
Distance and Speed Measurements using FPGA and
ASIC on a high data rate system

Abdul Rehman Buzdar, Liguo Sun, Azhar Latif, Abdullah Buzdar
Department of Electronic Engineering and Information Science

University of Science and Technology of China (USTC)
Hefei, Peoples Republic of China

Abstract—This paper deals with the implementation of FPGA
and ASIC designs to calculate the distance and speed of a moving
remote object using laser source and echo pulses reflected from
that remote object. The project proceeded in three phases for the
FPGA implementation: All-in-C design using Xilinx Microblaze
soft core processor system, an accelerated design with custom
co-processor and Microblaze soft core processor system, and full
custom hardware design implemented using VHDL on Xilinx
FPGA. Later the complete system was implemented on ASIC.
The ASIC implementation optimized the modules for area and
timing for a 130nm process technology.

Keywords—Distance; Speed; FPGA; MicroBaze; Co-Design;
ASIC

I. INTRODUCTION

Distance and speed measurement systems are widely used
in many areas including automobiles, defense etc [1-15]. The
system can measure the time interval between two laser pulses,
one reference pulse which is sent out by the system and one
echo pulse which is reflected back to the system. With that
time information the system should calculate the distance to
the object on which the echo pulse is reflected. The system
level view of the project is shown in Fig. 1 and the reference
and echo signals are depicted in Fig. 2. There are to be two
phases in the project, in the first phase the target hardware is
a Xilinx FPGA [16], in the second phase the target hardware
is an application specific integrated circuit (ASIC) solution
where VHDL and standard cells is to be used. The target
process is a 130nm CMOS process from the foundry ST
Microelectronics [20]. Cadence [21] EDA tools are used for
the ASIC implementation. The FPGA system implementation
phase can be further divided into three sub phases. The first
of these phases aims to deliver a software only product, where
the entire system is written in C programming for Xilinx
MicroBlaze soft processor system [17]. The second is a mixed
hardware-software implementation where a part of the system
is implemented in C and part of it in hardware. The hardware
is to be designed using VHDL hardware description language.
The third and final product is to be implemented completely
in hardware and implemented on Xilinx XUP Virtex-II Pro
Development System [18]. Lacking a real laser detector, a
laser emulator is to send different test vectors to the distance
measurement system. It should feed the digital filter block
through two channels, each channel operating at 100 MHz. A
test vector generator emulating the laser detector i.e emulate
the laser signal pulses “Reference” and “Echo” is developed in
VHDL and is named “AD model”. Each measurement should

comprise of 256 samples. Finally as the system should be able
to measure speed and the emulator should also be able emulate
movement. The second block is the digital filter, it is a five tap
correlation filter. The signals must be filtered using a digital
filter shown in Equation (1) to suppress noise. where A-E
are the filter coefficients. Initial filter coefficients have been
provided but the user should be able to change coefficients
during use.

Figure 1: System Level View of Project

After filtering, the maximum point of the reference signal
is found by searching for the maximum value of d1[i] in the
range 0 - 20 samples (i = 0 .. 19). 20 samples are supposed to
be the longest possible delay between “laser-trig” goes high
and the laser pulse is transmitted. In the same way a possible
echo signal is searched in the interval 21 - 255 samples (i =
21 .. 255).

d1[i] = A ∗ d0[i− 2] +B ∗ d0[i− 1] + C ∗ d0[i]
+D ∗ d0[i+ 1] + E ∗ d0[i+ 2] (1)

To increase the resolution of i an interpolation using the
two values surrounding the maximum value d1[i] is performed
according to Equations (2), (3), and (4). This gives the final

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

273 | P a g e
www.ijacsa.thesai.org 



time sample point j.

b = d1[i− 1]− d1[i+ 1] (2)

c = 2 ∗ (d1[i− 1]− 2 ∗ d1[i] + d1[i+ 1]) (3)

j = i+ b/c (4)

The third block is the distance and speed measurement. Main
requirement for this block is that the distance should have
a precision of one decimal. The distance to the object can be
found by calculating the time difference between the reference
and the echo signals. Assuming the sampling frequency is 200
MHz and using the speed of light, we get Equation (5):

Distance = (jecho − jref ) ∗ c/(2 ∗ 200 ∗ 106) (5)

Fourth block is a user interface utilizing an LCD for printouts
and a keypad for input. Maximum range for the system should
be 250 meters. Measurements should be possible at a 100
KHz repetition frequency, that is each measurement should
be performed in less than 10us.

Figure 2: Reference and Echo Signals

II. SOFTWARE IMPLEMENTATION

In this phase everything was implemented in C program-
ming language. The C code was first tested on personnel
computer (PC) to see how the filter and other blocks are
working. This implementation made the idea behind the project
clear. After successfully testing it on PC, the same approach
was used for Xilinx MicroBlaze soft processor system [17].
As floating point operations are expensive therefore it was
decided not to use floating point unit. Due to the lack of a
floating point unit a fixed point system was implemented. The
actual speed of light is 299792458 but it was rounded off to
3 ∗ 10−8. This rounding off resulted in a little deviation in the
decimal part and that was expected. We first printed the results
using Hyper-terminal by connecting serial port of Microblaze
with the serial port of PC. Later we integrated LCD to display
the results. Fig. 3 shows the block level diagram of software
implantation.

In this phase LCD was derived and values were received
from the keypad using Software routines. Timers were also
used for profiling. Fast Simplex Link (FSL) [19] was used
to get values as test vectors. FSL is 32 bits wide, but only

ten bits were used as the test vectors are 10 bits wide. In
this phase everything was sequential. The Fig. 4 shows the
software implementation flow. The sample test vectors were
buffered first in an array which was then fed to the filter.
After the filtration the max value was found and index was
located, later interpolation was carried out and finally distance
was calculated. The profiling was done to figure out the time
consuming parts of the code. The table I shows the results
from profiling.

Figure 3: Block diagram of software implementation

Table I: Result of C routine Profiling

C routine Time[us]
Read sample vector 25

Filter 789
Find Ref 5

Find Echo 14

A. Keypad Implementation

The keypad has four rows and four columns. The columns
were sourced and output was sensed on rows. The keys acts
like simple switches. The signal put on the columns was active
low and then the rows were sensed. If there is a low signal
present on the any of the row then the routine figures out
which key is pressed. A routine was included for resolving
debounncing issue. As the switches are kind of mechanical
switches so whenever any of the key is pressed there is kind
of fluctuation at the output pin and the routine can register the
key multiple times.

To fix this de-bouncing problem this routine was included.
The routine makes sure that it should register the key once
until the key is depressed. Four keys were used for changing
test vector they are 1 2 3 A as shown in Fig. 5. The Fig. 6
shows the flow for Keypad routine.

B. Distance Calculation

For the distance calculation FSL link was used to get the
vector values from AD model, then they were fed to the dis-
tance calculation routine. After getting these vectors, filtering
and interpolation was carried out. There was little variation in
decimal place as the speed of light was rounded off. Table

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

274 | P a g e
www.ijacsa.thesai.org 



Figure 4: Software Implementation Flow Chart

Figure 5: Keypad Keys

I shows the result of profiling on the Distance calculation
routine. The Fig. 7 shows flow for Distance calculation routine.

1) Fix2Dec: This routine takes the digit from the distance
calculation routine and separates it into integer and decimal
part. These values are then sent to the LCD routine to be
displayed on LCD.

C. LCD Implementation

The LCD used is a 16x1 display format. It contains three
control signals and 8 bit wide data bus to receive commands
and data. The control signals are Enable, Read/Write and
Register Select. Data and commands should be latched on the
Enable signal. For displaying to the LCD, write signal should
be low and for command and data Write Register should be
Low and High respectively. Fig. 8 shows the flow for LCD
routine.

III. MIXED HW-SW IMPLEMENTATION

In mixed HW-SW Implementation Phase some parts of the
project were implemented in software and some in Hardware.
The Hardware-Software co-design is a well established tech-
nique, which improves the performance of the system [22-36]
. The main interface i.e. Menu System, LCD and keypad was
implemented using Software routines and the distance chain
was implemented in hardware as shown in the Fig. 11. Here
is a brief description of each routine.

A. Main Interface Implementation

The main interface involves a menu system which takes
user input through a keypad and displays the results on the
LCD. The menu system is implemented in software. The menu
has the options to change coefficients, test vectors, speed and
display the calculated value of distance on the LCD. Fig. 9
shows the Main Interface flow chart. The same code was used
to implement the Keypad and LCD as described in software
implementation phase.

Figure 6: Keypad Routine Flow Chart

Figure 7: Distance Chain Routine Flow Chart

B. Menu Routine Implementation

In mixed HW-SW Implementation Phase the main interface
is implemented using only four buttons i.e. plus, minus, enter
and back. The reason of using less number of keys is to
minimize the number of pins out from our design.

When the device is turned ON the user can choose between
different options from the main menu and they are displayed
on the LCD i.e. change test vectors, coefficients and speed.
To move backward and forward in the menu the plus/minus
keys are provided to the user and to select any of these options
enter key is used.

C. Distance Chain Implementation

In mixed HW-SW Implementation Phase we decided to
implement the whole distance chain in VHDL and only keep
non-timing sensitive stuff inside the MicroBlaze. The reason
for doing this is that we know that we would have to do it in
complete hardware Implementation Phase and this way could
save time although it might be harder. The Fig. 10 shows the
overview of the datapath of distance chain for mixed hw-sw
implementation. The Distance chain is compromised of these
blocks:

D. AD Model

Very small changes was done to this block from software
implementation phase, we implemented a start signal and then
a start filter signal to show when the filter would have its first
two values. Together with the start signal the test vector chosen
is sent.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

275 | P a g e
www.ijacsa.thesai.org 



Figure 10: Overview of the datapath of distance chain for mixed hw-sw implementation.

Figure 8: LCD Routine Flow Chart

E. Filter Block Implementation

The filter was a bit more complicated, it was decided to
try to implement a filter that could work independently of the
speed of the Admodel with a FIFO buffer. That idea later got
scrapped for the final version that is a block with a 5 word
wide circular buffer that updates with both channels from the
Admodel and completing two filtrations each clock cycle. To
be able to accomplish that with all the multiplications and
additions a three stage pipeline was implemented to lower
the load of the FPGA. Changing the coefficient was also
implemented as parallel ports sent directly from the controller
block.

F. FindMax Block Implementation

The next stage in the chain was to find the position of the
reference and echo pulse. As these operations are identical the
block was implemented to run for 20 clock cycles send out the
maximum value(i), value(i+1), value(i−1) and the index to
the distance block. When doing this it would start the distance
and interpolation unit so it could work in parallel to findmax
and do some precalculations as it was waiting for the value

Figure 9: Main Interface Flow Chart

and position of the echo pulse. Findmax would then restart
and try to find the echo pulse and then signal the distance unit
again. Findmax is implemented as a simple comparator that
first compare the two filtered values against each other and
then to the current maximum value. If the value is larger than
the last maximum the previous and next values are saved in a
buffer until they are sent out. To be able to save the next value

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

276 | P a g e
www.ijacsa.thesai.org 



Figure 11: Block diagram of Mixed implementation

a flag was created to be able to save it the next clock cycle
when it was fed from the Filter.

G. Distance and Interpolation

For both the reference and the echo, division has to be
done to calculate the interpolation. The division is handled by
a separate block that implements fast non-restoring division.
The division can’t handle negative numbers so the sign of the
value b has to be checked and made to its two-complement
and then the result from the division has to be made to its two
complement to make the correct calculation when calculating
j. This is done two times until both jref and jecho are
calculated.

The first is precalculated as mentioned above. Both of these
distances have fractional numbers that is represented in fixed
point with 5 bit precision. 5 bits were large enough that we
would get the necessary precision for the 10 cm resolution
that we need to display to the user, but at the same time not
unnecessary large and take up space in the FPGA. As the speed
of light and the sampling frequency in the last calculation is
constant we precalculated this and implemented it as a constant
inside the block. The result is then sent out through the FSL-
link.

IV. HARDWARE IMPLEMENTATION

In complete hardware implementation phase a lot of things
were already done, but it needed to be tied together with a
controller and a menu system that could interface with all the
other parts in VHDL. Modeling of speed were implemented,
the keypad and LCD routines were ported to VHDL. The
Fig. 12 shows the datapath and the different components of
complete hardware implementation.

A. Distance Chain Implementation

The only changes here from what were used in mixed
implementation, was the implementation of speed inside the
Admodel. It was decided that the easiest way to do this would
be to try to shift the echo pulse in each test vector, and when it
is close to the end or reference, shift it the other way implying
that the object were moving towards and away from the user.

The speed of the simulation should be able to be set so we
included a signal that was sent from the main program.

B. Main Block Implementation

The main program holds all the outside ports, all other
components and the menu system. It has to listen for the key
presses, start the distance chain, calculate speed and update
variables when inside the menu. The main basically has two
major components to keep track of, the distance calculation and
the menu-system. When in distance calculation mode it starts
the distance chain waits for it to finish and then depending on
how long since it updated the LCD it might calculate speed
and then update the LCD using DisplayText routine. If its in
distance calculation mode, it can go into the menu by pressing
ENTER.

C. DisplayText Routine Implementation

The main has to update variables and show these updated
variables to the user together with a string that shows what
the variable is i.e. (Testvector=variable), it was decided that
sending whole strings to the LCD unit would take too much
space so a system where a variable together with the screen
(function) that the main want to write is sent. DisplayText
routine takes the variable sent and converts it to a string using
the component IntToString. When this is done a case statement
chooses what to print out depending on the function. In each of
these statements a custom string is built using some characters
and the converted variable. This string is then fed one character
at a time to the LCD and then printed. In the case of printing
“D=distance S=speed” one extra variable is converted, for the
integer value of the speed that comes from the speed block.

D. IntToString Routine Implementation

This block takes an integer between 0 and 999 and converts
it to a three character string. If the number isn’t 3 characters
long it will be padded with spaces. The algorithm does checks
against the size of the integer and then sends it to one of three
different states: Ones, Tens and Hundreds.

E. Main Menu Implementation

The menu has to know what variable to update when PLUS
or MINUS is pressed, and where to go whenever ENTER or
BACK is pressed it also has to display this variable on the
LCD. All variables is kept in an array and the whenever you
move in the menu the index is updated and therefore the active
variable that you can change is updated. Whenever a keypress
happens the appropriate action is taken and then the LCD is
updated by sending the variable and a function to DisplayText.

F. LCD Implementation

Hardware implementation of the LCD is almost a complete
port from the C-code used previous two phases. When the
device is set ON, the code initializes the LCD and then waits
for DisplayText to send its first character. The limitations of
the LCD regulate how long we have to set and hold the signals
for it to register the change. This value has been set to 5ms
using iterative methods.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

277 | P a g e
www.ijacsa.thesai.org 



Figure 12: Overview of the datapath of distance chain for complete hardware implementation.

V. ASIC IMPLEMENTATION

The specification for the ASIC implementation was
changed, following changes were made in the specification:

• Change in number of channels to one

• Change in data rate (200Mhz)

• Addition of SPI port

• Signed Coefficients

• Taps input Serially during initialization

• Result is in decimeter

• The data is input from pattern generator instead of AD
model

• The output will be fed to logic analyzer

Fig. 13 is the Timing Diagram showing signals for all the
major blocks of the system. An alternate design with a FIFO
at the front end was also developed, distance chain itself was
unchanged. The idea with this FIFO implementation was to
allow the distance chain to run at a lower frequency and thus
have lower power dissipation. Fig. 14 shows the block diagram
of final ASIC design

A. FIR Filter Implementation

The filter is a 5 word buffer, on which the filter calculations
are performed. To be able to accomplish all multiplications
and additions required without increasing the performance load

too much, a three stage pipeline has been introduced. The big
changes in the filter block itself were the switch from two
channels of data to one, and the use of signed coefficients.
Where as the old filter block effectively had two filters, the
new block only has one. The main addition to the filter block
is the UART process which is used for reading coefficient data
and feeding this to the filter.

B. Find Max Block Implementation

The next stage in the chain was to find the position of the
reference and echo pulse. As these operations are identical the
block was implemented to run for 20 clock cycles send out the
maximum value(i), value(i+1), value(i−1) and the index, to
the distance block. When doing this it would start the distance
and interpolation unit so it could work in parallel to findmax
and do some pre-calculations as it was waiting for the value
and position of the echo pulse. Findmax would then restart
and try to find the echo pulse and then signal the distance
unit again. Findmax is implemented as a simple comparator
with a one word buffer. It checks the present value against the
maximum value, if the present is higher it will store the present
value and the value in the buffer, which is the previous value.
It will also set a flag to store the next value. When the first 20
values have been checked the stored values will be sent to the
distance unit, and the process will repeat for the echo values.

C. Distance and Interpolation

For both the reference and the echo, division has to be
done to calculate the interpolation. The division is handled by

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

278 | P a g e
www.ijacsa.thesai.org 



Figure 13: Timing Diagram showing signals for all the major blocks of the system

a separate block that implements fast non-restoring division.
The division can’t handle negative numbers so the sign of the
value b has to be checked and made to its two-complement
and then the result from the division has to be made to
its two complement to make the correct calculation when
calculating j. This is done two times until both jref and
jecho is calculated. The first is pre-calculated as mentioned
above. As the speed of light and the sampling frequency in
the last calculation is predefined we pre-calculated this and
implemented it as a constant inside the block. The result is
then sent out through the SPI.

D. Speed Calculation

The speed is calculated by storing a distance value, waiting
a given time, then calculating the difference in distance com-
pared to the stored value. This value is then multiplied with
the waiting time divided by 1 second. For example the waiting
time is by default set to 0.2s, to calculate the speed in dm/s
the difference in distance is therefore multiplied by 5.

E. Serial Peripheral Interface (SPI) Implementation

An SPI port was implemented for outputting the result of
measurements. The design uses this SPI master/slave interface,
where the ASIC acts as master, for outputting of results.
The SPI is designed according to the standard one-slave
configuration, using mode 0. The SPI clock (SCLK) generated
from the ASIC runs at 3.125 MHz. The SPI (in the ASIC)
initiates a data transfer each 10 us, that is, at a frequency of 100
kHz. The data transfer is initiated by lowering the SS signal,
according to the SPI standard. The output data is specified
to be 12 bits unsigned values. The total number of bits for
outputting over SPI is 16, for compliance with standard SPI
components. The first bit is an indication of whether the data
sent is a distance measurement or a speed measurement. A
zero in this bit indicates distance, a one indicates speed.

F. Evaluation

There were two architectures which were considered. One
was using FIFO so that the whole processing time can be

spread over the whole spectrum of time. The FIFO was running
on high speed clock i.e. 200 MHz where as rest of the design
was working on slow clock i.e. 3.125 MHz. The other was
running on the high speed clock. Synthesis of both the design
was carried out at 4ns constraint to get a rough picture of area,
timing, and power, table II shows the results.

Table II: FIFO and No FIFO

FIFO Without FIFO
Area [mm2] 0.15 0.04
Timing [ns] 1.48 3.70
Power [mW] 18.54 6.68

Architecture without FIFO is taking 3 times less area then
with FIFO. Both the designs fulfill the timing constraint of
4 ns but the design with FIFO is more efficient in terms of
timing. The design with FIFO is 2.7 times expensive in term
of power. The design without FIFO was chosen as it was less
expensive in terms of power and area.

After synthesis power was simulated using VCD-files gen-
erated by the test bench, the table III show the results.

Table III: CLK Power

Net Power(mW) Cap(nF)
CLK 0.495 1.719

Using the expression (P = f ∗ V dd2 ∗ C) clock power at
1.2V was 495072 nW, which verifies the result we got from
the RTL compiler. The table IV shows power consumption in
major blocks.

Table IV: Power consumption in major blocks

Block Name Power (mW)
Filter 1.61

Distance 1.03
Findmax 0.88

SPI 0.09
Clkdiv 0.08

The results show that filter is the most power hungry

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

279 | P a g e
www.ijacsa.thesai.org 



Figure 14: Overview of ASIC Design

block. The filter contains number of multipliers therefore it
is consuming large part of power. The table V shows total
power consumption.

Table V: Total Power

Leakage
Power(mW)

Dynamic
Power(mW)

Total
Power(mW)

1.217 3.254 4.472

The table VI shows total area and timing results.

Table VI: Total Area and Timing

Area (um2) Timing (ns)
0.046 4.251

The timing constraint given was 5ns. The initial synthesis
was carried out at medium effort and we got a slack of 749ps.
The critical path was found to be between filter and findmax.
The filter and findmax were consuming the major core area.
Fig. 15 shows the layout of the chip.

Post layout the design was pad limited, using 24 pads, of
which 3 were unused. The core area was 0.11mm2, with a
core utilization of 43%. This gave a die area of 0.55mm2.

G. Verification

The complete design was verified with the help of test
bench. This test bench would emulate AD converter function-
ality and send input to the design, and then it would receive
distance and speed from the design and verify those results.
The test bench is a comprehensive test bench designed to verify
that the chip conformed to the specification with regard to
functionality. The test bench is comprised of 14 test cases.
Each test case is basically a component in the test bench,
and they all share the component which holds the design.
While a case is running it prints results to a corresponding
text file, when it has finished it relinquishes control of the

Figure 15: Layout of the chip

design to the next case. Test cases 1 through 8 tested distance
measurements by moving the echo through the entire range
of the specification, with different parameters. Test case 5 for
example moves backwards through the range, and case 7 has
negative coefficients. The remaining test cases were mainly for
verification of speed measurements.

H. Physical Testing of Chip

The Fig. 16 shows pinout of the chip. For physical testing,
power up the chip using 1.2V as VDD and Gnd as VSS. The
interface has UART where you can feed co-efficient after reset,
the coefficients are 8 bit wide and three coefficients needs to
be entered. Put the DAV line high and feed 255 bytes to the

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

280 | P a g e
www.ijacsa.thesai.org 



chip. Put the DAV line low and you will get the result at
SPI. The data out from the chip is 16 bit wide word and last
three bits are redundant. The result of the speed calculation is
after every 20,000 distance calculations. If the LSB is set the
resulting word is speed and if it is clear the resulting word is
distance.

Figure 16: Pinout of the chip

VI. CONCLUSION

This paper presented a very practical problem and allowed
the project group to approach it from several different view-
points. This proved very useful as it showed the weaknesses
and strengths of the platforms used in the project, or rather
it showed how much impact these attributes have on real
performance. For example it is quite expected that a hardware
implementation should be faster than a software implementa-
tion. However, it was surprising to a roughly 400x increase in
performance, which is the improvement from software phase
to complete hardware implementation.

ACKNOWLEDGMENT

This work is partially supported by the Chinese Academic
of Sciences (CAS) and The World Academy of Sciences
(TWAS).

REFERENCES

[1] T. Schlegl , T. Bretterklieber , M. Neumayer and H. Zangl “A novel sen-
sor fusion concept for distance measurement in automotive applications”,
IEEE Sensors, pp.775 -778 2010

[2] W. J. Fleming “New automotive sensors A review”, IEEE Sensors J.,
vol. 8, no. 11, pp.1900 -1921 2008

[3] T. Gandhi and M. M. Trivedi “Pedestrian protection systems: Issues,
survey, and challenges”, IEEE Trans. Intell. Transp. Syst., vol. 8, no. 3,
pp.413 -430 2007

[4] D. Marioli , C. Narduzzi , C. Offelli , D. Petri , E. Sardini and A. Taroni
“Digital time-of-flight measurement for ultrasonic sensors”, IEEE Trans.
Instrum. Meas., vol. 41, no. 1, pp.93 -97 1992

[5] C. Cai and P. P. L. Regtien “Accurate digital time-of-flight measurement
using self-interference”, IEEE Trans. Instrum. Meas., vol. 42, no. 6,
pp.990 -994 1993

[6] F. E. Gueuning , M. Varlan , C. E. Eugene and P. Dupuis “Accurate
distance measurement by an autonomous ultrasonic system combining
time-of-flight and phase-shift methods”, IEEE Trans. Instrum. Meas.,
vol. 46, no. 6, pp.1236 -1240 1997

[7] C. C. Tong , J. F. Figueroa and E. Barbieri “A method for short or long
range time-of-flight measurements using phase-detection with an analog
circuit”, IEEE Trans. Instrum. Meas., vol. 50, no. 5, pp.1324 -1328 2001

[8] S. S. Huang , C. F. Huang , K. N. Huang and M. S. Young “A high
accuracy ultrasonic distance measurement system using binary frequency
shift-keyed signal and phase detection”, Rev. Sci. Instrum., vol. 73, no.
10, pp.3671 -3677 2002

[9] L. Angrisani , A. Baccigalupi and R. S. L. Moriello “A measurement
method based on Kalman filtering for ultrasonic time-of-flight estima-
tion”, IEEE Trans. Instrum. Meas., vol. 55, no. 2, pp.442 -448 2006

[10] C. F. Huang , M. S. Young and Y. C. Li “Multiple-frequency continuous
wave ultrasonic system for accurate distance measurement”, Rev. Sci.
Instrum., vol. 70, no. 2, pp.1452 -1458 1999

[11] Y. S. Didosyan, H. Hauser, H. Wolfmayr, J. Nicolics and P. Fulmek
“Magneto-optical rotational speed sensor”, Sens. Actuators A, Phys., vol.
106, no. 3, pp.168 -171 2003

[12] L. Wang, Y. Yan, Y. Hu and X. Qian “Rotational speed measurement
through electrostatic sensing and correlation signal processing”, IEEE
Trans. Instrum. Meas., vol. 63, no. 5, pp.1190 -1199 2014

[13] Y. Yan, B. Byrne, S. Woodhead and J. Coulthard “Velocity measurement
of pneumatically conveyed solids using electrodynamic sensors”, Meas.
Sci. Technol., vol. 6, no. 5, pp.515 -537 1995

[14] J. Ma and Y. Yan “Design and evaluation of electrostatic sensors for
the measurement of velocity of pneumatically conveyed solids”, Flow
Meas. Instrum., vol. 11, no. 3, pp.195-204 2000

[15] Lijuan Wang, Yong Yan , Yonghui Hu , Xiangchen Qian “Rotational
Speed Measurement Using Single and Dual Electrostatic Sensors”, IEEE
Sensors, pp. 1784-1793 2014

[16] Xilinx Inc. FPGA Design Tools. Silicon Devices. www.xilinx.com
[17] Xilinx. MicroBlaze. www.xilinx.com/tools/microblaze.htm
[18] Xilinx Virtex-II Board. www.xilinx.com/univ/xupv2p.html
[19] Xilinx FSL. www.xilinx.com/products/intellectual-property/fsl.html
[20] STMicroelectronics. www.st.com/web/en/home.html
[21] Cadence EDA Tools. www.cadence.com/en/default.aspx
[22] M. Imai, “Embedded tutorial: hardware/software codesign”, IEEE Asia

and South Pacific Design Automation Conference (ASP-DAC), Jan.
1999.

[23] J. Noguera, R.M. Badia, “HW/SW codesign techniques for dynamically
reconfigurable architectures” IEEE Trans. Very Large Scale Integration
(VLSI) Systems, vol. 10, no. 4, pp. 399-415, Aug. 2002.

[24] M. D. Edwards, et al., “Acceleration of software algorithms using
hardware/software co-design techniques”, J. Syst. Architecture, vol. 42,
no. 9/10, pp.1997.

[25] W. Wolf, “A Decade of Hardware/Software Codesign,” IEEE Computer,
vol. 36, pp. 38-43, April 2003

[26] R. Ernst, J. Henkel, and T. Benner, “Hardware-Software Cosynthesis for
Microcontrollers,” IEEE Transaction on Design and Test of Computers,
vol. 10, pp. 64-75, December 1993

[27] W. Wolf, “Hardware/software Co-design of Embedded Systems,” IEEE
Proceeding, vol. 82, pp. 967-989, July 1994

[28] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood,
“Hardware-Software Co-Design of Embedded Reconfigurable Architec-
tures,” in Proceeding of 37th Design Automation Conference, pp. 507-
512, June 2000

[29] Vermeulen, L. Nachtergaele, F. Catthoor, D. Verkest, and H. De Man,
“Flexible Hardware Acceleration for Multimedia Oriented Microproces-
sors,” IEEE Transactions on Very Large Scale Integration Systems, pp.
171-177, December 2000

[30] M. Boden, J. Schneider, K. Feske, and S. Rulke, “Enhanced Reusability
for SoC-based HW/SW Co-design,” in Proceeding of Euromicro Sym-
posium on Digital System Design 2002, pp. 94-99, September 2002.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

281 | P a g e
www.ijacsa.thesai.org 



[31] Kai-Yuan Jan, Chih-Bin Fan, An-Chao Kuo, Wen-Chi Yen, and Youn-
Long Lin, “A Platform-based SOC Design Methodology and Its Applica-
tion in Image Compression,” Special Issue on HW-SW Codesign for SoC,
International Journal of Embedded Systems, Inderscience Publishers,
USA. Vol. 1, Issue 1/2, pp. 23-32, 2005.

[32] Chiodo, M. and et al. Hardware-software codesign of embedded sys-
tems. In IEEE Micro, 1994.

[33] Ernst, R. and et al. Codesgin of embedded systems: status and trends.
In Proceedings of IEEE Design and Test of Computers, 1998.

[34] Gallery, R. and et al. Hardware/software partitioning and simulation
with SystemC. In Proceedings of the 2nd WSEAS ICECSP, 2003.

[35] Hurk, J. and et al. System Level Hardware/Software Co-Design: An
Industrial Approach, 1997.

[36] De Micheli, G. and et al. Hardware/Software Co-design. In Proceedings
of the IEEE, 1997.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

282 | P a g e
www.ijacsa.thesai.org 




