate or are not even 
aware of. When the system results in some undesirable 
outcome, the cause is often thought of as the members who 
comprise the system. The resulting outcome is observed as 
corresponding to the intentions of the members who 
compromise the system. It is not easy to tell from emergent 
phenomena just what the motives are behind individuals and 
how strong they are. 

Social systems often result in the features of emergent 
properties, which are properties of the system in which 
separated components by themselves do not have. Other social 
phenomena are also viewed as emergence that have arisen from 
billions of small-scale and short-term decisions of interacting 
agents. Billions of people make billions of decisions everyday 
about many things. It often appears that the aggregation of 
these unmanaged individual decisions leads to unpredictable 
outcomes. Unintended consequences and side effects are 
closely related to emergent properties. In other words, the 
global or macroscopic functionality of a system is the sum of 
all side effects of all emergent properties. 

People constantly interact with each other in different ways 
and for different purposes. Somehow these individual 
interactions produce some coherence at the aggregate level, 
and therefore, aggregation may generate structure and 
regularity. The individuals involved may have a very limited 
view of some part of the whole system but their activities are 
coordinated extensively and produce a desirable outcome at the 
aggregate level. These emergent properties are the result of not 
only the behavior of individuals but the interactions between 
them as well. 

In his book, titled The Wisdom of Crowds, Surowiecki 
explores an idea that has profound implications: a large 
collection of people are smarter than an elite few, no matter 
how they are brilliant and better at solving problems, fostering 
innovation, coming to wise decisions, even predicting the 
future [1].  

He explains the wisdom of crowds emerges only under the 
right conditions: (1) diversity, (2) independence, (3) 
decentralization, and (4) aggregation. His counterintuitive 
notion, rather than the madness of crowd such as herding or 
cascade as traditionally understood, suggests new insights for 
the issue on how complex social and economic activities 
should be organized. 
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In contrast, Lorenza et al. [2] demonstrates by experimental 
evidence that even mild social influence can undermine the 
wisdom of crowd effect in simple estimation tasks. In the 
experiment, subjects could reconsider their response to factual 
questions after having received average or full information of 
the responses of other subjects. They compare subjects’ 
convergence of estimates and improvements in accuracy over 
five consecutive estimation periods with a control condition in 
which no information about others’ responses was provided. 
Although groups are initially wise, knowledge about the 
estimates of others narrows the diversity of opinions to such an 
extent that it undermines the wisdom of crowd effect. 
Especially the social influence effect diminishes the diversity 
of the crowd without improvements of its collective error. 

This observation derives requirements for a more general 
model of network effects. Therefore a new area of research has 
emerged aiming at explaining the phenomena of strong 
positive or negative network effects in markets and their 
implications on market coordination and efficiency. However, 
the assumptions and simplifications implicitly used for 
modeling social interaction processes fail to explain the 
individual cognitive decision-making process as well as the 
network structure. 

Consensus problems have a long history in computer 
science and control theory [3]. In networks of agents, 
consensus means to reach an agreement regarding a certain 
quantity of interest that depends on the state of all agents. A 
consensus algorithm is an interaction rule that specifies the 
information exchange between an agent and all of its neighbors 
on the network. The theoretical framework for solving 
consensus problems for networked systems was introduced by 
Olfati-Saber and colleagues [4]. 

Many of the essential features displayed by complex 
systems emerge from their underlying network structure. 
Whether optimization plays a key role in shaping the evolution 
of optimal networks is an important question [5]. One of the 
broadest areas of research, the optimization has a long history. 
Optimization is most often connected to a function that the 
system performs. In numerous cases the function is 
multifaceted. How network structure influences the global 
performance of such systems is probably the question that is 
posed most frequently in network research [6][7]. 

Here the following question is addressed: what topology 
fosters or dampens consensus or synchronization on networks? 
In this paper, such optimal topologies are constructed for any 
fixed number of nodes and links, by employing an evolutionary 
optimization procedure. The issue of the wisdom of networked 
agents in terms of convergence speed by formulating 
consensus problems is addressed. An evolutionary algorithm is 
used involving optimizing the eigenvalue ratio of the Laplacian 
matrix under the constraint of the average degree. Traditionally, 
optimization has a strict mathematical definition, which refers 
to obtaining the solutions that strictly optimize a well-defined 
objective function. Here a looser definition of the word is 
adopted by extending it to include a tendency of the system to 
improve its behavior as a result of a selection pressure based on 
artificially imposed fitness function. It comprises the variation 
principles or the survival-of-the-fittest principles that pervade 

biology and engineering, the foundational hypotheses of 
numerous computer algorithms, and the frameworks for 
addressing the improvement of efficiency in various contexts. 
Optimization in complex networks has a broad significance, 
incorporating static and dynamical properties and serving as an 
instrument to analyze and control the evolution and function of 
both natural and engineered systems. 

In this paper, the fast consensus topology is introduced that 
is not Ramanujan for average degree less than 2 that has not 
been previously reported, generated with the genetic algorithm. 
Additionally, the fastest consensus is contrasted with the slow 
consensus topology, based on a heuristic model which was 
originally inspired by the evolutionary algorithm. Finally, a 
consensus of two clique topology connected by a single link 
will be examined. All of these networks display a topological 
priority in the progression of consensus, where consensus is 
formed initially with locally oriented agents that form close 
proximity. Formation of such topology by an agent society 
may be referred to as their wisdom, resulting in varying 
aggregate performances from a global perspective. 

II. NETWORK DESIGN FOR BETTER CONSENSUS 

It is broadly recognized that most complex systems in 
nature are organized as intricate network patterns. This 
observation has triggered an intense research effort aimed at 
understanding the organizing principles of these networks, 
their structural properties, and the interplay between topology 
and dynamics. Understanding the network structure of 
individual systems has led to tremendous advances in the past 
decade [8][9]. 

Most of the complex systems seen in real life also have 
associated dynamics, and the structural properties of such 
networks have to be linked with their dynamical behavior. 
While most of the initial effort was put into understanding the 
topological properties of networks, the interest has gradually 
shifted towards the analysis of the interplay between a 
topology and the dynamics of network components. In general, 
each element (node) in a network undergoes a dynamical 
process while coupled to other nodes. The system’s collective 
behavior depends strongly on the efficiency of communication 
paths, which is in turn dictated by the underlying network 
topology. In this way, the network structure determines to a 
large extent the possibility of a coherent response. 

Thus, the topology of the network remains static while the 
states of the nodes change dynamically. In this respect, one of 
the questions of obvious significance is whether there is a 
relation between the stability of the dynamics against small 
perturbations in the dynamical variables and the specific 
arrangement of the network’s connections. If the perturbation 
decays quickly, so that it is unable to spread to the rest of the 
network, the network is said to be stable. Such a property is 
necessary if networks are to survive the noisy environment that 
characterizes the real world. 

It has sometimes been argued that, networks with larger 
number of nodes, links and stronger interconnections are more 
stable. Such assertions are partly based on empirical 
observations, e.g., in ecology, where it has been found that 
more diverse and strongly connected ecosystems are more 
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robust than their smaller, weakly connected counterparts. Some 
important processes studied within this framework include 
synchronization of the individual dynamical systems and 
consensus processes such as opinion formation. Studies like 
these have clarified that certain topological properties have 
strong impacts on the dynamics of the networks. In recent 
studies, the reason for the occurrence of synchronized networks 
became clear and the underlying network topology is 
important, however, little is known about what the best 
network topology is for synchronization [10][11]. 

Two principal approaches have contributed to 
understanding network structures so far. The first is an 
assembly mechanism that derives the structure of large 
complex networks from processes that describe the piecewise 
addition of nodes and links according to stochastic rules over 
time. Preferential attachment is an important mechanism in this 
category. The second approach is via optimization, thus 
assuming that a network structure observed in the real world 
represents the end point of some guided reorganization 
mechanism that aims at optimizing system performance during 
its evolution [12]. 

When modeling consensus, the underlying network restricts 
communication among agents where agents can exchange 
information only with the connected agents. There are many 
studies to analyze the influence of the network topology on the 
convergence speed of the iterative consensus algorithm. 

Based on the concept of ―The wisdom of crowds‖, Golub et 
al. [13] developed a social network approach to model 
consensus phenomenon. Their study basically uses an 
important model of network influence largely due to DeGroot 
who studied consensus problems in groups of experts who 
originated in statistics [14]. In their paper, Golub et al. 
examined one aspect of this broad theme: for which social 
network structures will a society of agents who communicate 
and update naïvely come to aggregate decentralized 
information completely and correctly. They focus on situations 
where there is some true state of nature that agents are trying to 
learn and each agent’s initial belief is equal to the true state of 
nature plus some idiosyncratic zero-mean noise. The network 
structure of agents is described using a weighted network. 
Agents have beliefs about some common question of interest—
for instance, the probability of some event. At each time step, 
agents communicate with their neighbors in the social network 
and update their beliefs. The updating process is simple. An 
agent’s new belief is the average of his or her neighbors’ 
beliefs from the previous period. 

An outside observer who could aggregate all of the 
decentralized initial beliefs could develop an estimate of the 
true state that would be arbitrarily accurate in a large enough 
society. Golub et al. studied learning in a setting where agents 
receive independent noisy signals about the true value of a 
variable and then communicate it in a network. The agents 
naïvely update beliefs by repeatedly taking weighted averages 
of neighbors’ opinions. They show that all opinions in a large 
society converge to the truth if and only if the influence of the 
most influential agent vanishes as the society grows. They also 
identify obstructions to this, including prominent groups, and 
provide structural conditions on the network ensuring efficient 

learning. Whether agents converge to the truth is unrelated to 
how quickly consensus is approached. 

The consensus problem is also related to synchronization. 
Synchronization is the most prominent example of coherent 
behavior, and is a key phenomenon in systems of coupled 
oscillators as those characterizing most biological networks or 
physiological functions. Synchronous behavior is also affected 
by the network structure. The continuous range of stability of a 
synchronized state is a measure of the system’s ability to yield 
a coherent response and to distribute information efficiently 
among its elements, while a loss of stability fosters pattern 
formation. 

In recent studies, the reason for the occurrence of 
synchronized networks became clear and the underlying 
network topology turned out to be important. However, 
synchronization often occurs unexpectedly and little is known 
what the best network topology is for synchronization. 

III. OPTIMAL NETWORK DESIGN FOR BETTER CONSENSUS 

The analysis of consensus problems relies heavily on 
matrix theory and spectral graph theory [15]. The interaction 
topology of a network of agents is represented using an 
undirected graph G with the set of nodes and edges. Neighbors 
of agent    is denoted as   . 

Consider a network of agents with the following dynamics: 

  ̇  ∑        (  ( )    ( ))  

where     is the weight of agent   on agent  .  

Here, reaching a consensus means asymptotically 
converging to the same internal state by way of an agreement 
characterized by the following equation: 

              

Assuming that the underlying graph G is undirected 
(        for all  , j), the collective dynamics converge to the 

average of the initial states of all agents: 

   
 

 
∑   
 
   ( ) 

The dynamics of system in (1) can be expressed as 

  ̇     ( ) 

   is the graph Laplacian matrix of the network G; the 
Laplacian matrix is defined as 

        

where D = diag(         ) is the diagonal matrix with 
elements    ∑      and A is the binary adjacency matrix (n

×n matrix) with elements     for all  ,  where     is 1 if agent 

  and agent   is connected or 0 if they are disconnected. 
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Notice that because the networks in this paper are 
undirected, L is a symmetric matrix with all real entries, and 
therefore a Hermitian matrix. In this research, L being a 
Hermitian matrix is always met with equality since the 
diagonal entry of each row in L is the degree of node  , and 
each link connected to   results in    in the same row. So the 
sum of all off diagonals in a row is   . Therefore L is a positive 
semi-definite matrix. Since L is semi-definite (and therefore 
also Hermitian), the following ordering convention for the 
eigenvalues will be adopted: 

             

The interval in which the synchronized state is stable is 
larger for a smaller ratio of the two eigenvalues        , 
therefore a network has a more robust synchronized state if the 
eigenvalue ratio          is smaller. Focusing on the first 
part, the network optimization will be the guided evolution of 
networks subject to some constraints. Attempting to explain the 
formation of a small-scale size of networks, the constrained 
evolution of networks towards consensus or synchrony 
optimality will be investigated. Constraint optimizations are 
included via a fitness function that combines the desired goal 
such as synchronization properties of the networks optimized, 
or the propensity of a network to synchronize with an average 
degree requirement needed to connect the nodes. 

Ramanujan graph is known in the literatures as the best 
networks for fast consensus. Ramanujan graphs [16] are k-
random regular networks with the second minimum eigenvalue 
satisfying: 

   ( )     √   , 

It is known that among the second minimum eigenvalue 
  ( ) of various Laplacian matrices, Ramanujan graphs have 
the largest   ( )  [17]. One class of Ramanujan graphs is a 
random regular network, which is easy to construct and used in 
many application for better consensus.  

However, for sparse networks with lower average degree, 
the condition in (7) does not carry any information especially 
for k=2. In this case a Ramanujan graph is a ring network with 
the degree of 2 as shown in Fig.1(a). However, the second 
minimum eigenvalue   ( ) of the ring network is very small, 
and consensus is very slow on the Ramanujan graph with the 
degree k=2. 

Genetic algorithms have been extensively used in single 
objective optimization for various communication network 
related optimization problems. Optimizing complex networks 
usually involve multiple objectives such as the network size as 
well as various network properties. In this paper, an 
evolutionary algorithm involving minimization of the 
eigenvalue ratio of the Laplacian matrix with the constraint of 
the average degree is used in order to design the optimal 
network. 

Now consider an optimization approach to design networks 
with better consensus. Although optimization requires finding 
an optimal solution for a well-defined objective function, 

optimization as a selection pressure to minimize the following 
fitness function is considered [18]: 

  ( )   
  

  
 (   )〈 〉 

where <k> is the average degree, and    (     ) is a 
parameter controlling two objects. 

The eigenvalue ratio           decreases as the average 
degree increases and the convergence speed becomes much 
faster. Therefore an interesting question is how to design a 
sparse network with a few degrees that guarantees a certain 
convergence performance. However this is a very difficult 
combinatorial problem. Therefore, an evolutionary design 
method is an effective way to design such a sparse optimal 
network. 

Initially 10 random networks with the Poisson degree 
distributions are generated and the genetic algorithm to obtain 
better networks in terms of improving the fitness function in 
(8) is used. The network is encoded as a binary adjacency 
matrix to perform the mutation and crossover. Next, the most 
suitable matrices among the parents and children matrices are 
chosen, and the others are eliminated. 

The multi-point crossover was used. After the crossover, 
each element in the matrix switches to a reverse state with a 
specific probability. In this paper, the network is an undirected 
graph, and so, if one element is reversed, the symmetry 
element is reversed at the same time. 

There is a possibility that an isolated network appears after 
crossover and mutation. In this paper, when an isolated node 
appears in a new network that the node has infinite distances to 
another node, the network is dumped. Therefore, non-isolated 
matrices can be used. After many generations have passed, an 
optimal network which minimizes the fitness function defined 
in (8) can be obtained. For dense networks with the average 
degree <k> is larger than 4, the evolutionary optimized 
networks are Ramanujan graphs. 

However for a sparse network of the average degree <k>=2, 
an evolutionary optimized network is a ring-trees type, where 
many modules networks with tree structures are combined by a 
ring network. Fig. 1 illustrates the difference of the network 
topology of an evolutionary optimized network (Fig. 1(b)) 
from a Ramanujan graph (ring network with k=2) (Fig. 1(a)). 

IV. SIMULATION RESULTS  ON CONSENSUS FORMATIONS 

In this section, simulation results on fastest and slowest 
consensus formation on an evolutionary optimized network 
and a heuristically designed network are shown. 

A. Fastest Consensus formation on a sparse network with the 

average degree <k>=2 

To examine how fast the process is for achieving consensus 
among agents in a network, the convergence speed is measured. 
In the following (9), various initial values are given to each 
node. 

   ( )    (         ) 
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   (a)     

 

    (b) 

Fig.2. Network topologies of (a) a Ramanujan graph and (b) an evolutionary 

optimized network, a ring-trees network, both with 500 nodes and 500 links 

with an average degree <k>=2. 

 

(a) 

 

(b) 

Fig.1. The convergences of the optimized network for (a) Ramanujan 

network with <k>=2 and (b) ring-trees network. 

The state of each agent (node)    (     ) in the system 
converges to a constant value. The time required for achieving 
a consensus is compared, that is, until the states asymptotically 
converge to the same internal state by way of an agreement 
characterized by the following equation: 

            

Fig. 2 shows the convergences of the optimized network. 
This means the collective dynamics converge to the average of 
the initial states of all agents. In general, the optimized network 
is faster than the Ramanujan network for <k>=2, the fastest 
among the previously network models. 

Fig. 2 (a) is from Ramanujan network and Fig. 2 (b) is from 
ring-trees network as shown in Fig. 1 with 100 nodes and 100 
links. Consensus dynamics on ring-trees network is achieved 
much faster than Ramanujan network, where the time of 
consensus is 1201 steps on ring-trees network and over 5000 
steps on Ramanujan network. On the ring-trees network, where 
agents are divided into each tree network, local consensus is 
promoted in each tree network at first. After that, the global 
consensus is formed via the ring network. It is very interesting 

that this simple mechanism makes a big difference between 
these networks on the convergence time of consensus 
dynamics. 

B. Network with the slowest consensus formation 

In this section a heuristic network for slow consensus is 
proposed. The original topology resulted from the evolutionary 
design approach. For the slowest design, the inverse of the 
eigenvalue ratio        is minimized under the constraint of 
the average degree: 

  ( )   
  

  
 (   )〈 〉 

Then the network which minimizes the fitness function in 
(11) is obtained. Then the optimal network for the slowest 
consensus is a clique-with-line network as seen in Fig. 3. 

The essence of the evolutionary optimized network is 
extracted and that lead to the following heuristic network 
design. The line network with a single clique has    nodes as 
the dense core and       nodes in the line network. There are 
   links in the clique and       links in the line network. If the 
total resource of building network is limited by   nodes and   
links, the following relationships between variants are obtained 
as, 

               , 
               , 
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Fig.3. The interconnected network with a clique and a line network 

 

(a) 

 

(b) 

Fig.4. The diagram of consensus dynamics between agents on a clique-

with-line network with 𝑁      nodes and 𝐿  5   links. The number of 

agents in a single core is 34. In this case the number 𝑖 is assigned to agent 𝑖 
initially. The plot range of time step is [0,   5] for (a) and [0, 500] for (b). 

 

Fig.5. A diagram of a symmetric dumbbell graph. Each clique is 

composed of 50 agents. The graph contains a total of 100 nodes and 

2,451 links. Since each clique is a complete graph, a Ramanujan, the 

bridging node may be chosen arbitrarily. 

             . 

When the length of line network with       nodes is given 
in addition to total nodes and total links (  and  ), the       
should meet the following condition to avoid disconnected 
network and double links between same two nodes. 

                              

Now the consensus formation on this optimal network for 
the slowest consensus formation is evaluated. The internal state 
value of each agent is plotted over time in Fig. 4(a). Consensus 
formation is very slow and it takes steps 100 times more than a 
ring-tree network in Fig. 1(b). The changes of the agent states 
at the beginning are shown in Fig. 4(b). This figure shows that 
consensus is achieved among agents in the clique first, then 
among agents on the line, and globally in the end. 

V. CONSENSUS FORMATION ON A SYMMETRIC DUMBBELL 

NETWORK 

Now consider consensus formation in a network with 
community structures. As a typical example, a ―dumbbell (or 
barbell) graph‖ with two cliques of identical network structure 
connected by a single link is used. Since the cliques used here 
are complete graphs, a Ramanujan [19], any node can be 
chosen to connect the two cliques. The bridging nodes on both 
cliques are strategically important since they are the only nodes 
that connect the two cliques. Additionally, these bridging 
nodes act as a bottleneck [20] since all nodes in the clique are 
indirectly influenced by the opposite clique only through their 
bridging node. Such model may be considered to represent two 
business teams working together for a common goal. 

A graphical image of a dumbbell graph is sown in Fig. 5. 
Each clique has 50 nodes and 1,225 links therefore 100 nodes 
and 2,451 links in total. The consensus performance is sown in 
Fig. 6. The initial values assigned to one clique is  5  and to 
the other clique is 50<. The progression of consensus in Fig. 6 
shows that consensus is formed within the clique before a 
global consensus is achieved through the bridging nodes and 
the bridging link. The time it took for consensus is 9,961 steps. 

Since the graph used in each clique is a complete graph 
where all agents are connected to the rest of the agents, the 

consensus formation is instant if the cliques were on their own 
[21]. Although the fastest consensus is achieved in both graphs 
if they are separated, the consensus becomes very slow if they 
are connected only by a few links. Therefore the consensus 

dynamics is an example to illustrate that the network dynamics 
will be affected by the local topological properties as well as 
the global properties of the network. 
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Fig.6. A consensus progression diagram for the dumbbell graph in Fig. 

5. The initial values assigned to agents in each clique are first half of 100 

to one clique and the second half of 100 to the other clique. 

VI. CONCLUSION AND EXTENDED WORKS 

Consensus and synchronization problems are associated 
with various issues, therefore, the optimal networks proposed 
prove themselves as one of the best network structures in terms 
of significance and effectiveness. Designing desirable networks 
is complex and it may pose a multi-constraint and multi-
criterion optimization problem. 

This paper presented a genetic optimization approach to 
design an optimal network for consensus formation and 
synchronization while simultaneously minimizing the 
eigenvalue ratio and the link density. The convergence speed 
of evolutionary optimized networks both for fastest 
convergence and slowest convergence for <k>=2 was 
investigated. Additionally, the priority of consensus formation 
within the network with community structures was observed. 

Evolutionary optimized networks for faster consensus is 
made of a ring and many tree structures that are connected to 
various nodes on the ring. Although Ramanujan networks are 
known to have fast consensus characteristics, the optimized 
network is neither a Ramanujan graph nor random regular 
networks in which all nodes have the same degrees. Most of 
the nodes have the same degrees but some nodes have more 
links and other nodes have less links than the majority of nodes. 
For slow consensus, a core-with-line network was obtained 
where one end of a string of nodes is a dense clique with many 
nodes. Finally, two clique graphs were connected by a single 
link and its consensus property was observed. The consensus 
dynamics of the above networks show that consensus is formed 
among agents with denser links first, then a global consensus is 
formed. This demonstrates that both local and global 
topological properties contribute to the overall behavior of the 
network dynamics. 

As for future development of this research based on the 
above results obtained, solving a network design problem of 
additional complexity by including larger number of objectives 
and constraints is an area of further investigation. The 
constraints may differ for networks in a geographic setting in 
addition to a topological layout, as in the case with real 
networks such as the internet and the brain cell network. For 
additional constraint, not only the wiring cost but also the 
maintenance of links in real distances may be used [22].  

Many networks occurring in real life have modular 
structures that are arranged in a hierarchical structure. A more 
complex consensus model can also be considered where each 
module can represent a community of various interests [23] as 
the dumbbell network, or even a module as a single agent with 
distinct parameters represented by each node, with thresholds 
for each node in order to gain consensus within the module of 
nodes. Such a setting may be used to model an individual’s 
psychology and their motivational level especially when there 
are many factors to be weighed in a decision making process. 

Still further ahead, how to design ultra-large networks with 
the optimal principle will be investigated. Optimal networks 
(network modules) are achieved by treating each module as a 
node that has the same degree distribution as the rest of the 
optimal modules. The connecting nodes of two modules are 
selected stochastically in proportion to the node positions in 

each module. The benefit of such modularization of a network 
is that the sparse connectivity between modules can prevent the 
contagion of risk spreading [24]. Observation of consensus 
dynamics and speed can reflect the robustness of large 
modularized optimal networks. 
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