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Abstract—Network virtualization allows cloud infrastructure 

providers to accommodate multiple virtual networks on a single 

physical network. However, mapping multiple virtual network 

resources to physical network components, called virtual 

network embedding (VNE), is known to be non-deterministic 

polynomial-time hard (NP-hard). Effective virtual network 

embedding increases the revenue by increasing the number of 

accepted virtual networks. In this paper, we propose virtual 

network embedding algorithm, which improves virtual network 

embedding by coarsening virtual networks. Heavy Clique 

matching technique is used to coarsen virtual networks. Then, 

the coarsened virtual networks are enhanced by using a refined 

Kernighan-Lin algorithm. The performance of the proposed 

algorithm is evaluated and compared with existing algorithms 

using extensive simulations, which show that the proposed 

algorithm improves virtual network embedding by increasing the 

acceptance ratio and the revenue. 
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I. INTRODUCTION 

In cloud computing data centers, virtualization is employed 
to accommodate multiple virtual networks (VNs) on a single 
substrate network (SN), and multiple virtual servers on a single 
physical server [1]. Consolidating multiple virtual servers from 
the same virtual network to a single physical server coarsens 
virtual network down to a few physical servers. Coarsening 
VN reduces the cost of embedding by eliminating the cost of 
embedding virtual links between virtual nodes on the same 
substrate node. Although, effective VN coarsening can 
improve the utilization of SN’s resources and increase the 
acceptance ratio of VNs and the revenue of infrastructure 
providers, most of current virtual network embedding 
algorithms do not take into account VN coarsening [2, 3, 4, 5, 
6, 7]. 

In this paper, we propose virtual network embedding 
algorithm, which coarsens virtual networks using Heavy 
Clique matching technique. Then, the coarsened virtual 
networks are enhanced by using a refined Kernighan-Lin 
algorithm. The performance of the proposed algorithm is 
evaluated and compared with existing algorithms using 
extensive simulations, which show that the proposed algorithm 

improves virtual network embedding by increasing the 
acceptance ratio and the revenue. 

The rest of this paper is organized as follows. Section 2 
gives a short overview of related work. Section 3 presents the 
VN embedding model and problem formulation. Section 4 
describes the proposed algorithm. Section 5 evaluates the 
proposed VN embedding algorithm. Finally, we conclude in 
section 6. 

II. RELATED WORK 

In the last few years, many algorithms have been proposed 
for efficient VNE. VN embedding problem is NP-hard, and 
finding optimal solution can only be found for small problem 
instances [8]. Therefore, several heuristic algorithms have been 
proposed to find a good solution [5, 6, 7, 9]. Some algorithms 
have been proposed to find exact VNE solutions to be used as 
optimal bound for the heuristic based VNE solutions [4, 10]. 

Zhu and Ammar [11] proposed two VN embedding 
algorithms. In the first algorithm, allocated substrate resources 
are fixed throughout the VN lifetime. The performance of the 
first algorithm is improved by using heuristics and adaptive 
optimization. In the second algorithm, allocated substrate 
resources are reconfigured to increase the utilization of the 
underlying substrate resources. However, the proposed 
algorithms deal only with VNRs that are previously known and 
do not deal with VNRs that dynamically arrive over time. 

In [12], Lischka and Karl proposed online VNE algorithm, 
which maps nodes and links during the same stage. The 
proposed algorithm maps VN to a sub-physical network that is 
similar to the topology of the VN and achieves previously 
defined constraints (e.g. CPU capacity, link bandwidth). 
During nodes mapping process, virtual nodes are sorted in 
descending order based on its required CPU and mapped 
sequentially to substrate nodes without allowing coexisting 
multiple virtual nodes from the same VN on one substrate 
node. To minimize the mapping cost, virtual links are mapped 
to substrate paths with minimal hops by incrementally 
increasing the maximum hop limit. However, the 
computational complexity of the proposed algorithm is high 
due to multiple operations. In [13], Di et al. improved 
performance and complexity of the proposed algorithm in [12] 
by considering the cost of mapping links during the process of 
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sorting virtual nodes and choosing the maximal hop limit. 
Fischer et al. [3] modified the algorithm proposed in [12] to 
consider energy efficiency during nodes and links mapping. 
Fischer et al. allowed mapping several virtual nodes of the 
same virtual network to the same substrate node. Although, 
they take into account the energy efficiency during 
consolidating virtual nodes, they did not consider the mapping 
cost. 

In [10], Cheng et al. proposed two-stage VN embedding 
algorithm, called RW-MaxMatch, which ranks nodes using 
topology-aware node ranking technique to reflect the 
topological structure of the VNs and the SN. However, RW-
MaxMatch algorithm maps nodes without considering its 
relation to the link mapping, which leads to high consumption 
of the underlying SN’s resources. This is due to mapping 
neighboring virtual nodes widely separated in the SN.  

In [10], Cheng et al. improved the coordination between 
nodes and links mapping in the RW-MaxMatch algorithm by 
proposing RW-BFS algorithm. RW-BFS algorithm is a 
backtracking one-stage VN embedding algorithm, which maps 
nodes and links at the same stage. In [14, 15], Zhang et al. 
proposed two VN embedding models: an integer linear 
programming model and a mixed integer-programming model. 
To solve these models, Zhang et al. proposed an enhanced 
version of the MaxMatch algorithm, called RW–PSO 
algorithm, based on particle swarm optimization. RW–PSO 
algorithm reduces the time complexity of the link mapping 
stage by using shortest path algorithm and greedy k-shortest 
paths algorithm. 

To improve the coordination between nodes mapping stage 
and links mapping stage, Chowdhury et al. [16, 17]  formulated 
the VNE problem as a mixed integer program (MIP), which is 
NP-hard. To obtain polynomial-time solvable algorithms, they 
relaxed the integer program to linear program, and proposed 
two VNE algorithms: D-ViNE (deterministic VNE algorithm) 
and R-ViNE (randomized VNE algorithm). Nogueira et al. [18] 
proposed heuristic-based VN embedding algorithm to deal 
with the heterogeneity of VNs and SN, in both links and nodes. 
The proposed algorithm is one stage VNE algorithm. 

Some of existing works proposed VN embedding 
algorithms to embed VNRs in distributed cloud computing 
environments [19, 20, 21, 22]. Houidi et al. [23] proposed 
exact and heuristics VN embedding algorithms, which split 
virtual network requests using max-flow min-cut algorithms 
and linear programming techniques. Leivadeas et al. [24] 
proposed VN embedding algorithm based on linear 
programming.  

The proposed algorithm partitions VNRs using partitioning 
approach based on Iterated Local Search. Houidi et al. [25] 
proposed distributed VN embedding algorithm, which is 
performed by agent-based substrate nodes. The authors 
proposed VN embedding protocol to allow communication 
between the agent-based substrate nodes. However, the 
proposed algorithm deals only with the offline VN embedding 
problem. 

III. VIRTUAL NETWORK EMBEDDING MODEL AND 

PROBLEM FORMULATION 

Substrate network (SN): We model the substrate network as 
a weighted undirected graph    (     ), where    is the set 
of substrate nodes and    is the set of substrate links. Each 
substrate node       is weighted by the CPU capacity, and 
each substrate link       is weighted by the bandwidth 
capacity. Fig. 1(b) shows a simple SN example, where the 
available CPU resources are represented by numbers in 
rectangles and the available bandwidths are represented by 
numbers over the links. 

Virtual network (VN): virtual network     is modeled as a 

weighted undirected graph    
 (   

    
), where    

 is the 

set of virtual nodes and    
 is the set of virtual links. Virtual 

nodes and virtual links are weighted by the required CPU and 
bandwidth, respectively. Fig. 1(a) shows an example of VN 
with required CPU and bandwidth. 

Virtual network requests (VNR): the     VN request       
in the set of all VN requests     is modeled as (   

    
    ), 

where    
 is the required VN to be embedded,    

 is the arrival 

time, and     is the lifetime. When      arrives, substrate 

nodes’ CPU and substrate links’ bandwidth are allocated to 
achieve the     . If the substrate network does not have 
enough resources to achieve     ,      is rejected. At the end 
of      lifetime, all allocated resources to      are released. 

Virtual Network Embedding (VNE): embedding     on SN 

is defined as a map       
 (  

    
 ) , where   

    , and 

  
     , where    is the set of all loop free substrate paths in 

  . Embedding     can be decomposed into node and link 
mapping as follows: 

Node mapping:       
   

  

Link mapping:       
   

  

For example, mapping of the VN in Fig. 1(a) on SN in Fig. 
1(b) can be decomposed into: 

Node mapping: *           + 

Link mapping: {(   )  *(   )+ (   )  
*(   ) (   )+ (   )  *(   )+} 

Virtual Network Embedding Revenue: as in [8, 10, 14], the 
revenue of embedding      at time   is defined as the sum of 
all required substrate CPU and substrate bandwidth by      at 
time  . 

 (       )      (      ) (∑    (   
)   

    
 

 ∑   (   
)       
)  

Where    (   
)  is the required CPU for the virtual 

node     
,   (   

)  is the required bandwidth for the virtual 

link     
, and     (      )    if      is in its lifetime and 

substrate resources are allocated to it, otherwise     (   
  )  

 . 
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Fig. 1. Example 1 of VNE 

Virtual Network Embedding Cost: as in [8, 10, 14], the cost 
of embedding      at time   is defined as the sum of all 
allocated substrate CPU and substrate bandwidth to      at 
time  . 

    (       )      (      ) (∑    (   
)   

    
 

 ∑   (   
)       
       (    

(   
)))          (1) 

Where       (    
(   

))  is the length of the substrate 

path that the virtual link    
 is mapped to. 

Objectives: the main objectives are to increase the revenue 
and decrease the cost of embedding virtual networks in the 
long run. To evaluate the achievement of these objectives, we 
use the following metrics: 

- The long-term average revenue, which is defined by 

      (
∑ ∑   (       )

 
   

 
   

 
)              (2)              

Where        , and   is the total time. 

- The VNR acceptance ratio, which is defined by    

‖    ‖

‖   ‖
                              (3) 

Where      is the set of all accepted virtual network 

requests. 

- The long term R/Cost ratio, which is defined by  

      (
∑ ∑   (       )

 
   

 
   

∑ ∑      (       )
 
   

 
   

)                                (4) 

IV. THE PROPOSED ALGORITHM 

In this section, we describe the motivation behind the 
proposed algorithm and describe the details of the proposed 
algorithm, which is called HCM-VNE algorithm. 

A. Motivation 

VN embedding cost (defined by equation 1) depends on 
allocated substrate CPU and allocated substrate bandwidth. VN 
embedding cost can be reduced by minimizing these resources. 
However, minimizing allocated substrate CPU may violate 
service level agreement and reduce the quality of the service 
provided to the customers. Allocated substrate bandwidth can 
be reduced by increasing the number of virtual links between 
virtual nodes that are mapped to the same substrate node. VN 
embedding cost is reduced by eliminating the cost of 
embedding such virtual links. However, finding VN 
embedding solution with maximum number of eliminated 
virtual links is not easy task. For example, to map VN in Fig. 
2(a) to SN in Fig. 2(b), Fig. 2 shows the mapping solution with 
the maximum number of eliminated virtual links among other 
solutions. This solution can be reached by finding sub-VNs 
that are close to be clique and map each sub-VN to one 
substrate node. This example motivates us to propose HCM-
VNE algorithm, which coarsens VNs using heavy clique 
matching technique before mapping it. 

B. The HCM-VNE algorithm 

Algorithm 1 shows the steps of the proposed HCM-VNE 
algorithm. In line 1,       , which is the upper bound of the 
coarsened node CPU, is set to the maximum available CPU in 
SN. In line 2, the upper bound of the total coarsened node 
bandwidth,      , is set to the maximum available bandwidth 
in SN. VNs are coarsened using           () function and 
coarsened VNs are optimized using         ()  function. 
          ()  function and         ()  function will be 
described later on. The HCM-VNE algorithm constructs 
breadth-first searching tree for the graph of the coarsened VN. 
The root node of the constructed tree is the coarsened virtual 
node with the largest resources (sum of CPU and BW). Nodes 
in each level in the created breadth-first searching tree are 
sorted in descending order based on their resources. Finally, in 
line 8, the HCM-VNE algorithm embeds coarsened VN on SN 
using Embed() function. 

 

Fig. 2. Example 2 of VNE 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 1, 2015 

128 | P a g e  

www.ijacsa.thesai.org 

ALGORITHM 1: The details of the HCM-VNE algorithm 

INPUTS: 

   (     ): VN to be embed 

   (     ): SN to embed on 

        : maximum allowed substrate path length 

             : upper bound of nodes re-mapping operation 

OUTPUTS: 

 (  ): map VN nodes and links to SN’s resources 

     : VN embedding success flag 

Begin 

1:                 
(   (  )) 

2:                
(∑   (  )     

  )   

        
                                      

   

3:               (               ) 

4:             (               ) 

5: Build breadth-first searching tree of    from coarsened virtual node with 

largest resources.  

6: Sort all nodes in each level in the created breadth-first tree in descending 

order according to their required resources. 

7: backtrack_count=0 

8: if      (             (  )) then 

9:                  

10:      return  

11: else 

12:                  

13:     return  

14: end if 

End 

C. Coarsening() function 

Virtual networks are coarsened using heavy clique 
matching technique. A clique in undirected graph is a fully 
connected subgraph. The cost of embedding VNs is reduced by 
embedding each sub-VN that is close to clique on one substrate 
node. 

To determine how close sub-VN   
  (  

   
 
 ) is to a 

clique, we define link density         ( 
 
 ) as 

        ( 
 
 )   ‖   ‖ (‖ 

 
 ‖(‖ 

 
 ‖   )) 

If the sub-VN   
  is clique (or fully connected), the number of 

edges is equal to (‖  
 ‖(‖ 

 
 ‖   ))   and the link density 

        ( 
 
 ) goes to one.         ( 

 
 ) is small if the sub-VN 

  
  is far from being clique. 

Algorithm 2 shows the details of the Coarsening() function. 
Coarsening process is iterative and starts with an initial 
coarsening graph    (     ) , which is created and 
initialized by creating coarsened node for each virtual node and 
coarsened link for each virtual link. Each coarsened node 

   
    can be considered as a sub-VN    

 (   
    

) , 

where    
      (at this time each    

contains only one 

virtual node), and    
    , such that each virtual link 

   
    

 connects two virtual nodes in    
. Each coarsened 

link        between two coarsened nodes is a set of virtual 

links connect virtual nodes in these coarsened nodes. Each 
virtual node exists in exactly one coarsened node, and each 
virtual link exists in exactly one coarsened node or one 
coarsened link. For example, VN in Fig. 2(a) can be coarsened 
as in Fig. 3. 

 

Fig. 3. Coarser VN for the VN in Fig. 2(a) 

The graph of the coarsened VN in Fig. 3 is 

   ({   
    

}  {   }), where 

    (*     +  *(   ) (   ) (   )+),   

   
 (*     +  *(   ) (   ) (   )+), and 

    *(   )+  

In Coarsening() function, coarsened nodes are visited in a 
sequential way, and each unmatched coarsened node    

 is 

matched with its unmatched neighbor    
 such that the new 

coarsened node created by combining    
 and    

 achieves the 

CPU and BW constraints and its          is the largest among 

all possible coarsened nodes created by combining    
 with 

other unmatched neighbors. If such neighbor exists, we add 
coarsened node    

 with its neighbor    
 to the matching list 

      {(   
    

)      
    

           
    

           } . 

At the end of each iteration, coarser graph    is updated by 
combining each pair in       to a new coarsened node. If       
is empty the Coarsening() function terminates. 

D. Optimize() function 

Coarsening() function coarsens VN in Fig. 2(a) as in Fig. 3. 
However, Coarsening() function combines coarsened nodes 
only based on link density and does not consider the required 
bandwidth for each virtual link, which sometimes increases the 
cost of VN embedding. For example, if the virtual link (a, d) in 
Fig. 3 has bandwidth equal to 50, coarser VN can be improved 
by moving the virtual node a from the coarsened node    

 to 

the coarsened node    . Fig. 4 shows the optimized coarsened 

VN. 

To optimize coarsened VN, we used a refined Kernighan-
Lin (KL) algorithm. In 1970, Kernighan-Lin (KL) algorithm 
was proposed by Kernighan and Lin for graph partitioning 
problem. Kernighan-Lin (KL) algorithm partitions graph into 
two parts with equal sizes and with minimal number of cutting 
edges. It starts with an initial bipartition of the graph and 
searches for two subsets of vertices from each part of the 
graph, such that they have the same number of vertices and 
swapping them improves the cost of the partition. Kernighan-
Lin algorithm swaps the selected subsets and repeats the entire 
process until no such subsets found [26]. However, standard 
Kernighan-Lin algorithm deals only with typical graph 
partitioning problem, so it is not directly applicable to optimize 
coarsened VNs, which may be partitioned to more than two 
partitions with different sizes. 
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ALGORITHM 2: The details of the           () function 

INPUTS: 

  : VN graph to be coarsened 

      : the upper bound of the coarsened node CPU  

     : the upper bound of the total coarsened node BW  

OUTPUTS: 

  : coarsened VN graph 

Begin 

1: Create and initialize coarsening graph    (     )   

2: Create new matching list        

3: while(true) 

4:   for each unmatched coarsened node    
    

5:       Find unmatched neighbor     
                

   (   
    

)         ,  

  (    
    

)        , and 

        (    
    

)         
   

 
(        (    

    ))  

        
                                             

  

6:       Add (   
    

) to        

7:   end for 

8:    if             then 

9:         break 

10:    else  

11:        Update    by combining each pair in         

12:             

13:    end if 

14: end while 

End 

 

Fig. 4. Optimized coarser VN for the coarser VN in Fig. 3 

To optimize coarsened VN, we redefined Kernighan-Lin 
(KL) algorithm as shown in algorithm 4. Optimize() function 
starts with the partition performed by the Coarsening() 
function and moves boundary virtual nodes between coarsened 
nodes to improve edge-cut, such that this movement does not 
violate the CPU and BW constraints. Virtual node is called 
boundary node, if it is connected to virtual nodes outside its 
coarsened node. For example, in Fig. 3, virtual node a is a 
boundary virtual node for the coarsened node    , because it 

has virtual link to the virtual node d, which is not in the 
coarsened node    . 

If moving the selected boundary virtual node to the target 
coarsened node violates the CPU or BW constraints, we try to 
find one or more boundary nodes in the target coarsened node 
to be swapped with the selected boundary virtual node. If no 
such boundary virtual nodes found, we postpone this 
movement and recheck it again in the next iteration. The whole 
process is repeated until no movements are performed. 

ALGORITHM 3: The details of the         () function  

INPUTS: 

   (     ): coarsened VN to be optimized 

      : upper bound of the coarsened node CPU  

     : upper bound of the Total coarsened node BW  

OUTPUTS: 

  : optimized coarsened VN 

Begin 

1: Terminate=false 

2: while (NOT Terminate) 

3:    Terminate=true 

4:    for each    
    

5:         for each boundary virtual node       
 

6:              if      
              ∑   (  )     

  ∑   (  )     
    

where  

  
  is the set of all virtual links between    and virtual nodes in    

, 

and 

  
   is the set of all virtual links between    and virtual nodes in    

 

7:              then 

8:                 if moving    from    
  to    

 does not violate CPU and BW 

constraints. 

9:                 then  

10:                    Move     from    
  to    

    

11:                    Terminate=false 

12:                 else 

13:                    Find set of boundary virtual nodes   
  in the coarsened node 

   
, such that swapping    and   

  improves bandwidth and 

does not violate CPU and BW constraints. 

14:                    if such node found swap them 

15:                         Terminate=false 

16:                    end if 

17:                 end if 

18:              end if 

19:         end for 

20:    end for 

21: end while 

End 

E. Embed() function 

The Embed() function embeds coarsened VN on SN as 
described in algorithm 4. In the Embed() function, candidate 
substrate node list for each coarsened virtual node is built by 
collecting all substrate nodes that have available CPU capacity 
at least as large as the coarsened virtual node CPU and have a 
loop free substrate path to each substrate node contains one of 
the previously mapped neighbors. Each substrate path should 
satisfy the constraint of the maximum substrate path length, 
and have available bandwidth greater than or equal the 
bandwidth of the coarsened virtual link between the coarsened 
virtual node and its previously mapped neighbor. 

Candidate substrate nodes for each coarsened virtual node 
are collected by creating a breadth-first search tree from each 
substrate node contains one of the previously mapped 
neighbors, and finding the common substrate nodes between 
the created trees. In the constructed trees, substrate nodes 
should satisfy the CPU constraints for coarsened virtual node, 
and substrate paths should satisfy the connectivity constraints 
to connect the coarsened virtual node with its neighbors. By 
this way, all candidate substrate nodes in the candidate 
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substrate node list satisfy all constraints (CPU and connectivity 
constraints). 

Substrate nodes in the candidate substrate node list are 
sorted in ascending order according to the total cost of 
embedding coarsened virtual links from the coarsened virtual 
node to all previously embedded neighbors. If the coarsened 
virtual node is a root node, the candidate substrate node list is a 
set of all substrate nodes that have enough resources to embed 
the coarsened virtual node. The candidate substrate nodes for 
the root are sorted in descending order according to the total 
available resources. 

Coarsened virtual node is sequentially mapped to substrate 
nodes in its candidate substrate node list. If there is no 
appropriate substrate node in its candidate substrate node list, 
we backtrack to the previously mapped node, re-map it to the 
next candidate substrate node, and continue to the next node. In 
line 3, mappings of the coarsened virtual node and its 
coarsened virtual links are added to  (  )  by using the 
function Add(). To map coarsened node    

 to substrate node 

  , the function Add() adds maps from each virtual node in    
 

to the substrate node   . All virtual links in the coarsened node 

   
 are mapped to substrate paths with length zero from the 

substrate node    to itself. For each coarsened link from    
 to 

one of the previously mapped coarsened nodes, the function 
Add() adds maps for all virtual links in these coarsened links. 
Virtual links are mapped to shortest loop free substrate paths, 
which are specified by breadth-first search manner. In line 6, 
Delete() function is used to perform the backtracking process. 

ALGORITHM 4: The details of      () Function  

INPUTS: 

   
: current coarsened virtual node to be embedded 

  : substrate network to embed on 

  (  ): map of the previously mapped nodes and links 

OUTPUTS: 

 (  ): updated map  

     : VN embedding success flag 

Begin 

1: Build candidate substrate node list    for    
 

2: for each    in    

3:       Add ((   
    )   (  ))       

4:        if Embed(     
     

   (  )) then return true 

5:          else 

6: Delete((   
    )   (  ))       

7:         end if 

8: if backtrack_count > Max_backtrack then return false 

9: end for 

10: backtrack_count ++ 

11: return false 

End 

V. PERFORMANCE EVALUATION 

We evaluated the proposed HCM-VNE algorithm by 
comparing its performance with some of existing algorithms. 

First, we implemented three algorithms: HCM-VNE, RW-
MaxMatch [15], and RW-BFS [10]. Second, we generated SN 
topology and 3000 VN topologies to be used as inputs to the 
implemented algorithms. Finally, we compared the results from 
the implemented algorithms. In the following sub-sections, we 
describe the evaluation environment settings and discuss the 
results of the simulations. 

A. Evaluation environment settings 

In our evaluation, the substrate network topology is 
configured to have 200 nodes with 1000 links. Substrate 
network is generated using Waxman generator. Bandwidths of 
the substrate links are real numbers uniformly distributed 
between 50 and 100 with average 75. We have selected two 
server configurations:  HP ProLiant ML110 G4 (Intel Xeon 
3040, 2 cores X 1860 MHz, 4 GB), and HP ProLiant ML110 
G5 (Intel Xeon 3075, 2 cores X 2660 MHz, 4 GB). Each 
substrate node is randomly assigned one of these server 
configurations. 

Virtual network topologies are generated using Waxman 
generator with average connectivity 50%. Number of virtual 
nodes in each VN is variant from 2 to 20. Each virtual node is 
randomly assigned one of the following CPU: 2500 MIPS, 
2000 MIPS, 1000 MIPS, and 500 MIPS, which are correspond 
to the CPU of Amazon EC2 instance types. Bandwidths of the 
virtual links are real numbers uniformly distributed between 1 
and 50. VN’s arrival times are generated randomly with arrival 
rate 10 VNs per 100 time units. The lifetimes of the VNRs are 
generated randomly between 300 and 700 time units with 
average 500 time units. 3000 VN topologies are generated and 
stored in brite format. For each algorithm, we run the 
simulation for 30000 time units with the previously generated 
VNRs

1
. For all algorithms, we set the maximum allowed hops 

(Max_hops) to 2, and the upper bound of remapping process 
(Max_backtrack) to 3n, where n is the number of nodes in each 
VNR. 

B. Evaluation results 

Three metrics have been used to evaluate the performance 
of the proposed algorithms: the long-term average revenue, 
which is defined by Equation (2), the VNR acceptance ratio, 
which is defined by Equation (3), and the long-term R/Cost 
ratio, which is defined by Equation (4). Fig. 5 shows the 
simulation results using the VNR acceptance ratio to compare 
the different VNE algorithms. It can be seen that the proposed 
algorithm that coarsened VNs using heavy clique matching 
increases the acceptance ratio compared with other algorithms. 
For example, at time unit 30000, in Fig. 5, the VNR acceptance 
ratio for the RW-BFS and RW-MaxMatch are 20 and 16 
percent, while the VNR acceptance ratio for the HCM-VNE is 
53 percent. In other words, the proposed algorithm can embed 
more VNs on the same SN at the same time. Consequently, the 
proposed algorithm increases the long-term average revenue 
compared with other algorithms, as shown in figure 6. 

1The generated SN topology, generated VNRs topologies, and outputs are 

available online at (https://drive.google.com/folderview?id=0BxEBmTQ 

0WG5RcnBYLVZhdW42bjg&usp=drive_web) 
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Fig. 5. The VNR acceptance ratio comparison 

 

Fig. 6. The long-term average revenue comparison 

 

Fig. 7. The long-term Revenue/Cost ratio comparison 

For example, at time unit 30000, the average revenue for 
the RW-BFS and RW-MaxMatch are 72 and 33, while the 
average revenue for the HCM-VNE is 240. As shown in Fig. 7, 
the long-term Revenue/Cost ratio of all algorithms are nearly 
the same, but the proposed algorithm performs slightly better 
than other algorithms. 

VI. CONCLUTION 

In this paper, we proposed virtual network embedding 
algorithm, which coarsens virtual networks using heavy clique 
matching and optimizes the coarser virtual networks by 
applying a refined Kernighan-Lin (KL) algorithm. The 
proposed algorithm coarsens sub-virtual networks that are 
close to clique and embeds each sub-virtual network to 
substrate node. The cost of embedding virtual networks is 
reduced by eliminating the cost of embedding virtual links 
between virtual nodes on the same substrate node. Performance 

of the proposed algorithm has been evaluated and compared 
with some of the existing algorithms using extensive 
simulations. Extensive simulation experiments show that the 
proposed algorithm increases the acceptance ratio and the 
revenue. For the future work, we plan to investigate other 
coarsening techniques (e.g. Random Matching and Light Edge 
Matching) to find the best coursing technique, which increases 
the acceptance ratio and the revenue while decreasing the 
embedding cost. 
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