
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

140 | P a g e

www.ijacsa.thesai.org

Android Platform Malware Analysis

Rubayyi Alghamdi

Information Systems Security

CIISE, Concordia University

Montreal, Quebec, Canada

Khalid Alfalqi

Information Systems Security

CIISE, Concordia University

Montreal, Quebec, Canada

Mofareh Waqdan

Information Systems Security

CIISE, Concordia University

Montreal, Quebec, Canada

Abstract—Mobile devices have evolved from simple

devices, which are used for a phone call and SMS messages

to smartphone devices that can run third party applications.

Nowadays, mal ic ious software, which is also known as

malware, imposes a larger threat to these mobile devices.

Recently, many news items were posted about the increase of

the Android malware. There were a lot of Android

applications pulled from the Android Market because they

contained malware. The vulnerabilities of those Applications

or Android operating systems are being exploited by the

attackers who got the capability of penetrating into the mobile

systems without user authorization causing compromise the

confidentiality, integrity and availability of the applications and

the user. This paper, it gave an update to the work done in the

project.

Moreover, this paper focuses on the Android Operating

System and aim to detect existing Android malware. It has a

dataset that contained 104 malware samples. This Paper chooses

several malware from the dataset and attempting to analyze them

to understand their installation methods and activation. In

addition, it evaluates the most popular existing anti-virus

software to see if these 104 malware could be detected.

Keywords—Smartphone Security; Malware Analysis;

Android Malware; Static Analysis; Dynamic Analysis; SDK;

VAD

I. INTRODUCTION

Several years ago, smartphone and tablet have become
more common. They provide services such as social
networking, banking, etc. Also, they are equipped with many
features like Wi-Fi and GPS, make video calls and many more
things. With all these features, there also comes a need for
security for the mobile phones. This paper is focusing on the
Android Operating System.

Android, which is open source operating system, will be
more popular. Currently there are over 50 mobile phone
companies are manufacturing smartphones with Android
operating system. Increasing the number of the Android
devices causes concern in term of user security. McAfee Labs
report showed that in the first quarter in 2012, there is a large
increase in mobile malware, and the increase was targeted
almost only at the Android platform [1]. Figure 1 shows that
there were 10 billion application downloaded by the end of the
2011. These rapid increases in applications download make
Android to be the most targets for malware.

Fig. 1. Android Market Growth

In this paper, we are learning how a malware can target the
Android phones and how it could be installed and activated in
the device by performing a malware analysis using static
and dynamic tools to understand the malware operations and
functionalities. To achieve these tasks it is required to
understand the Android architecture and its security model.

The rest of this report provide a description of the project
and is organized as follows: Section II presents an overview of
Android architecture Section III describe Android security
model. After that, Section IV describes Android
application Section V describes malware analysis followed
by analysis result in Section VI. Section VII shows the
detection results with four mobile anti-virus software. Section
VIII discusses one way for future improvement. Lastly, it
concludes the paper in Section IX.

Fig. 2. Android Architecture [3]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

141 | P a g e

www.ijacsa.thesai.org

II. OVERVIEW OF ANDROID ARCHITECTURE

Android is open source software for mobile
development developed by Google. The Android architecture
as shown Figure2 can be divided into five layers. The first
layer from the bottom is the kernel, which is based on the
Linux 2.6 kernel. It is used as hardware abstraction layer. The
reason Google are using Linux is because it provides memory
management, process management, security model,
networking, a lot of core operating system infrastructure that
are robust and have been proven over time. The next level
up is a native or basic library, which is written in C and C++.
The next level is the Android runtime. The main component
in the Android runtime is the Dalvik virtual machine. It was
designed specifically for Android to meet the need of
running in an embedded environment where you have
limited battery, limited memory, limited CPU. The
Dalvik virtual machine runs something called DEX files.
Those files are bytes codes that are results of converting at
java .classes and .jar files. Those files when are converted to
.dex files become much more efficient bytes code that can run
very well on small processors. They use memory very
efficiency. The next level up from that are the core libraries.
They are written in java programming language. It contains all
of the collection classes, utilities, I/O, etc. The upper level is
the application framework. This is also writing in java
programming language. It provides abstractions of the
underlying native libraries and Dalvik capabilities to
application. Each Android applications run on its Dalvik
virtual machine [4].

III. ANDROID SECURITY MODLE

The whole idea behind mobile platform is the fact that the
user can run a lot and a lot of different applications on the
device. The user might be installing and downloading a
banking application that can be doing some sensitive data.
On other hand, the user might be installing a game application
right next to previous application and running on the same
device. The user obviously does not want the game
application to be able to access the sensitive data that
banking application is operation on. So to achieve this
Android platform makes sure that any application is isolated
from each other. Basically when the user download and install
an application, it will be given a unique UID. In addition, each
application will run on separate process on separate virtual
machine. Therefore, application cannot read other
application private data [4].

As it was mentioned on Section II, Android was built on
the top of the Linux, so the Linux file permission are applied.
Permission allows the user to protect his/her sensitive data that
are stored on the device. Also, it protects access to content
provider, which basically is a database in the device.
Permissions are requested by an application at install time and
they are granted or denied once at the install time which
requires the user approval [4].

IV. ANDROID APPLICATION

Android application has an extension file .apk which is
stand for Android package. It is basically an archive file
contains all the necessary files and folder in an application.

Each application is divided to four main components namely
Activities, Service, Broadcast Receivers and Content provider
[4].

 Activity is essentially just a piece of User Interface
(UI). So any visual screens that allow user to see
and interact with in an Android a p p l i c a t i o n . It
can consist of views such as Button View, Text
view Table view, etc.

 Intent Recivier which is a way for which an
a p p l i ca t i o n to register some code that will not be
running until it’s triggered by some external event.
Developer can write some code through XML and
register it to be running when something happens,
e.g. network connectivity is established at a certain
time, or when the phone is ring.

 Service is a task that does not have any user

interfaces. It is a component running in the
background. For example, when lunching a music
player application, the first screen is an activity.
But as soon as selecting a song to play and move to
other application, the service keeps running in the
background.

 Contant Provider is data storage, which allows the
applications to share the data with other application.

Each application contains a manifest file named
Androidmanifest.xml. This file declares applications
components, specifies the application requirements, and
contains the permissions. These permissions will be shown to
the user, when he would be installing the application. Figure
3 is an example of the Androidmanifestfile.xml.

Fig. 3. Example of Androidmanifest.xml

In the above example, it is clear that the application is
trying to access the Send SMS feature of the phone, which is
stated as the permission Android.permission.SEND_SMS.

The Android Manifest file also helps a user in
determining whether an application is a legitimate one or it is
a malicious one. For example, a game application does not
need permissions such as SEND_SMSM,
READ_CONTACTS. In this case, It should be known that if
the application is a legitimate or not.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

142 | P a g e

www.ijacsa.thesai.org

A. MALWARE INFECTION METHODS

There are several methods that the Android devices could
be infected with malware. The following are four different
methods which malware can be installed on the phone [1,11]:

1) Repackaging legitimate application
This is one of the most common methods used by the

attackers. They may locate and download legitimate popular
application from the market, disassemble it, add malicious
code and then re-assemble and submit the new apps to the
official or alternative Android market. Users could be
vulnerable by being enticed to download and install these
infected applications. It was found that 86.0% repackaged
legitimate application including malicious payloads after
analyzing more than 1,200 Android malware samples [1].

2) Exploiting Android’s application bug
There could be a bug in the application itself. The

attacker may use this vulnerability to compromise the phone
and install the malware on the device.

3) Fake applications
It was also discovered that there are fake applications

created to include malware which allows attacker to
access your mobile device. Attackers upload on the
market fake applications that seems are legitimate to users
but they are malware by themselves. For example, Spyeye’s
fake security tool was found in the market which is a malware.

4) Remote Install
The malware could be installed in the user phone

remotely. If the attacker could compromise users’ credentials
and pass them in the market, then in this case, the
malware will be installed into the device without the
user knowledge. This application will contain malicious
codes that allow attacker to access personal data such as
contacts list [1].

V. MALWARE ANALYSIS

Malware is a piece of code that is executed on the target
machine like viruses, Trojans or worms. Sometime it is
difficult to stop them since they use new signature, which
prevents it from being detected.

Reverse Engineering process is used to analyze the
Android Malware. It is a process that decompiling an
application to understand its working and functionality by
analyzing the codes and debugging it. Before explain the
analysis, it is very important to understand how an APK
(Android package) is made before reversing it. Figure 4 shows
the process of building and reversing APK file.

Once the application is downloaded in the phone from
Google Market, the file .apk is available . So, first of all, the
file should be de- packaging by using command such as
“unzip. Then, the following files and folders will be found
[13,14]:

 Meta-‐inf Folder: this folder consists of
information that allows users to make sure of
the security of the system and integrity of the
APK application.

 Res Folder: this folder contains XMLs defining
the layout, attributes, languages, etc.

 Classes.dex: this file contains the entire Java
source code that is compiled. This file is run on
the Dalvik Machine. This file consists of the c
omplete bytecode bthat the Dalvik Machin will int
erpret.

 AndroidMainifest.xml File: this file is one of
the most important XML file which contains
information about the permissions that the
application needs or accesses. In other words this
file contains the Meta information concerning the
application.

 Resources.arsc: this file is binary resource file
that is obtained after compilation.

Here at this point, the focus will be on the classes.dex file,
which is the compiled java classes and contains all the
codes of the application. Then, decompiling the classes.dex
file into readable code (Java files) using several tools such as
JAd tool.

Fig. 4. Reverse APK file

The following sections describe the types of the malware
analysis and the tools, which are used to perform a complete
analysis.

A. Types of Malware Analysis

1) Dynamic Analysis
Dynamic analysis sometime is also called behavioral

analysis, which is used to analyze and study the behavior of
malware. Then studying how the malware interact with
the system, services added, data capture, network connection
made, open port and etc [11].

2) Static Analysis
Static analysis is called code analysis, which is used to

analyze the code of the malicious software. The main purpose
is to know the exact malicious code, which is embedded in the
actual code [11].

B. Tools of Malware Analysis

Several tools were selected for both static and dynamic
analysis. In this project, we use two methods to analysis the
malware code. The first method involves the utilization of
APKTOOL and editor such as Nodepad++. The second
method is performed using tools Dex2Jar and JD-GUI. The
following is a list of tools used for reverse engineering
Android malware [11,12]:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

143 | P a g e

www.ijacsa.thesai.org

1) Create an isolation environment test
In this project, the VMware workstation 8 was used for the

testing. Also, Linux back track 5 r2 on three laptops and
Windows 7 in other laptop.

2) Apk Tool
This tool is used to analyze Android application binaries. It

has a capability of disassembling applications to practically
original form and repackaging them after certain modification.
It also is used to debug the smali code [6].

3) Dex2Jar
Dex2Jar tool was developed and used in order to convert

.dex file (Dalvik Virtual machine format) to .class format. It
helps to view the source code of an application as a Java code
[7].

4) Android SDK
The Android Software Development Kit (SDK) is a

collection of development tools that are used to create
applications. There are several components are included on
the SDK such as debugger, an emulator, sample source code,
libraries and etc. [5].

5) JD-GUI
This tool is a java decompile that allows a user to view

Java Source Codes of .class files. It shows log files and
enables user to browse the hierarchy of the class files [8].

6) DroidBox
DroidBox is a dynamic analysis tool of Android

applications. It is capable to identify information leaks of
content, SMS data IMEI, GPS coordinates, and installed
application, phone number and operation file [9].

C. Experimental

As mentioned earlier, there is a rapid growth of Android
malware since 2011. In this section, we are explaining the
basics of Android applications and showing the way to
analyze them. Also, three different applications were chosen
that were discovered back in 2010-2011. These sample
applications can be downloaded from [10].

1) Android.FakePlayer
By start analyzing the first Android malware that was

discovered in 2010 named Android.FakePlayer. It is a Trojan
which sends SMS messages to certain numbers. It is
distributed as an .apk file named “RU.apk". It pretends to be a
movie player but does not actually play movies. This malware
requires that the user install it on the device. To download the
application sample it can be found here [10].

The file called RU.apk was found. It is a zip file that can
be extracted using zip command. After extraction, several
files were found. The most important file is
AndroidManifest.xml. This is the metadata file that contains
the information about the main class of the application as
well as other information like permissions. Also, the file
classes.dex was found which contains the actual
compiled code on the dex file format.

The analysis starts by reading the AndroidManifest.xml
file since it contains information about the main entry

points of the application as well as other useful information
like permission and services used by the application. They
can give a general overview of what the application is doing.

The Android Manifest.xml inside the APK file is a binary
XML file. The aapt tool was used to convert this format to a
common XML format. After reviewing the file, it was obvious
that the application is requesting the
Android.permission.SEND_SMS that allows the application to
send SMS messages.

It was noticed also that the activity that is launched when
the application is executed is
org.me.Androidapplication1.MoviePlayer. These are the
entry points of the application. Since this is a movie player
application, we know that the application does not need the
send SMS massages.

Then, a disassembling Dex file was done by using Dex2Jar
tool to get the readable original code to examine what the code
is actually doing. We checked and reviewed the decompiled
code of rg.me.Androidapplication1.MoviePlayer, which is the
activity that will be lunched first as seen in the
AndroidManifest file. We also noticed that it contains a
method named onCreate that on Android is called when
the activity is starting. The code has several calls to
Android.telephony. SmsManager.sendText Message (String
destinationAddress, Strings cAddress, String text,
PendingIntent sentIntent, PendingIntent deliveryIntent). So
it was understood that the first time the application runs, it
tries to send a numeric SMS text message to (3353, 3354)
[11,12].

Fig. 5. Android.FakePlayer

To perform dynamic analysis of this malware, we install
the application on Android 2,2. As shown in the figure 5, we
have a new icon and application called Movie Player. When
clicking on this application in our emulator, there is
nothing happen. However, we know from our static analysis
that after activating this application it will try to send out the
SMS message.

2) Android.NickiSpy
The second malware that was analyzed is called Android

Nickispy. It is a Trojan horse that steals information from
Android devices and sends it to the remote server. It gets
activated as soon as device finishes its boot. The package
name of this malware is called "com.nicky.lyyws.xmall".

After finishing analyzing the manifest file of this
application, it was found that this malware requests a lot of
permissions which some of them are related to the
conversation recording capabilities (Figure 6) [8, 9].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

144 | P a g e

www.ijacsa.thesai.org

Fig. 6. NickiSpy Permissions

Also, It was noticed that there is a receiver declared in the
Android Manifest file. The malware uses it to start the
function after the device is booted. In addition, we found
that there are many services declared to be run in the
background. After the device boots and the malware
activated, we found a list of service in the “running service”.

Fig. 7. NickiSpy Services

Those services are running in the background without the
user noticing they exist. We craft all the entry point from the
manifest file and then we began reviewing the Java code. We
found in onCreate() method that the record service is been
activated.

Also, it coded that after the malware is installed on the
device, it creates a XML file names XM_ALL_setting in the
shared preference file.

These file will contain all setting configuration of the
remote server to let the device to send the information to the
server. Also, we noticed that the address of the remote server
is hard coded in the code. It also can be founded in the
XM_ALL_setting file.

The following code was written which contains the send
function which is used to send the information to remote
server.

Fig. 8. Send Method in NickiSpy

Later, we performed a dynamic analysis of this malware.
After installing the application on Android 2, 2. We made a
phone call between two emulators; the emulator which has
Nickispy is installed on it records the conversation and save
it in the SDcard under directories named
“shangzhou/callrecord” [11,12].

Fig. 9. Conversation Recording

The following code show that the malware sends SMS
with the IMEI of the device to number ‘15859268161‘

Fig. 10. Code in Nickispy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

145 | P a g e

www.ijacsa.thesai.org

The malware records other information other than the
phone calls content. It also records GPS location and
information and SMSs (received and sent).

3) Android. Seesmic Application
The purpose of the analysis to reverse the Seesmic

application which is one of the most popular application in
Google Market that allows a user to manage all the social
networks . We aims to alter it by adding activities and more
permission in the Android Manifest file and then recompile it
and let it work on the phone. An attacker uses this process
when to he downloads a legitimate application from the
market and then embedded his/her malicious code.

We used Android 2.2 emulator and installed the Seesmic
application. The application has the following permissions:

 Access to the SD card

 Access to the GPS location

 Full Internet Access and

 Access to phone calls

It is possible to add more permission for this application in
order to access to private data such as browser history, SMS
and so on. We used the apktool to reverse the Seesmic.apk
file. The apktool generated a folder containing the
AndroidManifest file and we modified the file by altering
the version Name to be 1.6 and adding an activity which
display a logo when the application is started and finally,
adding more permissions to send and receive an SMS. Now
that the Manifest file is altered. Then, we used the apktool to
recompile the modified application. If the command executed
successfully, a new folder named dist will be created which
contain a file .apk. We renamed the file to Seesmic1-6.apk and
signed the application using a self-signed certificate which is
generated by using openSSL tool. Then, we installed
the application on the phone. By checking the application
information, it was noticed that the application version
changed from (1.5 to 1.6) and that all permissions added in the
AndroidManifest file are now available for the Seesmic
application. So the Seesmic application has been successfully
reversed, activity and permissions have been added on its
source code, which was then recompiled to run on the phone
[11].

Fig. 11. Seesmic Application

VI. MALWARE DETECTION

We attempt to measure the effectiveness of existing mobile
anti- virus software. We choose four mobile anti-virus

software, i.e., AVG Antivirus Free, Lookout Security &
Antivirus, BitDefender Mobile Security, and Avast Security
Edition and download them from the official Android Market.
We install each of them on a separate emulator running
Android 2.2. We apply the default setting and enable the real-
time protection. After that, we create a script that installs 104
applications in four emulators. If malwareis detected, these
anti-virus software will pop up an alert window, and then we
recorded it down [1].

Fig. 12. AVG Detection

The table below shows the number of detected malware
for each anti-virus, and its corresponding detection rate. The
results are not encouraging: Avast detected 56 malwares;
Lookout detected 51 malware; BitDefender detected 49
malware and finally AVG detected 46 malware.

TABLE I. THE NUMBER OF DETECTED MALWARE FOR EACH ANTI-
VIRUS

 AVG BitDefender Avast Lookout

Detected 46 49 56 51

%

44.2 47.1 53.8 49.0

There are some malwares were not detected by the four
anti-virus software. One reason is that existing mobile anti-
virus companies may not update the database signature for the
free version anti- virus available in the market. Today,
many people use free antivirus software and they have
to know that they are not protected from malware.

VII. ANALYSIS RESULTS

After completed the test, we agreed that it
becomes very important for every user to check the
permissions that any application he/she is downloading really
requires access to them or not. One of the major disadvantages
of Android applications is that without agreeing to grant
access to all the permissions, an application cannot be
installed on the device. For example, the application Movie
Player is only supposed to play movies and do nothing more.
Hence it is obvious that it does not require permission to
send messages or receive SMS. Similarly, the application
Seesmic accesses certain permissions in order for it to work
normally. Since Seesmic is one application that allows a
user to manage all the social networks, hence it requires

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 1, 2015

146 | P a g e

www.ijacsa.thesai.org

access to Internet, Location in order to update status; but it
does not require access to the user’s SMS and private data.
After we modify the manifest file and install the application,
the user needs to have certain responsibilities while installing
the application.

VIII. FUTURE WORK

The Android Manifest file is the only file that has been
altered in order to allow the application to access more
sensitive data. 83% of the malware they found in their analysis
that they are repackaging applications. Therefore, if the
developer can implement a method or implement an algorithm
to detect the modified Android Manifest file before the
application is installed to the phone, then the risk of those
malware will be mitigated.

IX. CONCLUSION

In the past few years smartphone users have increased
quickly. There are attackers who are now targeting
smartphones. The main reason for this because the lack of user
awareness regarding how their devices can be compromised.
Today, smartphones like Android are not just used as a
portable telephone. Android devices can access the internet,
make online bank transmissions, manage social networks, etc.
All these functionalities of a mobile phone seem very
attractive for an attacker to gain information of the user and
use it to his/her benefit. Therefore, users need to be aware
enough and have full responsibilities to read and understand
the permissions requested by the application before agreeing
to grant access.

ACKNOWLEDGEMENT

This work is sponsored by Al- Baha University. Authors
acknowledge the university for the kind support.

REFERENCES

[1] Yajin Zhou, Xuxian Jiang, "Dissecting Android Malware:
Characterization and Evolution," Proceedings of the 33rd IEEE
Symposium on Security and Privacy (Oakland 2012), San Francisco,
CA, May 2012

[2] Jew Mark, "Android Market Reaching the Same Growth as App
Store “gadgetoz.com, Dec 7, 2011. [Online]. Available:
http://www.gadgetoz.com/post/android-market-reaching-the- same-
growth-as-app-store/. [Accessed: July 25, 2012].

[3] Technolgy, "Architecture of Android OS" techneology.com, Nov
2011. [Online]. Available:
http://www.techneology.com/2011/11/architecture-of- android-
os.html. [Accessed: July 25, 2012].

[4] Frank Ableson, "Introduction to Android development the open
source appliance platform “ibm.com, 12 May 2009. [Online].
Available:http://www.ibm.com/developerworks/opensource/l
ibrary/os-android-devel/. [Accessed: July 25, 2012].

[5] Android developer, Android-SDK. [Online]. Available:
http://developer.android.com/sdk/index.html. [Accessed: July3,
2012].

[6] Reverse engineering tool for Android apk files, Android- Apktool.
[Online]. Available: http://code.google.com/p/android-apktool/.
[Accessed: July 3, 2012].

[7] Tools to work with android .dex and java .class files, Dex2jar.
[Online]. Available: http://code.google.com/p/dex2jar/. [Accessed:
July. 3, 2012].

[8] Decompiler, JD-GUI. [Online]. Available:
http://java.decompiler.free.fr/?q=jdgui. [Accessed: July.
3,2012].

[9] Android Application Sandbox, DroidBox.[Online].Available:
http://code.google.com/p/droidbox/. [Accessed: July. 3, 2012].

[10] Mobile malware mini dump, Malware dataset. Online]. Available:
http://contagiominidump.blogspot.ca/. [Accessed: July. 3, 2012].

[11] Vibha Manjunath, "Reverse Engineering of Malware on Android"
sans.org, Aug 31, 2011. [Online]. Available:
http://www.sans.org/reading_room/whitepapers/pda/reverse-
engineering-malware-android_33769. [Accessed:July. 10,2012].

[12] Jaime Blasco, “Introduction to Android Malware Analysis”
[Magazine, Issue 34, June 2012]. Retrieved from :http://net-
security.org\insecuremag.php. Last Accessed: 11 July, 2014

http://www.gadgetoz.com/post/android-market-reaching-the-
http://www.techneology.com/2011/11/architecture-of-
http://www.ibm.com/developerworks/opensource/l
http://developer.android.com/sdk/index.html
http://code.google.com/p/android-apktool/
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/
http://code.google.com/p/droidbox/
http://contagiominidump.blogspot.ca/
http://www.sans.org/reading_room/whitepapers/pda/reverse-
http://net-/

