
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 10, 2015

186 | P a g e

www.ijacsa.thesai.org

An Effective Storage Mechanism for High

Performance Computing (HPC)

Fatima El Jamiy, Abderrahmane Daif, Mohamed Azouazi and Abdelaziz Marzak

University Hassan II Mohammedia, Faculty of Sciences Ben M'sik,

Laboratoire Mathématiques Informatique et Traitement de l’Information MITI, Casablanca, Morocco

Abstract—All over the process of treating data on HPC

Systems, parallel file systems play a significant role. With more

and more applications, the need for high performance Input-

Output is rising. Different possibilities exist: General Parallel

File System, cluster file systems and virtual parallel file system

(PVFS) are the most important ones. However, these parallel file

systems use pattern and model access less effective such as

POSIX semantics (A family of technical standards emerged from

a project to standardize programming interfaces software

designed to operate on variant UNIX operating system.), which

forces the MPI-IO implementations to use inefficient techniques

based on locks. To avoid this synchronization in these techniques,

we ensure that the use of a versioning-based file system is much

more effective.

Keywords—Big data; High Performance Computing; Storage;

Distributed File System; BlobSeer

I. INTRODUCTION

Industrial research and development on parallel file systems
that can provide outstanding performance is prompted by the
need to treat raising volume of data in technological and
business applications that usually require high Input/output
throughput [1]. Among these, we can cite Physical Simulation,
processing a big volume of data sets to extract knowledge and
business email services. In this article, we will present two
important parallel file systems while addressing their major
limitations and propose a new File System based on versioning
and inspired from PVFS and Lustre File systems. Our choice of
these parallel file systems is mainly due to their extensive use.
Although both systems have many differences in their design

such as Locking, Semantics, Caching and Striping Pattern, they
have the same fundamentals of Striping Width and metadata
management. The main purpose of this document is to
emphasize the strengths of the two systems and present a
prototype of a new file system based on the BlobSeer storage
system that provides high Input/output throughput while
ensuring simultaneous access data for distributed file systems.

II. MAIN PROBLEM AND APPROACH

HPC is traditionally defined by parallel scientific
applications that are becoming more and more intensive on
data and whose I/O (input-output) performances become
quickly a problem, causing a bottleneck that has a negative
impact on the overall application performance [2].

It has been found that most software components of parallel
computing systems are in place such as operating systems,
local storage systems, and message passing systems. However,
one area is devoid of components to the production level for
clusters, it is the one of systems parallel I/O [3].

The HPC system architecture is divided into several
support layers (Figure 1) that provide much functionality:

- Abstractions to data structure, cell (eg netCDF parallel,
Adios)

- Manage the organization of the data access

- Sustain a logical space (eg Lustre and PVFS); it manages
the storage hardware and provides a single view, while
focusing on simultaneous and independent access.

Fig. 1. High Performance Computing Architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 10, 2015

187 | P a g e

www.ijacsa.thesai.org

A. PVFS and LUSTRE

PVFS is a scalable high performance parallel file system
for HPC systems. Distributing data through several nodes
named Input/Output nodes is the main method used to offer a
high access to data kept in the file system by numerous users.
The expansion of data that way enable applications to use
many directions to access data and thus eliminate bottlenecks
while the total throughput is also improved [4]. Although the
traditional mechanism of access to the file is convenient and
allows all applications to access stored files on many different
types of file systems, there is an overload in access through the
core [5].

B. LUSTRE

Lustre is an open source project (GPL) distributed file
system based on objects. Its name is the mixture of the words
"Linux" and "cluster". The system architecture consists of
metadata server (MDS), the target object storage servers (OST)
and customers. The metadata servers maintain data about all
files in Lustre [6].

In fact, to guarantee the atomicity of access to non-
contiguous and overlapping areas, parallel file systems use
access patterns less powerful and less effective such as POSIX
semantics that forces MPI-IO Implementations (Message
Passing Interface) to use inefficient techniques based on locks
[7]. To avoid this synchronization in these techniques, we
ensure that the use of a versioning-based file system is much
more effective. Our prototype will be greatly inspired from
PVFS and Lustre and It will be mainly an evolution of PVFS, it
will re-take the same principles of operation (cell, volume,
persistent caching, replication,). Its first goal is to provide high
Input/output throughput while providing simultaneous data
access.

C. Blobseer Architecture

BlobSeer is a large-range distributed storage service that
meets the advanced management data from a large mass of
data requirements [8]. It is based on the use of versions to
manipulate simultaneously a large binary objects (BLOBs) in
order to effectively exploit parallelism in data and sustain a
high throughput despite the massively data access parallel [9] .

The client controlled and handled the Versioning in the
system where Each BLOB (Binary large object) has its own
unique key. When writing or adding, the data to be written is
divided into a number of small pieces and are written in the
data providers listed by the provider vendor manager [10].
New versions are then produced in each write or append,
however storage space is conserved because what is kept is just
the dissimilar patch. During a read operation, the latest version
number is first obtained from the manager version. All pieces
that match this version are identified by the client and then
perform parallel read operation [11]. BSFS does not have
master-slave architecture and thus released from the single
point of failure. The biggest benefit is that metadata are highly
distributed between metadata providers. So there is no fear of
point failures that will stop the availability of metadata and
slow down all operations that depend on it. Another feature
that adds to the attraction of this architecture is the versioning
technique. Indeed, the amount of treatments accomplished in

the parallel file system is optimized because the concurrency
control algorithm [12].

D. Approach:

The principal point where Lustre and PVFS have
differences is in the method they use to split the metadata. In
fact the metadata management is an important element in
offering scalability and performance, and in this context PVFS
does not give any assurance that quality will be fulfilled since
all the tasks related to that are distributed across the servers’
without taking in consideration that factor. Whereas on the
other side, Lustre reach an elevated availability but it does not
enhance performance. To attain this, two servers are used in a
consolidation plan.

When concurrent requests occurred, constancy and stability
are provided by Lustre, whereas PVFS does not bear that
implementation plan, this possible only if we have non
overlapping areas to access. PVFS does not provide POSIX
semantics [14]. The atomicity of writes is guaranteed in non-
overlapping areas and even in non-overlapping, non-
contiguous regions. It does not implement a lock infrastructure
[15].

The atomic mode ensures that data written to a process is
immediately visible to another process (like POSIX semantics
by default). ROMIO currently uses file locking to implement
the functionality of the atomic mode MPI-IO [16]. Locks in
PVFS are not supported and therefore the atomic mode is not
supported too [17, 18, 19].

The implementation of PVFS does not include all the
features of MPI-IO specification. Eventually we reached a
point where it was obvious to us that a new design is required.
Our conception embodies the principles of MPI-IO
components missing for PVFS that we consider key to an
efficient, robust and high performance parallel file system.

The efficient design oriented version of BlobSeer enables a
lock-free data access, and thus promotes scalability under high
concurrency. A high I/O debit data is offered by Blobseer
because of his particular characteristics and decentralized data
and metadata management. This realization aim to come up
with a new vision that demonstrate the way Blobseer can be
employed as effective backend storage by expanding it to a
distributed file system for HPC systems.

We will configure our new file system and evaluate its
performance against the PVFS performance and Lustre on a set
of Data-intensive computing benchmarks and real systems.

III. COMPARISON WITH RELATED WORK

There have been many works aiming to develop and
enhance the performance of parallel systems but until now they
cannot bring the results sought by this kind of systems.
Hadoop, an open source framework designed to carry out
processing on massive data volumes, on the order of several
petabytes (or several thousand TB) and written in Java has
been improved with PVFS. PVFS is a widely used parallel file
system that allows a high performance data access for the
operations I / O that are adjacent and non-contiguous without
guaranteeing atomicity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 10, 2015

188 | P a g e

www.ijacsa.thesai.org

Continuing with Hadoop, another experiment has been
done to enhance it. It was integrated with Blobseer to allow a
high access data and avoid synchronization but it is still not
enough to take over all the requirements.

In another work, the authors propose a lock pattern for a
non-contiguous access strictly aimed at reducing the scope of
the locked region to areas that are really accessed. However,
this approach does not prevent the serialization for the
overlapping and simultaneous Input/Output.

IV. CONCLUSION

Our work confirm that using a new layer created with the
different principles of conception cited above is apt to improve
the efficiency of data storage layer and thus that of the whole
HPC applications. With the new layer of the file system
BlobSeer (BSFS), we will propose a new file system inspired
from the two principal distributed file systems Lustre and
PVFS. The next step is the implementation of this new file
system on the Grid’5000 infrastructure and evaluates its
performance.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simpli_ed Data Processing On
Large Clusters, Commun. ACM, vol. 51, 2008.

[2] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C.Steere, “Coda: A highly available
file system for a distributed workstation environment,” IEEE Trans.
Comput., 1990.

[3] A. Ching, K. Coloma, and A. Coudhary, Challenges for Parallel I/O in
GRID Computing. Publisher’s address: American Scientific Publisher,
2006, ch. 6, Grid I/O.

[4] K. Shvachko, “Hdfs scalability: The limits to growth”, The USENIX
Magazine , 2010.

[5] J. Dean and S. Ghemawat. MapReduce: A Flexible Data
ProcessingTool. CACM, 53(1):72–77, 2010.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.In
SOSP, 2003.

[7] C. Yan, X. Yang, Z. Yu, M. Li, X. Li, IncMR: incremental data
processing based on MapReduce, in: Proc. Int’l Conf. Cloud Computing,
CLOUD, 2012.

[8] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query Optimization for
Massively Parallel Data Processing. In SOCC, 2011.

[9] S. Babu. Towards automatic optimization of MapReduce programs. In
SOCC, 2010.

[10] J. Shafer, S. Rixner, and A.L. Cox, “The hadoop distributed filesystem:
Balancing portability and performance”,IEEE international symposium,
2010.

[11] J. Dittrich, J.-A. Quian´e-Ruiz, S. Richter, S. Schuh, A. Jindal, and J.
Schad. Only Aggressive Elephants are Fast Elephants. PVLDB, 2012.

[12] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI :
Portable Parallel Programming with the Message Passing Interface. MIT
Press, 1994.

[13] Peter Aarestad, Avery Ching, George Thiruvathukal, and Alok
Choudhary. Scalable approaches for supporting MPI-IO atomicity. In
Proceedings of the IEEE/ACM International Symposium on Cluster
Computing and the Grid,May 2006.

[14] Randal E. Bryant, Data-intensive scalable computing for scientific
applications, Comput. Sci., 2011.

[15] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, “Ceph: A Scalable,
High Performance Distributed FileSystem,” In Proc. of the 7th
Symposium on Operating Systems Design and Implementation, Seattle,
WA, 2006.

[16] Avery Ching, Alok Choudhary, Kenin Coloma, Wei Keng Liao, Robert
Ross,and William Gropp. Noncontiguous access through MPI-IO. In
Proceedings of the IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2003.

[17] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev
Thakur. PVFS: A parallel file system for Linux clusters. In Proceedings
of the 4th Annual Linux Showcase and Conference, pages 317–327,
Atlanta, GA, 2000. USENIX Association.

[18] Avery Ching, Alok Choudhary, Wei-keng Liao, Rob Ross, and William
Gropp. Noncontiguous I/O through PVFS. In CLUSTER ’02 :
Proceedings of the IEEE International Conference on Cluster
Computing,CLUSTER ’02, pages 405–,Washington, DC, USA, 2002.
IEEE Computer Society.

[19] K. Shvachko, H. Huang, S. Radia, and R. Chansler, “ The hadoop
distributed file system,” In 26th IEEE (MSST2010) Symposium on
Massive Storage Systems and Technologies, 2010.

