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Abstract—In this paper, we study the structure of cyclic, quasi
cyclic, constacyclic codes and their skew codes over the finite ring
R. The Gray images of cyclic, quasi cyclic, skew cyclic, skew
quasi cyclic and skew constacyclic codes over R are obtained.
A necessary and sufficient condition for cyclic (negacyclic) codes
over R that contains its dual has been given. The parameters of
quantum error correcting codes are obtained from both cyclic and
negacyclic codes over R. Some examples are given. Firstly, quasi
constacyclic and skew quasi constacyclic codes are introduced.
By giving two inner product, it is investigated their duality. A
sufficient condition for 1 generator skew quasi constacyclic codes
to be free is determined.
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I. INTRODUCTION

In the beginning, a lot of research on error-correcting codes
are concentrated on codes over finite fields. Since the revelation
in 1994 [17], there has been a lot of interest in codes over finite
rings. The structure of a certain type of codes over many rings
are determined such as negacyclic, cyclic, quasi-cyclic, consta
cyclic codes in [6,11,20,21,22,23,26,32]. Many methods and
many approaches are applied to produce certain types of codes
with good parameters and properties.

Some authors generalized the notion of cyclic, quasi-cyclic
and constacyclic codes by using generator polynomials in skew
polynomial rings [1,2,5,7,8,9,14,15,18,27,30].

Moreover, in [10] Calderbank et al. gave a way to
construct quantum error correcting codes from the classical
error-correcting codes, although the theory of quantum error-
correcting codes has striking differences from the theory of
classical error correcting codes. Many good quantum codes
have been constructed by using classical cyclic codes over
finite fields or finite rings with self orthogonal (or dual
containing) properties in [3,12,13,16,19,24,25,28,29,31].

In [4] they introduced the finite ring R = Z3[v]/
〈
v3 − v

〉
.

They studied the structure of this ring. The algebraic structure
of cyclic and dual codes was also studied. A MacWilliams
type identity was established.

In this paper, first of all we gave some definitions. By
giving the duality of codes via inner product, it is shown that
C is self orthogonal code over R, so is φ (C), where φ is a
Gray map.

The Gray images of cyclic and quasi-cyclic codes over R
are obtained. A linear code over R is represented using three
ternary codes and the generator matrix is given.

After a cyclic (negacyclic) code over R is represented via
cyclic (negacyclic) codes over Z3, it is determined the dual of
cyclic (negacyclic) code. A necessary and sufficient condition
for cyclic (negacyclic) code over R that contains its dual is
given. The parameters of quantum error-correcting codes are
obtained from both cyclic and negacyclic codes over R. As a
last, some examples are given about quantum error-correcting
codes.

When n is odd, it is defined the λ-constacyclic codes over
R where λ is unit. A constacyclic code is represented using
either cyclic codes or negacyclic codes of length n.

It is found the nontrivial automorphism θ on the ring R.
By using this automorphism, the skew cyclic, skew quasi-
cyclic and skew constacyclic codes over R are introduced. The
number of distinct skew cyclic codes over R is given. The Gray
images of skew codes are obtained.

Firstly, quasi-constacyclic and skew quasi-constacyclic
codes over R are introduced. By using two inner product, it
is investigated the duality about quasi-constacyclic and skew
quasi-constacyclic codes over R. The Gray image of skew
quasi-constacyclic codes over R is determined. A sufficient
condition for 1-generator skew quasi-constacyclic code to be
free is determined.

II. PRELIMINARIES

Suppose R = Z3 + vZ3 + v2Z3 where v3 = v and Z3 =
{0, 1, 2}. R is a finite commutative ring with 27 elements.
This ring is a semi local ring with three maximal ideals. R is
a principal ideal ring and not finite chain ring. The units of
the ring are 1, 2, 1 + v2, 1 + v + 2v2, 1 + 2v + 2v2, 2 + v +
v2, 2 + 2v + v2, 2 + 2v2. The maximal ideals,

〈v〉 = 〈2v〉 =
〈
v2
〉

=
〈
2v2
〉

=
{

0, v, 2v, v2, 2v2, v + v2, v + 2v2, 2v + v2,

2v + 2v2}
〈1 + v〉 = 〈2 + 2v〉 =

〈
1 + 2v + v2

〉
=
〈
2 + v + 2v2

〉
= {0, 1 + v, 2 + 2v, v + v2, 2v + 2v2, 1 + 2v

+v2, 1 + 2v2, 2 + v2, 2 + v + 2v2}〈
1 + v + v2

〉
= 〈1 + 2v〉 = 〈2 + v〉 =

〈
2 + 2v + 2v2

〉
= {0, 2 + v, 1 + 2v, 2v + v2, v + 2v2, 2 + v2,

1 + 2v2, 2 + 2v + 2v2, 1 + v + v2}
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The other ideals,

〈0〉 = {0}
〈1〉 = 〈2〉 =

〈
1 + v2

〉
=
〈
1 + v + 2v2

〉
=

〈
1 + 2v + 2v2

〉
=
〈
2 + v + v2

〉
=

〈
2 + 2v + v2

〉
=
〈
2 + 2v2

〉
= R〈

1 + 2v2
〉

=
〈
2 + v2

〉
= {0, 2 + v2, 1 + 2v2}〈

v + v2
〉

=
〈
2v + 2v2

〉
= {0, v + v2, 2v + 2v2}〈

v + 2v2
〉

=
〈
2v + v2

〉
= {0, v + 2v2, 2v + v2}

A linear code C over R length n is a R−submodule of
Rn. An element of C is called a codeword.

For any x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1) the
inner product is defined as

x.y =
n−1∑
i=0

xiyi

If x.y = 0 then x and y are said to be orthogonal. Let C be
linear code of length n over R, the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0}

which is also a linear code over R of length n. A code C is
self orthogonal if C ⊆ C⊥ and self dual if C = C⊥.

A cyclic code C over R is a linear code with the
property that if c = (c0, c1, ..., cn−1) ∈ C then σ (C) =
(cn−1, c0, ..., cn−2) ∈ C. A subset C of Rn is a linear cyclic
code of length n iff it is polynomial representation is an ideal
of R [x] / 〈xn − 1〉 .

A constacyclic code C over R is a linear code with the
property that if c = (c0, c1, ..., cn−1) ∈ C then ν (C) =
(λcn−1, c0, ..., cn−2) ∈ C where λ is a unit element of R. A
subset C of Rn is a linear λ-constacyclic code of length n iff
it is polynomial representation is an ideal of R [x] / 〈xn − λ〉 .

A negacyclic code C over R is a linear code with the
property that if c = (c0, c1, ..., cn−1) ∈ C then η (C) =
(−cn−1, c0, ..., cn−2) ∈ C. A subset C of Rn is a linear
negacyclic code of length n iff it is polynomial representation
is an ideal of R [x] / 〈xn + 1〉 .

Let C be code over Z3 of length n and ć =
(ć0, ć1, ..., ćn−1) be a codeword of C. The Hamming weight of
ć is defined as wH (ć) =

∑n−1
i=0 wH (ći) where wH (ći) = 1

if ći 6= 0 and wH (ći) = 0 if ći = 0. Hamming distance
of C is defined as dH (C) = min dH (c, ć) , where for any
ć ∈ C, c 6= ć and dH (c, ć) is Hamming distance between two
codewords with dH (c, ć) = wH (c− ć) .

Let a ∈ Z3n
3 with a = (a0, a1, ..., a3n−1) =(

a(0)
∣∣a(1)∣∣ a(2)) , a(i) ∈ Zn3 for i = 0, 1, 2.

Let ϕ be a map from Z3n
3 to Z3n

3 given by
ϕ (a) =

(
σ
(
a(0)

) ∣∣σ (a(1))∣∣σ (a(2))) where σ
is a cyclic shift from Zn3 to Zn3 given by
σ
(
a(i)
)

= ((a(i,n−1)), (a(i,0)), (a(i,1)), ..., (a(i,n−2))) for
every a(i) = (a(i,0), ..., a(i,n−1)) where a(i,j) ∈ Z3,
j = 0, 1, ..., n− 1. A code of length 3n over Z3 is said to be
quasi cyclic code of index 3 if ϕ (C) = C.

Let n = sl. A quasi-cyclic code C over R of length n and
index l is a linear code with the property that if

e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) ∈
C, then τs,l (e) = (es−1,0, ..., es−1,l−1, e0,0, ..., e0,l−1, ..., es−2,0 ,
..., es−2,l−1) ∈ C.

Let a ∈ Z3n
3 with a = (a0, a1, ..., a3n−1) =(

a(0)
∣∣a(1)∣∣ a(2)) , a(i) ∈ Zn3 , for i = 0, 1, 2. Let Γ be a map

from Z3n
3 to Z3n

3 given by

Γ (a) =
(
µ
(
a(0)

) ∣∣∣µ(a(1))∣∣∣µ(a(2)))
where µ is the map from Zn3 to Zn3 given by

µ
(
a(i)
)

= ((a(i,s−1)), (a(i,0)), ..., (a(i,s−2)))

for every a(i) =
(
a(i,0), ..., a(i,s−1)

)
where a(i,j) ∈ Zl3, j =

0, 1, ..., s− 1 and n = sl. A code of length 3n over Z3 is said
to be l−quasi cyclic code of index 3 if Γ (C) = C.

III. GRAY MAP AND GRAY IMAGES OF CYCLIC AND
QUASI-CYCLIC CODES OVER R

In [4], the Gray map is defined as follows

φ : R→ Z3
3

φ(a+ vb+ v2c) = (a, a+ b+ c, a+ 2b+ c)

Let C be a linear code over R of length n. For any
codeword c = (c0, ..., cn−1) the Lee weight of c is defined
as wL (c) =

∑n−1
i=0 wL (ci) and the Lee distance of C is

defined as dL (C) = min dL (c, ć) , where for any ć ∈ C,
c 6= ć and dL (c, ć) is Lee distance between two codewords
with dL (c, ć) = wL (c− ć) . Gray map φ can be extended to
map from Rn to Z3n

3 .

Theorem 1: The Gray map φ is a weight preserving map
from (Rn,Lee weight) to

(
Z3n
3 ,Hamming weight

)
. More-

over it is an isometry from Rn to Z3n
3 .

Theorem 2: If C is an [n, k, dL] linear codes over R then
φ (C) is a [3n, k, dH ] linear codes over Z3, where dH = dL.

Proof: Let x = a1 + vb1 + v2c1, y = a2 + vb2 + v2c2 ∈
R,α ∈ Z3 then

φ (x+ y) = φ
(
a1 + a2 + v (b1 + b2) + v2 (c1 + c2)

)
= (a1 + a2, a1 + a2 + b1 + b2 + c1 + c2, a1 + a2 +

2(b1 + b2) + c1 + c2)

= (a1, a1 + b1 + c1, a1 + 2b1 + c1) + (a2, a2 + b2 +
c2, a2 + 2b2 + c2)

= φ (x) + φ (y)

φ (αx) = φ
(
αa1 + vαb1 + v2αc1

)
= (αa1, αa1 + αb1 + αc1, αa1 + 2αb1 + αc1)

= α(a1, a1 + b1 + c1, a1 + 2b1 + c1)

= αφ (x)

so φ is linear. As φ is bijective then |C| = |φ (C)|. From
Theorem 1 we have dH = dL.

Theorem 3: If C is self orthogonal, so is φ (C) .
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Proof: Let x = a1 + vb1 + v2c1, y = a2 + vb2 + v2c2
where a1, b1, c1, a2, b2, c2 ∈ Z3. From
x.y = a1a2 + v(a1b2 + b1a2 + b1c2 + c1b2) + v2(a1c2 +
b1b2 + c1a2 + c1c2) if C is self orthogonal, so we have

a1a2 = 0,

a1b2 + b1a2 + b1c2 + c1b2 = 0,

a1c2 + b1b2 + c1a2 + c1c2 = 0.

From
φ (x) .φ (y) = (a1, a1 + b1 + c1, a1 + 2b1 + c1)(a2, a2 + b2 +
c2, a2+2b2+c2) = a1a2+a1a2+a1b2+a1c2+b1a2+b1b2+
b1c2 + c1a2 + c1b2 + c1c2 + a1a2 + 2(a1b2 + b1a2 + b1c2 +
c1b2) + a1c2 + b1b2 + c1a2 + c1c2 = 0
Therefore, we have φ (C) is self orthogonal.

Note that φ (C)
⊥

= φ
(
C⊥
)
. Moreover, if C is self-dual,

so is φ (C) .

Proposition 4: Let φ the Gray map from Rn to Z3n
3 , let

σ be cyclic shift and let ϕ be a map as in the preliminaries.
Then φσ = ϕφ.

Proof: Let ri = ai + vbi + v2ci be the elements of
R for i = 0, 1, ...., n − 1. We have σ (r0, r1, ..., rn−1) =
(rn−1, r0, ..., rn−2) . If we apply φ, we have

φ (σ (r0, ..., rn−1)) = φ(rn−1, r0, ..., rn−2)

= (an−1, ..., an−2, an−1 + bn−1 + cn−1
, ..., an−2 + bn−2 + cn−2, an−1 +

2bn−1 + cn−1, ..., an−2 + 2bn−2 +

cn−2)

On the other hand φ(r0, ..., rn−1) = (a0, ..., an−1, a0 + b0 +
c0, ..., an−1 + bn−1 + cn−1, a0 + 2b0 + c0, ..., an−1 + 2bn−1 +
cn−1). If we apply ϕ, we have ϕ(φ(r0, r1, ..., rn−1)) =
(an−1, ..., an−2, an−1 + bn−1 + cn−1, ..., an−2 + bn−2 +
cn−2, an−1 + 2bn−1 + cn−1, ..., an−2 + 2bn−2 + cn−2). Thus,
φσ = ϕφ.

Proposition 5: Let σ and ϕ be as in the preliminaries. A
code C of length n over R is cyclic code if and only if φ (C)
is quasi cyclic code of index 3 over Z3 with length 3n.

Proof: Suppose C is cyclic code. Then σ (C) = C. If
we apply φ, we have φ (σ (C)) = φ (C) . From Proposition
4, φ (σ (C)) = ϕ (φ (C)) = φ (C) . Hence, φ (C) is a quasi
cyclic code of index 3. Conversely, if φ (C) is a quasi cyclic
code of index 3, then ϕ(φ (C)) = φ (C) . From Proposition 4,
we have ϕ (φ (C)) = φ (σ (C)) = φ (C) . Since φ is injective,
it follows that σ (C) = C.

Proposition 6: Let τs,l be quasi-cyclic shift on R. Let Γ
be as in the preliminaries. Then φτs,l = Γφ.

Proof: Let e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0 ,
..., es−1,l−1) with ei,j = ai,j + vbi,j + v2ci,j where i =
0, 1, ..., s − 1 and j = 0, 1, ..., l − 1. We have τs,l (e) =
(es−1,0, ..., es−1,l−1, e0,0, ..., e0,l−1, ..., es−2,0, ..., es−2,l−1). If
we apply φ, we have

φ(τs,l (e)) = (as−1,0, ..., as−2,l−1, as−1,0 + bs−1,0 + cs−1,0
, ..., as−2,l−1 + bs−2,l−1 + cs−2,l−1, as−1,0 +

2bs−1,0 + cs−1,0, ..., as−2,l−1 + 2bs−2,l−1 +

cs−2,l−1)

On the other hand,

φ(e) = (a0,0, ..., as−1,l−1, a0,0 + b0,0 + c0,0, ..., as−1,l−1 +

bs−1,l−1 + cs−1,l−1, a0,0 + 2b0,0 + c0,0, ..., as−1,l−1
+2bs−1,l−1 + cs−1,l−1)

Γ(ϕ(e)) = (as−1,0, ..., as−2,l−1, as−1,0 + bs−1,0 +
cs−1,0, ..., as−2,l−1 + bs−2,l−1 + cs−2,l−1, as−1,0 + 2bs−1,0 +
cs−1,0, ..., as−2,l−1 + 2bs−2,l−1 + cs−2,l−1). So, we have
ϕτs,l = Γϕ.

Theorem 7: The Gray image of a quasi-cyclic code over
R of length n with index l is a l-quasi cyclic code of index 3
over Z3 with length 3n.

Proof: Let C be a quasi-cyclic code over R of length n
with index l. That is τs,l (C) = C. If we apply φ, we have
φ(τs,l (C)) = φ(C). From the Proposition 6, φ (τs,l (C)) =
φ (C) = Γ (φ (C)). So, φ (C) is a l quasi-cyclic code of index
3 over Z3 with length 3n.

We denote that A1 ⊗ A2 ⊗ A3 = {(a1, a2, a3) : a1 ∈
A1, a2 ∈ A2, a3 ∈ A3} and A1 ⊕A2 ⊕A3 = {a1 + a2 + a3 :
a1 ∈ A1, a2 ∈ A2, a3 ∈ A3}

Let C be a linear code of length n over R. Define

C1 =
{
a ∈ Zn3 : ∃b, c ∈ Zn3 , a+ vb+ v2c ∈ C

}
C2 =

{
a+ b+ c ∈ Zn3 : a+ vb+ v2c ∈ C

}
C3 =

{
a+ 2b+ c ∈ Zn3 : a+ vb+ v2c ∈ C

}
Then C1, C2 and C3 are ternary linear codes of length

n. Moreover, the linear code C of length n over R can be
uniquely expressed as C = (1 + 2v2)C1 ⊕

(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3.

Theorem 8: Let C be a linear code of length n over R.
Then φ (C) = C1 ⊗ C2 ⊗ C3 and |C| = |C1| |C2| |C3| .

Proof: For any (a0, a1, ..., an−1, a0 + b0 + c0, a1 +
b1 + c1, ..., an−1 + bn−1 + cn−1, a0 + 2b0 + c0, a1 + 2b1 +
c1, ..., an−1 + 2bn−1 + cn−1) ∈ φ (C) . Let mi = ai +
vbi + v2ci, i = 0, 1, ..., n − 1. Since φ is a bijection m =
(m0,m1, ...,mn−1) ∈ C. By definitions of C1, C2 and C3

we have (a0, a1, ..., an−1) ∈ C1, (a0 + b0 + c0, a1 + b1 +
c1, ..., an−1 + bn−1 + cn−1) ∈ C2, (a0 + 2b0 + c0, a1 + 2b1 +
c1, ..., an−1 + 2bn−1 + cn−1) ∈ C3. So, (a0, a1, ..., an−1, a0 +
b0+c0, a1+b1+c1, ..., an−1+bn−1+cn−1, a0+2b0+c0, a1+
2b1 + c1, ..., an−1 + 2bn−1 + cn−1) ∈ C1 ⊗ C2 ⊗ C3. That is
φ (C) ⊆ C1 ⊗ C2 ⊗ C3.

On the other hand, for any (a, b, c) ∈ C1 ⊗ C2 ⊗ C3

where a = (a0, a1, ..., an−1) ∈ C1, b = (a0 + b0 +
c0, a1 + b1 + c1, ..., an−1 + bn−1 + cn−1) ∈ C2, c = (a0 +
2b0 + c0, a1 + 2b1 + c1, ..., an−1 + 2bn−1 + cn−1) ∈ C3.
There are x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1),
z = (z0, z1, ..., zn−1) ∈ C such that xi = ai + (v + 2v2)pi,
yi = bi +

(
1 + 2v2

)
qi, zi = ci +

(
2v + 2v2

)
ri where

pi, qi, ri ∈ Z3 and 0 ≤ i ≤ n − 1. Since C is linear
we have m = (1 + 2v2)x +

(
2v + 2v2

)
y +

(
v + 2v2

)
z =

a + v(2b + c) + v2(2a + 2b + 2c) ∈ C. It follows then
φ (m) = (a, b, c), which gives C1 ⊗ C2 ⊗ C3 ⊆ φ (C) .

Therefore, φ (C) = C1 ⊗ C2 ⊗ C3. The second result is
easy to verify.
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Corollary 9: If φ (C) = C1 ⊗ C2 ⊗ C3, then C = (1 +
2v2)C1⊕

(
2v + 2v2

)
C2⊕

(
v + 2v2

)
C3. It is easy to see that

|C| = |C1| |C2| |C3| = 3n−deg(f1)3n−deg(f2)3n−deg(f3)

= 33n−(deg(f1)+deg(f2)+deg(f3))

where f1, f2 and f3 are the generator polynomials of C1, C2

and C3, respectively.

Corollary 10: If G1, G2 and G3 are generator matrices
of ternary linear codes C1, C2 and C3 respectively, then the
generator matrix of C is

G =

 (1 + 2v2)G1(
2v + 2v2

)
G2(

v + 2v2
)
G3

 .
We have

φ(G) =

 φ((1 + 2v2)G1)
φ(
(
2v + 2v2

)
G2)

φ(
(
v + 2v2

)
G3)

 =

[
G1 0 0
0 G2 0
0 0 G3

]
.

Let dL minimum Lee weight of linear code C over R.
Then, dL = dH(φ (C)) = min{dH(C1), dH(C2), dH(C3)}
where dH(Ci) denotes the minimum Hamming weights of
ternary codes C1, C2 and C3, respectively.

As similiar to section 4 in [4] we have the following
Lemma and Examples.

Lemma 11: Let C = 〈f(x)〉 be a negacyclic code of length
n over R and φ (f(x)) = (f1, f2, f3) with deg(gcd(f1, x

n +
1)) = n−k1,deg(gcd(f2, x

n+1)) = n−k2,deg(gcd(f3, x
n+

1)) = n− k3. Then, |C| = 3k1+k2+k3 .

Example 12: Let C = 〈f(x)〉 = 〈(2v+2v2)x2+(1+2v+
2v2)x + 1〉 be a negacyclic code of length 3 over R. Hence,
φ(f(x)) = (x+ 1, x2 + 2x+ 1, x+ 1) and

f1 = gcd(x+ 1, x3 + 1) = x+ 1

f2 = gcd(x2 + 2x+ 1, x3 + 1) = x2 + 2x+ 1

f3 = gcd(x+ 1, x3 + 1) = x+ 1

So we have |C| = 32+1+2 = 35.

Example 13: Let C = 〈f(x)〉 = 〈v2x4 + vx3 + (1 +
2v2)x2 + 2vx+ 1〉 be a negacyclic code of length 10 over R.
Hence, φ(f(x)t) = (x2+1, x4+x3+2x+1, x4+2x3+x+1)
and

f1 = gcd(x2 + 1, x10 + 1) = x2 + 1

f2 = gcd(x4 + x3 + 2x+ 1, x10 + 1) = x4 + x3 + 2x+ 1

f3 = gcd(x4 + 2x3 + x+ 1, x10 + 1) = x4 + 2x3 + x+ 1

So we have |C| = 38+6+6 = 320.

Let hi(x) = (xn + 1)/(gcd(xn + 1, fi)). Hence, C⊥ =〈
φ−1 (h1R(x), h2R(x), h3R(x))

〉
where hiR(x) be the recipro-

cal polynomial of hi(x) for i = 1, 2, 3. By using the previous

Example 13,

C⊥ =
〈
φ−1 (h1R(x), h2R(x), h3R(x))

〉
= 〈φ−1(x8 + 2x6 + x4 + 2x2 + 1, x6 + x5 + x4 + x2

+2x+ 1, x6 + 2x5 + x4 + x2 + x+ 1)〉
= 〈(1 + 2v2)x8 + (2 + 2v2)x6 + vx5 + x4

+(2 + 2v2)x2 + 2vx+ 1〉

IV. QUANTUM CODES FROM CYCLIC (NEGACYCLIC)
CODES OVER R

Theorem 14: Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q
be linear codes over GF(q) with C⊥2 ⊆ C1. Furthermore,
let d = min{wt(v) : v ∈ (C1\C⊥2 ) ∪ (C⊥2 \C1)} ≥
min{d1, d2}.Then there exists a quantum error-correcting code
C = [n, k1 + k2 − n, d]q.In particular, if C⊥1 ⊆ C1, then there
exists a quantum error-correcting code C = [n, n − 2k1, d1],
where d1 = min{wt(v) : v ∈ (C⊥1 \C1)} [16].

Proposition 15: Let C = (1 + 2v2)C1 ⊕
(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3 be a linear code over R. Then C is a cyclic code

over R iff C1, C2 and C3 are cyclic codes.

Proof: Let (a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈
C2 and (c0, c1, ..., cn−1) ∈ C3. Assume that mi = (1 +
2v2)ai +

(
2v + 2v2

)
bi +

(
v + 2v2

)
ci for i = 0, 1, ..., n −

1. Then (m0,m1, ...,mn−1) ∈ C. Since C is a cyclic
code, it follows that (mn−1,m0, ...,mn−2) ∈ C. Note that
(mn−1,m0, ...,mn−2) = (1+2v2)(an−1, a0, ..., an−2)+(2v+
2v2)(bn−1, b0, ..., bn−2)+(v+2v2)(cn−1, c0, ..., cn−2). Hence
(an−1, a0, ..., an−2) ∈ C1, (bn−1, b0, ..., bn−2) ∈ C2 and
(cn−1, c0, ..., cn−2) ∈ C3. Therefore,C1, C2 and C3 cyclic
codes over Z3.

Conversely, suppose that C1, C2 and C3 cyclic
codes over Z3. Let (m0,m1, ...,mn−1) ∈ C where
mi = (1 + 2v2)ai +

(
2v + 2v2

)
bi +

(
v + 2v2

)
ci

for i = 0, 1, ..., n − 1. Then (a0, a1, ..., an−1) ∈
C1, (b0, b1, ..., bn−1) ∈ C2 and (c0, c1, ..., cn−1) ∈
C3. Note that (mn−1,m0, ...,mn−2) = (1 +
2v2)(an−1, a0, ..., an−2) +

(
2v + 2v2

)
(bn−1, b0, ..., bn−2) +(

v + 2v2
)

(cn−1, c0, ..., cn−2) ∈ C = (1 + 2v2)C1 ⊕(
2v + 2v2

)
C2 ⊕

(
v + 2v2

)
C3. So, C is cyclic code over R.

Proposition 16: Let C = (1 + 2v2)C1 ⊕
(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3 be a linear code over R. Then C is a negacyclic

code over R iff C1, C2 and C3 are negacyclic codes.

Proof: Let (a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈
C2 and (c0, c1, ..., cn−1) ∈ C3 . Assume that
mi = (1 + 2v2)ai +

(
2v + 2v2

)
bi +

(
v + 2v2

)
ci for

i = 0, 1, ..., n−1. Then (m0,m1, ...,mn−1) ∈ C. Since C is a
negacyclic code, it follows that (−mn−1,m0, ...,mn−2) ∈ C.
Note that (−mn−1,m0, ...,mn−2) = (1 +
2v2)(−an−1, a0, ..., an−2)+(2v+2v2)(−bn−1, b0, ..., bn−2)+
(v+2v2)(−cn−1, c0, ..., cn−2). Hence (−an−1, a0, ..., an−2) ∈
C1, (−bn−1, b0, ..., bn−2) ∈ C2 and (−cn−1, c0, ..., cn−2) ∈
C3. Therefore, C1, C2 and C3 negacyclic codes over Z3.

Conversely, suppose that C1, C2 and C3 negacyclic
codes over Z3. Let (m0,m1, ...,mn−1) ∈ C where
mi = (1 + 2v2)ai + (2v + 2v2)bi + (v + 2v2)ci
for i = 0, 1, ..., n − 1. Then (a0, a1, ..., an−1) ∈ C1,
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(b0, b1, ..., bn−1) ∈ C2 and (c0, c1, ..., cn−1) ∈ C3.
Note that (−mn−1,m0, ...,mn−2) = (1 +
2v2)(−an−1, a0, ..., an−2)+(2v+2v2)(−bn−1, b0, ..., bn−2)+
(v + 2v2)(−cn−1, c0, ..., cn−2) ∈ C = (1 + 2v2)C1 ⊕ (2v +
2v2)C2 ⊕ (v + 2v2)C3. So, C is negacyclic code over R.

Proposition 17: Suppose C = (1 + 2v2)C1 ⊕(
2v + 2v2

)
C2 ⊕

(
v + 2v2

)
C3 is a cyclic (negacyclic)

code of length n over R. Then

C =< (1 + 2v2)f1,
(
2v + 2v2

)
f2,
(
v + 2v2

)
f3 >

and |C| = 33n−(deg f1+deg f2+deg f3) where f1, f2 and f3
generator polynomials of C1, C2 and C3 respectively.

Proposition 18: Suppose C is a cyclic (negacyclic) code
of length n over R, then there is a unique polynomial f (x)
such that C = 〈f (x)〉 and f (x) | xn−1 (f (x) | xn+1) where
f (x) = (1+2v2)f1(x)+

(
2v + 2v2

)
f2(x)+

(
v + 2v2

)
f3(x).

Proposition 19: Let C be a linear code of length n over
R, then C⊥ = (1+2v2)C⊥1 ⊕

(
2v + 2v2

)
C⊥2 ⊕

(
v + 2v2

)
C⊥3 .

Furthermore, C is self-dual code iff C1, C2 and C3 are self-
dual codes over Z3.

Proposition 20: If C = (1 + 2v2)C1 ⊕
(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3 is a cyclic (negacyclic) code of length n over R.

Then

C⊥ =
〈
(1 + 2v2)h∗1 +

(
2v + 2v2

)
h∗2 +

(
v + 2v2

)
h∗3
〉

and
∣∣C⊥∣∣ = 3deg f1+deg f2+deg f3 where for i = 1, 2, 3,

h∗i are the reciprocal polynomials of hi i.e., hi (x) =
(xn − 1) /fi (x) ,(hi (x) = (xn + 1) /fi (x)), h∗i (x) =
xdeg hihi

(
x−1

)
for i = 1, 2, 3.

Lemma 21: A ternary linear cyclic (negacyclic) code C
with generator polynomial f (x) contains its dual code iff

xn − 1 ≡ 0 (modff∗) , (xn + 1 ≡ 0 (modff∗) )

where f∗ is the reciprocal polynomial of f .

Theorem 22: Let C = 〈(1 + 2v2)f1, (2v + 2v2)f2, (v +
2v2)f3〉 be a cyclic (negacyclic ) code of length n over R. Then
C⊥ ⊆ C iff xn − 1 ≡ 0 (modfif

∗
i ) (xn + 1 ≡ 0 (modfif

∗
i ))

for i = 1, 2, 3.

Proof: Let xn − 1 ≡ 0 (modfif
∗
i ) (xn + 1 ≡

0 (modfif
∗
i )) for i = 1, 2, 3. Then C⊥1 ⊆ C1, C

⊥
2 ⊆

C2, C
⊥
3 ⊆ C3. By using (1 + 2v2)C⊥1 ⊆ (1 +

2v2)C1,
(
2v + 2v2

)
C⊥2 ⊆

(
2v + 2v2

)
C2,

(
v + 2v2

)
C⊥3 ⊆(

v + 2v2
)
C3. We have (1 + 2v2)C⊥1 ⊕

(
2v + 2v2

)
C⊥2 ⊕(

v + 2v2
)
C⊥3 ⊆ (1+2v2)C1⊕

(
2v + 2v2

)
C2⊕

(
v + 2v2

)
C3.

So, 〈(1 + 2v2)h∗1 +
(
2v + 2v2

)
h∗2 +

(
v + 2v2

)
h∗3〉 ⊆ 〈(1 +

2v2)f1,
(
2v + 2v2

)
f2,
(
v + 2v2

)
f3〉. That is C⊥ ⊆ C.

Conversely, if C⊥ ⊆ C, then (1 + 2v2)C⊥1 ⊕(
2v + 2v2

)
C⊥2 ⊕

(
v + 2v2

)
C⊥3 ⊆ (1 + 2v2)C1 ⊕(

2v + 2v2
)
C2 ⊕

(
v + 2v2

)
C3. By thinking mod(1 +

2v2),mod
(
2v + 2v2

)
and mod

(
v + 2v2

)
respectively we

have C⊥i ⊆ Ci for i = 1, 2, 3. Therefore, xn − 1 ≡
0 (modfif

∗
i ) (xn + 1 ≡ 0 (modfif

∗
i )) for i = 1, 2, 3.

Corollary 23: C = (1 + 2v2)C1 ⊕
(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3 is a cyclic (negacyclic) code of length n over

R. Then C⊥ ⊆ C iff C⊥i ⊆ Ci for i = 1, 2, 3.

Example 24: Let n = 6, R = Z3 + vZ3 + v2Z3, v
3 = v.

We have x6 − 1 = (2x2 + 2)(x2 + 2)(2x2 + 1) = f1f2f3 in
Z3 [x]. Hence,

f∗1 = 2x2 + 2 = f1
f∗2 = 2x2 + 1 = f3
f∗3 = x2 + 2 = f2

Let C =
〈
(1 + 2v2)f2,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3
〉
. Ob-

viously x6− 1 is divisibly by fif∗i for i = 2, 3. Thus we have
C⊥ ⊆ C.

Example 25: Let n = 10, R = Z3 + vZ3 + v2Z3, v
3 = v.

We have x10+1 = (x2+1)(x4+x3+2x+1)(x4+2x3+x+1) =
g1g2g3 in Z3 [x]. Hence,

g∗1 = x2 + 1 = g1
g∗2 = x4 + 2x3 + x+ 1 = g3
g∗3 = x4 + x3 + 2x+ 1 = g2

Let C =
〈
(1 + 2v2)g2,

(
2v + 2v2

)
g2,
(
v + 2v2

)
g3
〉
. Ob-

viously x10 +1 is divisibly by gig∗i for i = 2, 3. Thus we have
C⊥ ⊆ C.

Theorem 26: Let C be linear code of length n over R with
|C| = 33k1+2k2+k3 and minimum distance d. Then φ (C) is
ternary linear [3n, 3k1 + 2k2 + k3, d] code.

Using Theorem 14 and Theorem 22 we can construct
quantum codes.

Theorem 27: Let (1 + 2v2)C1 ⊕
(
2v + 2v2

)
C2 ⊕(

v + 2v2
)
C3 be a cyclic (negacyclic) code of arbitrary length

n over R with type 27k19k23k3 . If C⊥i ⊆ Ci where i = 1, 2, 3
then C⊥ ⊆ C and there exists a quantum error-correcting
code with parameters [[3n, 2(3k1 + 2k2 + k3)− 3n, dL]]
where dL is the minimum Lee weights of C.

Example 28: Let n = 6. We have x6−1 = (2x2+2)(x2+
2)(2x2+1) in Z3 [x] . Let f1 (x) = f2 (x) = x2+2, f3 = 2x2+
1. Thus C =< (1 + 2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3 >.

C is a linear cyclic code of length 6.The dual code C⊥ =〈
(1 + 2v2)h∗1,

(
2v + 2v2

)
h∗2,
(
v + 2v2

)
h∗3
〉

can be obtained
of Proposition 20. Clearly, C⊥ ⊆ C. Hence, we obtain a
quantum code with parameters [[18, 6, 2]] .

Example 29: Let n = 8. We have x8 − 1 = (x +
1)(x + 2)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2) in Z3 [x] . Let
f1 (x) = f2 (x) = f3 (x) = x2 + 1. Thus C = 〈(1 +
2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3〉. C is a linear cyclic code

of length 8. Hence, we obtain a quantum code with parameters
[[24, 12, 2]] .

Example 30: Let n = 12. We have x12 − 1 =

(x− 1)
3 (
x3 + x2 + x+ 1

)3
in Z3 [x] . Let f1 (x) = f2 (x) =

f3 (x) = x3 + x2 + x + 1.Thus C = 〈(1 +
2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3〉. C is a linear cyclic code

of length 12. The dual code C⊥ = 〈(1 + 2v2)h∗1, (2v +
2v2)h∗2, (v + 2v2)h∗3〉 can be obtained of Proposition 20.
Clearly, C⊥ ⊆ C. Hence, we obtain a quantum code with
parameters [[36, 18, 2]] .

Let n = 27. We have x27 − 1 = (x − 1)3(x3 − 1)4(x6 −
2x3+1)2 in Z3[x]. Let f1(x) = f2(x) = f3(x) = x6−2x3+1.
Hence, we obtain a quantum code with parameters [[81, 45, 2]] .
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Let n = 30. We have x30 − 1 = (x2 + 2)3(x4 +
x3 + x2 + x + 1)3(x4 + 2x3 + x2 + 2x + 1)3 in
Z3 [x] . Let f1 (x) = f3 (x) = x4 + x3 + x2 + x + 1,
f2 (x) = x4 +2x3 +x2 +2x+1. Hence, we obtain a quantum
code with parameters [[90, 66, 2]] .

Example 31: Let n = 3. We have x3 + 1 = (x+ 1)
3

in Z3 [x] . Let f1 (x) = f2 (x) = f3 (x) = x + 1. Thus
C =

〈
(1 + 2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3
〉
. C is a linear

negacyclic code of length 3. The dual code C⊥ =< (1 +
2v2)h∗1, (2v + 2v2)h∗2,

(
v + 2v2

)
h∗3 > can be obtained of

Proposition 20. Clearly, C⊥ ⊆ C. Hence, we obtain a quantum
code with parameters [[9, 3, 2]] .

Example 32: Let n = 10. We have x10 + 1 = (x2 +
1)(x4 + x3 + 2x + 1)(x4 + 2x3 + x + 1) in Z3 [x] . Let
f1 (x) = x4+x3+2x+1, f2 (x) = f3 (x) = x4+2x3+x+1.
Thus C =

〈
(1 + 2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3
〉
. C is a

linear negacyclic code of length 10. The dual code C⊥ =〈
(1 + 2v2)h∗1,

(
2v + 2v2

)
h∗2,
(
v + 2v2

)
h∗3
〉

can be obtained
of Proposition 20. Clearly, C⊥ ⊆ C. Hence, we obtain a
quantum code with parameters [[30, 6, 4]] .

Example 33: Let n = 12. We have x12+1 = (x4+1)(x2+
x+2)(x2 +2x+2)(2x2 +2x+1

(
2x2 + x+ 1

)
in Z3 [x] . Let

f1 (x) = x2+x+2, f2 (x) = 2x2+x+1, f3 (x) = x2+2x+2.
Thus C =

〈
(1 + 2v2)f1,

(
2v + 2v2

)
f2,
(
v + 2v2

)
f3
〉
. C is a

linear negacyclic code of length 12. The dual code C⊥ =<
(1+2v2)h∗1,

(
2v + 2v2

)
h∗2,
(
v + 2v2

)
h∗3 > can be obtained of

Proposition 20. Clearly, C⊥ ⊆ C. Hence, we obtain a quantum
code with parameters [[36, 24, 2]] .

V. CONSTACYCLIC CODES OVER R

Let λ = α + βv + γv2 be unit element of R. Note that
λn = 1 if n even λn = λ if n odd. So we only study λ-
constacyclic codes of odd length.

Proposition 34: Let % be the map of R [x] / 〈xn − 1〉 into
R [x] / 〈xn − λ〉 defined by %(a(x)) = a(λx). If n is odd, then
% is a ring isomorphism.

Proof: The proof is straightforward if n is odd,
a(x) ≡ b(x)(mod(xn − 1)) iff a(λx) ≡ b(λx)(mod(xn − λ))

Corollary 35: I is an ideal of R [x] / 〈xn − 1〉 if and only
if %(I) is an ideal of R [x] / 〈xn − λ〉 .

Corollary 36: Let % be the permutation of Rn with n odd,
such that %(a0, a1, ..., an−1) = (a0, λa1, λ

2a2..., λ
n−1an−1)

and C be a subset of Rn then C is a linear cyclic code iff
%(C) is a linear λ-constacyclic code.

Corollary 37: C is a cyclic code of parameters (n, 3k, d)
over R iff %(C) is a λ-constacyclic code of parameters
(n, 3k, d) over R, when n is odd.

Theorem 38: Let λ be a unit in R. Let C = (1+2v2)C1⊕(
2v + 2v2

)
C2⊕

(
v + 2v2

)
C3 be a linear code of length n over

R. Then C is a λ-constacyclic code of length n over R iff Ci
are either cyclic codes or negacyclic codes of length n over
Z3 for i = 1, 2, 3.

Proof: Let ν be the λ-constacyclic shift on Rn.
Let C be a λ-constacyclic code of length n over R.Let

(a0, a1, ..., an−1) ∈ C1, (b0, b1, ..., bn−1) ∈ C2 and
(c0, c1, ..., cn−1) ∈ C3. Then the corresponding element of C
is (m0,m1, ...,mn−1) = (1 + 2v2)(a0, a1, ..., an−1) + (2v +
2v2)(b0, b1, ..., bn−1)+(v+2v2)(c0, c1, ..., cn−1). Since C is a
λ-constacyclic code so, ν(m) = (λmn−1,m0, ...,mn−2) ∈ C
where mi = ai + biv + v2ci for i = 0, 1, ..., n − 1. Let
λ = α + vβ + v2γ, where α, β, γ ∈ Z3. ν(m) = (1 +
2v2)(λan−1, a0, ..., an−2) + (2v+ 2v2)(λbn−1, b0, ..., bn−2) +
(v+2v2)(λcn−1, c0, ..., cn−2). Since the units of Z3 are 1 and
−1, so α = +1. Therefore we have obtained the desired result.
The other side it is seen easily.

VI. SKEW CODES OVER R

We are interested in studying skew codes using the ring
R = Z3 + vZ3 + v2Z3 where v3 = v. We define non-trivial
ring automorphism θ on the ring R by θ

(
a+ vb+ v2c

)
=

a+ 2bv + v2c for all a+ vb+ v2c ∈ R.

The ring R[x, θ] = {a0 + a1x+ ...+ an−1x
n−1 : ai ∈ R,

n ∈ N} is called a skew polynomial ring. This ring is a non-
commutative ring. The addition in the ring R[x, θ] is the usual
polynomial addition and multiplication is defined using the
rule, (axi)(bxj) = aθi(b)xi+j . Note that θ2(a) = a for all
a ∈ R. This implies that θ is a ring automorphism of order 2.

Definition 39: A subset C of Rn is callled a skew cyclic
code of length n if C satisfies the following conditions,
i) C is a submodule of Rn,
ii) If c = (c0, c1, ..., cn−1) ∈ C, then σθ (c) =(
θ(cn−1), θ(c0), ..., θ(cn−2)) ∈ C.

Let f(x) + (xn − 1) be an element in the set Rn =
R [x, θ] /(xn−1) and let r(x) ∈ R [x, θ]. Define multiplication
from left as follows,

r(x)(f(x) + (xn − 1)) = r(x)f(x) + (xn − 1)

for any r(x) ∈ R [x, θ].

Theorem 40: Rn is a left R [x, θ]-module where multipli-
cation defined as in above.

Theorem 41: A code C in Rn is a skew cyclic code if
and only if C is a left R [x, θ]-submodule of the left R [x, θ]-
module Rn.

Theorem 42: Let C be a skew cyclic code in Rn and let
f(x) be a polynomial in C of minimal degree. If f(x) is monic
polynomial, then C = (f(x)) where f(x) is a right divisor of
xn − 1.

Theorem 43: A module skew cyclic code of length
n over R is free iff it is generated by a monic
right divisor f(x) of xn − 1. Moreover, the set
{f(x), xf(x), x2f(x), ..., xn−deg(f(x))−1f(x)} forms a
basis of C and the rank of C is n− deg(f(x)).

Theorem 44: Let n be odd and C be a skew cyclic code
of length n. Then C is equivalent to cyclic code of length n
over R.

Proof: Since n is odd, gcd(2, n) = 1. Hence there exist
integers b, c such that 2b + nc = 1. So 2b = 1 − nc = 1 +
zn where z > 0. Let a(x) = a0 + a1x + ... + an−1x

n−1

be a codeword in C. Note that x2ba(x) = θ2b(a0)x1+zn +
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θ2b(a1)x2+zn + ... + θ2b(an−1)xn+zn = an−1 + a0x + ... +
an−2x

n−2 ∈ C. Thus C is a cyclic code of length n.

Corollary 45: Let n be odd. Then the number of distinct
skew cyclic codes of length n over R is equal to the number of
ideals in R [x] /(xn− 1) because of Theorem 44. If xn− 1 =∏r
i=0 p

si
i (x) where pi(x) are irreducible polynomials over Z3.

Then the number of distinct skew cyclic codes of length n over
R is

∏r
i=0(si + 1)3.

Example 46: Let n = 27 and f(x) = x3 − 1. Then f(x)
generates a skew cyclic codes of length 27. This code is
equivalent to a cyclic code of length 27. Since x27 − 1 =
(x−1)3(x3−1)4(x6−2x3 +1)2, it follows that there are 603

skew cyclic code of length 27.

Definition 47: A subset C of Rn is called a skew quasi-
cyclic code of length n if C satisfies the following conditions,
i) C is a submodule of Rn,
ii) If e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, .., es−1,l−1)
∈ C, then
τθ,s,l (e) = (θ(es−1,0), ..., θ(es−1,l−1), θ(e0,0), ..., θ(e0,l−1), ...,
θ(es−2,0), ..., θ(es−2,l−1)) ∈ C.

We note that xs − 1 is a two sided ideal in R [x, θ] if m|s
where m is the order of θ and equal to two. So R [x, θ] /(xs−
1) is well defined.

The ring Rls = (R [x, θ] /(xs − 1))l is a left Rs =
R [x, θ] /(xs − 1) module by the following multiplication on
the left f(x)(g1(x), ..., gl(x)) = (f(x)g1(x), ...f(x)gl(x)). If
the map γ is defined by

γ : Rn −→ Rls

(e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) 7→
(e0(x), ..., el−1(x)) such that ej(x) =

∑s−1
i=0 ei,jx

i ∈ Rls
where j = 0, 1, ..., l − 1 then the map γ gives a one to one
correspondence Rn and the ring Rls.

Theorem 48: A subset C of Rn is a skew quasi-cyclic code
of length n = sl and index l if and only if γ(C) is a left Rs-
submodule of Rls.

A code C is said to be skew constacyclic if C
is closed the under the skew constacyclic shift σθ,λ
from Rn to Rn defined by σθ,λ ((c0, c1, ..., cn−1)) =
(θ (λcn−1) , θ (c0) , ..., θ (cn−2)) .

Privately, such codes are called skew cyclic and skew
negacyclic codes when λ is 1 and −1, respectively.

Theorem 49: A code C of length n over R is skew
constacyclic iff the skew polynomial representation of C is
a left ideal in R [x, θ] /(xn − λ).

VII. THE GRAY IMAGES OF SKEW CODES OVER R

Proposition 50: Let σθ be the skew cyclic shift on Rn, let
φ be the Gray map from Rn to Z3n

3 and let ϕ be as in the
preliminaries. Then φσθ = ρϕφ where ρ(x, y, z) = (x, z, y)
for every x, y, z ∈ Zn3 .

Proof: Let ri = ai + vbi + v2ci be the elements of
R, for i = 0, 1, ...., n − 1. We have σθ (r0, r1, ..., rn−1) =

(θ(rn−1), θ(r0), ..., θ(rn−2)) . If we apply φ, we have

φ (σθ (r0, ..., rn−1)) = φ(θ(rn−1), θ(r0), ..., θ(rn−2))

= (an−1, ..., an−2, an−1 + 2bn−1 +

cn−1, ..., an−2 + 2bn−2 + cn−2,

an−1 + bn−1 + cn−1, ..., an−2 +

bn−2 + cn−2)

On the other hand, φ(r0, ..., rn−1) = (a0, ..., an−1, a0 + b0 +
c0, ..., an−1 + bn−1 + cn−1, a0 + 2b0 + c0, ..., an−1 + 2bn−1 +
cn−1). If we apply ϕ, we have

ϕ (φ (r0, r1, ..., rn−1)) = (an−1, ..., an−2, an−1 +
bn−1 + cn−1, ..., an−2 + bn−2 + cn−2, an−1 + 2bn−1 +
cn−1, ..., an−2 + 2bn−2 + cn−2). If we apply ρ, we have
ρ(ϕ (φ (r0, r1, ..., rn−1))) = (an−1, ..., an−2, an−1 + 2bn−1 +
cn−1, ..., an−2+2bn−2+cn−2, an−1+bn−1+cn−1, ..., an−2+
bn−2 + cn−2). So, we have φσθ = ρϕφ.

Theorem 51: The Gray image a skew cyclic code over R
of length n is permutation equivalent to quasi-cyclic code of
index 3 over Z3 with length 3n.

Proof: Let C be a skew cyclic codes over S of length n.
That is σθ(C) = C. If we apply φ, we have φ(σθ(C)) = φ(C).
From the Proposition 50, φ(σθ(C)) = φ(C) = ρ(ϕ(φ(C))).
So, φ(C) is permutation equivalent to quasi-cyclic code of
index 3 over Z3 with length 3n.

Proposition 52: Let τθ,s,l be skew quasi-cyclic shift on
Rn, let φ be the Gray map from Rn to Z3n

3 , let Γ be as
in the preliminaries, let ρ be as above. Then φτθ,s,l = ρΓφ.

Theorem 53: The Gray image a skew quasi-cyclic code
over R of length n with index l is permutation equivalent to l
quasi-cyclic code of index 3 over Z3 with length 3n.

Proposition 54: Let σθ,λ be skew constacyclic shift on Rn,
let φ be the Gray map from Rn to Z3n

3 , let ρ be as above.
Then φν = ρφσθ,λ.

Theorem 55: The Gray image a skew constacyclic code
over R of length n is permutation equivalent to the Gray image
of a constacyclic code over Z3 with length 3n.

The proofs of Proposition 52, 54 and Theorem 53, 55 are
similiar to the proofs Proposition 50 and Theorem 51.

VIII. QUASI-CONSTACYCLIC AND SKEW
QUASI-CONSTACYCLIC CODES OVER R

Let Ms = R [x] / 〈xs − λ〉 where λ is a unit element of
R.

Definition 56: A subset C of Rn is a called a quasi-
constacyclic code of length n = ls with index l if
i) C is a submodule of Rn,
ii) if e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1)
∈ C then
∇λ,l (e) = (λes−1,0, ..., λes−1,l−1, e0,0, ..., e0,l−1, e1,0, ..., e1,l−1
, ..., es−2,0, ..., es−2,l−1) ∈ C.
When λ = 1 the quasi-constacyclic codes are just quasi-cyclic
codes.

Since xs − λ = f1(x)f2(x)...fr(x), it follows that
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(R [x] /(xs−λ))l ∼= (R [x] /(f1(x)))l×(R [x] /(f2(x)))l×
...× (R [x] /(fr(x)))l.

Every submodule of (R [x] /(xs − λ))l is a direct product
of submodules of (R [x] /(ft(x)))l for 1 ≤ t ≤ r.

Theorem 57: If (s, 3) = 1 then a quasi-constacyclic code
of length n = sl with index l over R is a direct product of
linear codes over R [x] /(ft(x)) for 1 ≤ t ≤ r.

Let xs − λ = f1(x)f2(x)...fr(x) be the factorization of
xs−λ into irreducible polynomials. Thus, if (s, 3) = 1 and Ci
is a linear code of length l over R [x] /(ft(x)) for 1 ≤ t ≤ r,
then

∏r
t=1 Ct is a quasi-constacyclic code of length n = sl

over R with
∏r
t=1 |Ct| codewords.

Define a map χ : Rn → M l
s by χ (e) =

(e0 (x) , e1 (x) , ..., el−1 (x)) where ej (x) =
∑s−1
i=o eijx

i ∈
Ms, j = 0, 1, ..., l − 1.

Lemma 58: Let χ (C) denote the image of C under χ. The
map χ induces a one to one correspondence between quasi-
constacyclic codes over R of length n with index l and linear
codes over Ms of length l.

We define a conjugation map on Ms as one that acts as the
identity on the elements of R and that sends x to x−1 = xs−1,
and extended linearly.

We define on Rn=sl the usual Euclidean inner product for

e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1)

and

c = (c0,0, ..., c0,l−1, c1,0, ..., c1,l−1, ..., cs−1,0, ..., cs−1,l−1)

we define e.c =
∑s−1
i=0

∑l−1
j=0 eijcij .

On M l
s, we define the Hermitian inner product

for a(x) = (a0(x), a1(x), ..., al−1(x)) and b(x) =
(b0(x), b1(x), ..., bl−1(x)),

〈a, b〉 =

l−1∑
j=0

aj(x)bj(x).

Theorem 59: Let e, c ∈ Rn. Then
(
∇kλ,l (e)

)
.c = 0 for

all k = 0, ..., s− 1 iff 〈χ (e) , χ (c)〉 = 0.

Corollary 60: Let C be a quasi-constacyclic code of length
sl with index l over R and χ (C) be its image in M l

s under χ.
Then χ (C)

⊥
= χ

(
C⊥
)
, where the dual in Rsl is taken with

respect to the Euclidean inner product, while the dual in M l
s

is taken with respect to the Hermitian inner product. The dual
of a quasi-constacyclic code of length sl with index l over R
is a quasi-constacyclic code of length sl with index l over .

From [22] we get the following results.

Theorem 61: Let C be a quasi-constacyclic code of length
n=sl with index l over R. Let C⊥ is the dual of C. If C =
C1 ⊕ C2 ⊕ ...⊕ Cr then C⊥ = C⊥1 ⊕ C⊥2 ⊕ ...⊕ C⊥r .

Theorem 62: Let C = C1 ⊕ C2 ⊕ ... ⊕ Cr be a quasi-
constacyclic code of length n=sl with index l over R where
Ct is a free linear code of length l with rank kt over

R [x] /(ft(x))for 1 ≤ t ≤ r. Then C is a κ-generator quasi-
constacyclic code and C⊥ is an (l − κ′)-generator quasi-
constacyclic code where κ = maxt(kt) and κ′ = mint(kt).

Let Mθ,s = R [x, θ] / 〈xs − λ〉 where λ is a unit element
of R. Let θ be an automorphism of R with |〈θ〉| = m = 2.

Definition 63: A subset C of Rn is a called a skew
quasi-constacyclic code of length n = ls,m|s, with index l if
i) C is a submodule of Rn,
ii) if e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1)
∈ C then
∇θ,λ,l (e) = (θ (λes−1,0) , ..., θ (λes−1,l−1) , θ (e0,0) , ..., θ (e0,l−1)
, θ (e1,0) , ..., θ (e1,l−1) , ..., θ (es−2,0) , ..., θ (es−2,l−1)) ∈ C.

When λ = 1 the skew quasi-constacyclic codes are just
skew quasi-cyclic codes.

The ring M l
θ,s is a left Mθ,s module where we de-

fine multiplication from left by f(x)(g1(x), ..., gl(x)) =
(f(x)g1(x), ...f(x)gl(x)).

Define a map Λ : Rn → M l
θ,s by Λ (e) =

(e0 (x) , e1 (x) , ..., el−1 (x)) where ej (x) =
∑s−1
i=o eijx

i ∈
Mθ,s, j = 0, 1, ..., l − 1.

Lemma 64: Let Λ (C) denote the image of C under Λ. The
map Λ induces a one to one correspondence between skew
quasi-constacyclic codes over R of length n with index l and
linear codes over Mθ,s of length l.

Theorem 65: A subset C of Rn is a skew quasi-
constacyclic code of length n = ls with index l iff is a left
submodule of the ring M l

θ,s.

Proof: Let C be a skew quasi-constacyclic code of index
l over R.Suppose that Λ (C) forms a submodule of M l

θ,s.
Λ (C) is closed under addition and scalar multiplication.
Let Λ (e) = (e0 (x) , e1 (x) , ..., el−1 (x)) ∈ Λ (C) for e =
(e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) ∈ C.
Then xΛ (e) ∈ Λ (C) . By linearity it follows that r (x) Λ (e) ∈
Λ (C) for any r(x) ∈Mθ,s. Therefore, Λ (C) is a left module
of M l

θ,s.

Conversely, suppose E is an Mθ,s left submodule of M l
θ,s.

Let C = Λ−1 (E) = {e ∈ Rn : Λ (e) ∈ E} . We claim that
C is a skew quasi-constacyclic code of R. Since Λ is a
isomorphism, C is a linear code of length n over R. Let
e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1) ∈
C. Then Λ (e) = (e0 (x) , e1 (x) , ..., el−1 (x)) ∈ Λ (C) , where
ej (x) =

∑s−1
i=o eijx

i ∈ Mθ,s for j = 0, 1, ..., l − 1. It is easy
to see that Λ (∇θ,λ,l (e)) = x(e0(x), e1(x), ..., el−1 (x)) =
(xe0 (x) , xe1 (x) , ..., xel−1 (x)) ∈ E. Hence ∇θ,λ,l (e) ∈ C.
So, C is a skew quasi-constacyclic code C.

On Rn=sl the usual Euclidean inner product for

e = (e0,0, ..., e0,l−1, e1,0, ..., e1,l−1, ..., es−1,0, ..., es−1,l−1)

and

c = (c0,0, ..., c0,l−1, c1,0, ..., c1,l−1, ..., cs−1,0, ..., cs−1,l−1)

we define e.c =
∑s−1
i=0

∑l−1
j=0 eijcij . We define a conju-

gation map Ω on M l
θ,s such that Ω(cxi) = θ−1(c)xs−1, 0 ≤

i ≤ s − 1, and extended linearly. We define the Hermitian

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 10, 2015 

290 | P a g e
www.ijacsa.thesai.org 



inner product for a = (a0(x), a1(x), ..., al−1(x)) and b =
(b0(x), b1(x), ..., bl−1(x)),

〈a, b〉 =
l−1∑
j=0

aj(x)Ω (bj(x)) .

Theorem 66: Let e, c ∈ Rn. Then
(
∇kθ,λ,l (e)

)
.c = 0 for

all k = 0, ..., s− 1 iff 〈Λ (e) ,Λ (c)〉 = 0.

Proof: Since θs = 1, 〈e, c〉 = 0 is equivalent to

0 =
l−1∑
j=0

ej(x)Ω (cj(x)) =
l−1∑
j=0

(
s−1∑
i=0

eijx
i

)
Ω

(
s−1∑
k=0

ckjx
k

)

=
l−1∑
j=0

(
s−1∑
i=0

eijx
i

)(
s−1∑
k=0

θ−1(ckj)x
s−k

)

=

l−1∑
j=0

 l−1∑
j=0

s−1∑
i=0

ei+h,jθ
h(cij)

xh

where the subscript i + h is taken modulo s. Equat-
ing the coefficients of xh on both sides, we have∑l−1
j=0

∑s−1
i=0 wi+h,jθ

h(cij) = 0, for all 0 ≤ h ≤
s − 1.

∑l−1
j=0

∑s−1
i=0 ei+h,jθ

h(cij) = 0 is equivalent to
θh(∇s−hθ,λ,l (e) .c) = 0 which is further equivalent to
∇s−hθ,λ,l(e, c) = 0, for all 0 ≤ h ≤ s − 1. Since 0 ≤ h ≤
s − 1, condition is equivalent to

(
∇kθ,λ,l (e)

)
.c = 0 for all

k = 0, ..., s− 1.

Corollary 67: Let C be a skew quasi-constacyclic code
of length n = sl with index l over R. Then C⊥ ={
a(x) ∈M l

θ,s : 〈a(x), b(x)〉 = 0, ∀ b(x) ∈ C
}
.

Corollary 68: Let C be a skew quasi-constacyclic code of
length sl with index l over R and Λ (C) be its image in M l

θ,s

under Λ. Then Λ (C)
⊥

= Λ
(
C⊥
)
, where the dual in Rsl

is taken with respect to the Euclidean inner product, while
the dual in M l

θ,s is taken with respect to the Hermitian inner
product. The dual of a skew quasi-constacyclic code of length
sl with index l over R is a skew quasi-constacyclic code of
length sl with index l over R.

Proposition 69: Let ∇θ,λ,l be skew quasi-constacyclic
shift on Rn, let φ be the Gray map from Rn to Z3n

3 . Then
φ∇λ,l = ρφ∇θ,λ,l, where ρ(x, y, z) = (x, z, y) for every
x, y, z ∈ Zn3 .

Proof: The proof is similar to the proof of Proposition
50.

Theorem 70: The Gray image a skew quasi-constacyclic
code over R of length n is permutation equivalent to the Gray
image of a quasi-constacyclic code over Z3 with length 3n.

Proof: The proof is similar to the proof of Theorem 51.

IX. 1-GENERATOR SKEW QUASI-CONSTACYCLIC CODES
OVER R

A 1-generator skew quasi-constacyclic code over R is
a left Mθ,s-submodule of M l

θ,s generated by f(x) =

(f1(x), f2(x), ..., fl(x)) ∈ M l
θ,s has the form C =

{g(x) (f1(x), f2(x), ..., fl(x)) : g(x) ∈Mθ,s} . Define the
following map

Πi : M l
θ,s −→Mθ,s

defined by (e1 (x) , e2 (x) , ..., el (x)) 7−→ ei(x), 1 ≤ i ≤ l.
Let Πi(C) = Ci. Since C is a left Mθ,s-submodule of M l

θ,s,
Ci is a left Mθ,s-submodule of Mθ,s,that is a left ideal of
Mθ,s. Ci is generated by fi(x). Hence Ci is a principal skew
constacyclic code of length n over R. fi(x) is a monic right
divisor of xs − λ that is xs − λ = hi(x)fi(x), 1 ≤ i ≤ l.

A generator of C has the form

f(x) = (g1(x)f1(x), g2(x)f2(x), ..., gl(x)fl(x))

where gi(x) ∈ R[x, θ] such that gi(x) and hi(x) are right
coprime for all 1 ≤ i ≤ l.

Definition 71: Let C = (g1(x)f1(x), g2(x)f2(x), ..., gl(x)
fl(x)) be a skew quasi-constacyclic code of length n = sl
with index l. Then unique monic polynomial

f(x) = gcld(f(x),xs−λ) = gcld(f1(x), f2(x), ..., fl(x), xs−λ)

is called the generator polynomial of C.

Theorem 72: Let C be a 1-generator skew quasi-
constacyclic code of length n = sl with index l over R
generated by f(x) = (f1(x), f2(x), ..., fl(x)) where fi(x) is a
monic divisor of xs − λ. Then C is a R-free code with rank
s−deg(f(x)) where f(x) = gcld(f(x),xs−λ). Moreover, the
set {f(x), xf(x), ..., xn−deg(f(x))−1f(x)} forms an R-basis of
C.

Proof: Since gcld(fi(x), xs − λ) = mi(x), it follows
that f(x) = gcld(m1(x),m2(x), ...,ml(x)) where Πi(C) =
(fi(x)) = (mi(x)) with mi(x)|(xs − λ) for all 1 ≤ i ≤ l.
Let c(x) =

∑n−k−1
i=0 cix

i and c(x)f(x) = 0. Then (xs −
λ)|c(x)fi(x) for all 1 ≤ i ≤ l. Hence (xs−λ)|c(x)fi(x)ci(x)
with gcld(ci(x), x

s−λ
fi(x)

) = 1. That is xs−λ
fi(x)
|c(x) which

implies that xs−λ
f(x) |c(x). Since deg(x

s−λ
f(x) ) = s − k >

deg(c(x)) = n − k − 1, it is follows that c(x) = 0. Thus,
f(x), xf(x), ..., xn−deg(f(x))−1f(x) are R-linear independent.
Further, f(x), xf(x), ..., xn−deg(f(x))−1f(x) generate C. So,{
f(x), xf(x), ..., xn−deg(f(x))−1f(x)

}
forms an R-basis of C.

CONCLUSION

In this paper, we have introduced skew cyclic, skew quasi-
cyclic, skew constacyclic and skew quasi-constacyclic codes
over the finite ring R. By using the Gray map, we have studied
the Gray images of cyclic, quasi-cyclic, constacyclic and their
skew codes over R. We have obtained a representation of a
linear code of length n over R using C1, C2 and C3 which
are linear codes of length n over Z3. We have obtained the
parameters of quantum error-correcting codes from both cyclic
and negacyclic codes over R. We have determined a sufficient
condition for 1-generator skew quasi-constacyclic codes to be
free.
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