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Abstract—Recently image recognition becomes vital task 

using several methods. One of the most interesting used methods 

is using Convolutional Neural Network (CNN).  It is widely used 

for this purpose. However, since there are some tasks that have 

small features that are considered an essential part of a task, then 

classification using CNN is not efficient because most of those 

features diminish before reaching the final stage of classification. 

In this work, analyzing and exploring  essential parameters that 

can influence model performance. Furthermore different elegant 

prior contemporary models are recruited to introduce new 

leveraging model. Finally, a new CNN architecture is proposed 

which achieves state-of-the-art classification results on the 

different challenge benchmarks. The experimented are 

conducted on MNIST, CIFAR-10, and CIFAR-100 datasets.  

Experimental results showed that the results outperform and 

achieve superior results comparing to the most contemporary 

approaches. 

Keywords—Convolutional Neural Network; Image recognition; 

Multiscale input images 

I. INTRODUCTION 

Convolutional Neural Network (CNN) has been widely 
used in many real world applications, including face 
recognition [1, 2], image classification and recognition [3-6] 
and object detection [7] because it is one of the most efficient 
methods for extracting critical features for non-trivial tasks. 
CNN consists of a pipeline of alternative several different 
layers. Unlike neural network, CNN has three different types 
of layers which are considered a constituent element of CNN. 
Usually, Convolutional layer, subsampling layers, and fully 
connected layer are the main components of CNN. Also, there 
are some intermediate layers between those main layers that 
will be shown later.  Then for a given task, images are passed 
into CNN to be processed. Passing images through several 
squish functions incorporated within CNN layers can lead to 
not leveraging some critical information used for recognition 
and some of the small features disappear after few layers. The 
reason for that is because the CNN architecture that implies 
like those restrictions. Specifically, both convolutional layers 
and max-pooling layers impose diminishing small features. To 
implement a robust model, small features must survive for 
long stages of CNN. To alleviate weaknesses inherited from 
former CNN models, in this work, different parameters that 
can influence features surviving for longer distance are 
explored. Deeper analysis for convolutional and max-pooling 
layers are presented, and then we introduce a model that has 

more chance for small features to survive until the final stage 
of CNN; specifically directly before fully connected layer. 

The rest of the paper will be into five sections. In section 
II, prior works are presented. The most recent contemporary 
works are obtained. Then in section III, motivation and 
contribution of this work are introduced. The answer for 
questions, what have proposed and why it is proposed are 
presented in this part. Then in section IV, deploying different 
CNN architectures are presented.  Different CNN structures 
are obtained in this section. Finally, experimental setup and 
conclusion are presented. 

II. RELATED WORK 

The most dominant recent works achieved using CNN is a 
challenge work introduced by Alex Krizhevsky et al. [8] used 
CNN for challenge classification ImageNet. Various other 
techniques are proposed later to enhance CNN performance as 
demonstrated in [9, 10, 11, 12]. Recently vast works have 
been proposed to improve image recognition accuracy results 
using different methods. Thus several proposed methods are 
proposed for variety of applications such as image recognition 
[13, 14, 15, 16, 8], object detection [17, 18, 19], scene labeling 
[20], segmentation [21, 22], and variety of other tasks [23, 24, 
25].  In addition, image recognition can be accomplished 
using different other approaches such as Pedro F. 
Felzenszwalb et al. [26] proposed a method for image 
recognition using Deformable Part Models (DPM). Further 
works are devoted using different strategies of using DPM as 
demonstrated in [27, 28, 29]. Varity of other methods are used 
for image classification such as SVM [30, 31, 32, 33], 
boosting [34], spatial pyramid matching [35] and different 
other works described in [36-39]. 

III. MOTIVATION AND CONTRIBUTION 

The state-of-the-art of image recognition specifically 
achieved on CIFAR-10, CIFAR-100, and MNIST is achieved 
using different technique as proposed in [40, 41, 42]. This 
work has some common procedures with prior works which 
can be described as follows: 

 The first step is applying the pre-processing to the 
input images such as local contrast normalization. 
There are different pre-processing steps that can be 
applied before input images passed into deep model. In 
this work, pre-processing steps demonstrated by 
Goodfellow et al. [6] is followed. 
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  After pre-processing, images are fed into CNN to be 
trained.  Multi-stage CNN is used to train and extract 
critical features from the input patterns used later to 
final scoring results. In this work different CNN 
architectures are used for training and extracting 
features. Specifically very contemporary works are 
recruited and incorporated for introducing new unified 
model which achieves the state-of-the-art image 
classification on the datasets used in this work. 
Furthermore, a robust CNN is proposed at the end of 
this work which accomplishes superior results 
comparing with recent works. 

 Finally, the final outputs of CNN are evaluated for 
final scoring results. There are different methods to 
score final results of CNN either using SVM or using 
CNN itself by using soft-max layer build on the top of 
CNN. Thus soft-max layer are used in this work to 
evaluate and score the final recognition results. 

One of the most contemporary work used CNN for image 
classification called Network In Network (NIN) introduced in 
[3] achieves superior results over several prior existing models 
that use deep neural network for image recognition because 
NIN uses different connection technique between 
convolutional layers than what is in conventional CNN. 
However, there are several factors that can influence and 
impact model performance leading to degrade model 
accuracy. Thus, in this work NIN will be recruited after 
diminishing its shortcomings. Weaknesses of general CNN 
used for image classification are various such as CNN’s depth, 
width of the network, filter sizes, and network topology. All 
these are vital factors that can highly impact recognition 
accuracy.  Consequently to diminish lethargy inherited from 
CNN architecture; this work endeavors to alleviate 
shortcomings of former networks by eliminating most 
limitations described earlier. Therefore in this work the most 
recent and very efficient methods are ensemble to be used for 
not trivial object recognition tasks. Variety of techniques is 
delved to enhance image recognition. Starting from leveraging 
models proposed in [3, 17] both models have several 
deterministically advantages over prior models as elucidating 
later. Both concrete models are adapted in this work for image 
recognition. In addition, extensive work is deliberated for 
exploring the impact of different parameters that can 
drastically influence model performance. Virtuous model is 
mainly instantiated to overcome drawbacks of prior deep 
neural network architecture used for image recognition. 
Finally a robust paradigm of CNN architecture is proposed at 
the end of this work. It achieves superior results comparing 
with all existing models. 

Elegant CNN architectures are adapted to be used for 
image recognition are originally proposed for image 
classification [3] and object detection [17]. They are 
considered the robust deep neural networks models. It is worth 
mentioning that SPPnet proposed in [17] recruited in this work 
to provide multi-scale input to the image recognition model. 
Consequently, to best of our knowledge that image 
classification such as CIFAR-10, CIFAR0-100, and MNIST 
are trained with this like method. Providing multi-resolution 
input images to CNN enhances CNN accuracy drastically as it 

will be shown later. Furthermore, digging deeper for 
investigating and exploring most influential parameters is also 
devoted. Carefully exploring influential parameters can be 
best suited for mole recognition. Different model architectures 
are extensively analyze and investigated.. After obtaining best 
suited parameters, a robust model is proposed to enhance 
recognition performance. Proposed CNN architecture achieves 
best results and outperforms over most existing models.  The 
proposed model is compared to the prior efficient works 
specifically compared to the prior deep neural network 
models. In addition, the experiments are conducted on 
different benchmarks for evaluation purpose. The experiments 
are mainly conducted on CIFAR-10, CIFAR-100, and MNIST 
datasets. 

IV. DEPLOY DIFFERENT CNN ARCHITECTURES FOR IMAGE 

RECOGNITION 

As illustrated earlier, this work principally is recruited two 
different deep neural network models named NIN and SPPnet 
explored in [3] and [17] respectively and implemented new 
unified model. Next sections start exploring in depth the 
influence and leveraging of incorporating both models on 
network architectures and how they can influence 
classification performance.  Then the unified proposed model 
is an elegant model because it shortens some weaknesses 
inherited from former models. Thus exploring both 
architectures is accomplished next sections to show model’s 
robustness on image classification. 

A. Pipeline Steps of image classification 

The basis CNN architecture is depicted in fig. 1. It 
fundamentally consists of series of stages. Part (a) presents 
images with multiscale to the network. Providing multi-
resolution input is an essential step to gain higher accuracy.  
Part (b) trains the network with fed images. After choosing 
different scales for input images, they will feed to the CNN to 
extract features from different resolutions which increase the 
chance for small features to be enlarged using this technique. 
It is worth mentioning that using multi-scale input images is a 
method showed in [17] to increase object detection accuracy. 
However, we utilize it to be recruited in image recognition 
task. Then, finally part (c) classifies and scores input pattern. 
To look deeper for operations accomplished by CNN, the 
following steps are applied: 

1) Input images are pre-processed using Goodfellow et al. 

[6] to be prepared for the next step. 

2) After pre-processing, input images are fed to CNN. In 

this work a new architecture is proposed as shown in fig. 1. In 

addition, a robust and an efficient code are used for this 

purpose called Caffe [43]. It is very fast implementation which 

can process huge amount of data efficiently. In addition, it is 

very flexible to be easily adapted to different CNN 

architecture. The final layer of CNN has n-dimensional 

feature vector which is used for final classification results, 

where n is the number of classes for a given dataset. 

3) Soft max layer is used for final scoring output. 

However, the length of final feature vector is anticipated to be 

  to match the number of classes. 
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Fig. 1. simple CNN used for image classification 

Fig. 1 describes CNN which has the architecture defined as 
96C-96S-256C-256S-96C-96S-90F-120F-x-softmax, where C 
stands for Convolution layer, S is for subsampling layer, and F 
is for full conned layers. 

It is worth mention that a dropout technique demonstrated 
in [12] is used in this work also to increase model 
performance by enhancing internal parameters and introducing 
more solid model. The accuracy achieved using CNN depicted 
in fig.1 is 0.9953, 0.83, and 0.528 on MNIST, CIFAR-10, and 
CIFAR-100 respectively. It is obvious that this model 
achieves competitive results to the most recent works. Next 
section provides deeper analysis and investigation for 
exploring and proposing more robust model. 

B. Exploring different CNN architectures 

It is obvious that the proposed network in fig. 1 achieves 
competitive results comparing to prior works. In addition, it 
accomplishes results which outperform accomplished work in 
[44] specifically it dominants over deep neural network 
approaches. Moreover, it achieves competitive results to many 
other approaches. The stimulating results are supportive to dig 
deeper and to investigate influential parameters and explore 
more robust model.  In this part, recruited models will be used 

for further investigation and more effort will be put to explore 
more appropriate architecture for image classification. 
Leveraging CNN architecture is proposed in this section used 
for image recognition. It achieves state-of-the-art results on 
given benchmarks. Consequently, more parameters that can 
influence model performance are discussed next. 

This work proposes a new topology for CNN architecture. 
Fig. 2 depicts the proposed model and it has drastically 
changes comparing with one implemented and explored in fig. 
1.  The proposed model inherits some leverage points from 
NIN. Instead of using conventional connection between 
convolutional layers as describe in [12, 9, 10, 11]. the robust 
connection proposed in NIN is incorporated in this work to 
increase and gain more accuracy on image classification. The 
size of CNN is kept the same as depicted in fig.1. The merit of 
this CNN architecture combines more than one elegant 
method such as multi-scale input images and nonlinear 
transformation between convolutional layers as demonstrated 
in [3] as shown in fig. 2. 

To look deeper inside CNN and investigate the most 
critical parameters that can influence model performance. 
Fig.3 shows both convolutional and sub-sampling layers of 
CNN. 

 
Fig. 2. CNN incorporated with two roboust models 

Multi-size input 

image 
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Fig. 3. CNN’s layers (a) convolutional (b) max-pooling 

It is clear the subsequent of alternative between these 
kinds of layers; it quickly diminishes the input images after 
few stages of CNN leading to losing vital information useful 

for final stage of classification. Specifically this work is 
dealing with small image sizes as will be obtained later. All 
the benchmarks used in this work have image sizes of 32x32 
pixels. Consequently the small features will be not available 
after few stages. Therefore an elegant model of CNN 
architecture is proposed in this work as shown in fig. 4. It is 
clear that new model propose different connection than 
standard connection of conventional CNN. Some layers are 
received their connections not only directly from the layer 
below but also from two and three layers below.  The reason 
for this kind of connections because small features within the 
input images can survive longer and will be part of the final 
scoring detection results. Furthermore, the first layers of CNN 
extract global features of input objects but as the images 
advance toward final fully connect layers, more accurate 
features are extracted. 

C. Exploring Different CNN Sizes 

In order to precisely analyze the influence of different 
CNN architectures, a new CNN architecture is proposed and 
carefully selected their parameter because same CNN 
architecture might work sufficiently for some tasks and 
inadequately for other tasks. Hence, in this part different deep 
model architectures is investigated that can fit for

TABLE I.  TWO CNN ARCHITECTURES. THE ABBREVIATION CON REFERS TO CONVOLUTION. XXYXY: X REPRESENTS NUMBER OF FEATURE MAPS AND Y IS 

THE KERNEL SIZE. LRN AND RELU ARE ABBREVIATION FOR LOCAL RESPONSE NORMALIZATION AND RECTIFIED LINEAR UNIT RESPECTIVELY 

Model name  Input size Con1/pool1  Con2/pool2 Con3/pool3 Con4/pool4 Con5/pool5 

Network1 32x32 
192x5x5,str:1, ReLU 256x5x5,str:1, ReLU 192x3x3,str:1, ReLU - - 

2x2, LRN 2x2, LRN 2x2, LRN   - 

Network2 32x32 
192x5x5,str:1, ReLU 256x1x1,str:1, ReLU 384x1x1,str:1, ReLU 256x1x1, str:1, ReLU 192x3x3, str:1, ReLU 

3x2 3x2     Spp layer 

image recognition. Accordingly, CNN architectures are 
explored to be best suited for image classification. There are 
two model architectures are used in our experiments. They are 
shown in table I. In addition to the structure obtained in table 
1, each network has more additional two fully connected 
layers build on the top of the final max-pooling layer. Then 

finally, soft-max layer is built on the top of final fully connect 
layer used for final scoring results.  It is clear that there are 
two CNN architectures detailed in table1 called Network1 and 
Network2. It is obvious that network1 is smaller than the 
network2. Where, network1 consists of three convolutional 
layer and three max-pooling layers. 

 
Fig. 4. CNN with five convoutional layers 

(b) 

(a) 
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V. EXPERIMENTS SETUP 

In order to evaluate the proposed architecture models, 
extensive experiments are conducted on different challenge 
datasets. The most popular datasets are used for evaluation. 
MNIST, CIFAR-10, and CIFAR-100 are the benchmarks used 
in this work. To obtain the challenge accompanied with those 
datasets, next parts explain the related details for the datasets 
such as size number of image samples. It is worth mentioning 
that data augmentation is not used in these experiments. 

A. MNIST dataset 

MNIST [18] is a hand written digits 0-9. The dataset 
consists of 60000 samples. 50000 samples are used for 
training and the rest used for testing. All samples have the 
same size which is 28x28 pixels. The pixels are scaled to be 
between [0, 1] before the training. There is no preprocessing 
or data augmentation used in this work. The first CNN, which 
is named network1, structure is 192C-192S-256C-256S-192C-
192C-200F-128F-10-soft-max, where C stands for 
Convolution layer, S is for subsampling layer, and F is for full 
conned layer. In this dataset, the size of mini-batches is 128 
images. Test accuracy is 0.9961 % for MNIST dataset. This 
result is superior comparing with results [44]. A summary of 
the best published results on MNIST dataset is shown in Table 
II. Network2 which has a structured described as 192C-192S-
256C-256S-384C-256C-192C-192S-400F-128F-10-soft-max 
achieves lower results than the prior model because MNIST 
might not require large network. The result achieved using 
network2 is 0.9958 on MNIST dataset. Comparing with other 
results, Table II shows the final results on MNIST.  From 
Table II, it is obvious that both introduced morels achiever 
better results than what have been accomplished by Hayder et 
al. in [44] using their method hybrid training algorithm called 
Hybrid PSO-SGD   which represent training algorithm using 
Particle Swarm Optimization and Scholastic Gradient 
Descent. 

TABLE II.  RESULTS ON MNIST DATASET 

Method  Ref. # Test Accuracy 

Unsupervised Learning   [21] 0.64 

What is the Best Multi-Stage  [22] 0.53 

2-Layer CNN + 2-Layer NN  [23] 0.53 

Stochastic Pooling   [23] 0.47 

NIN + Dropout   [23] 0.47 

Conv. maxout + Dropout   [24] 0.45 

Hybrid PSO-SGD   [44] 0.43 

Network1  Ours 0.39 

Network2  Ours 0.42 

B. CIFAR-10 Dataset 

CIFAR-10 dataset consists of 10 classes of natural 32x32 
RGB images with 50,000 samples for training and 10,000 
samples for testing [19]. The same structure of network1 is 
used first for evaluation. The same steps are followed as in 
MNIST for CNN training.  The performance achieved on this 
dataset is 86.73%. 

On the other hand, the test accuracy on CIFAR-10 using 
network2 is 88.13% which is higher than network1 because 
CIFAR-10 is more challenge dataset than MNIST. Thus it 

requires more complicated structure. From table III, it is 
evident that the proposed method surpasses the other state-of-
the-art works. 

TABLE III.  TEST SET ACCURACY RATES ON CIFAR-10 DATASET 

Method  Reference # Accuracy  

Tiled CNN  [25] 73.10 

Improved LCC  [26] 74.50 

KDES-A  [27] 76.00 

PCANet-2 (combined)  [28] 78.67 

PCANet-2  [28] 77.14 

K-means (Triangle, 4000 features)  [29] 79.60 

Cuda-convnet2  [30]   82.00 

Hybrid PSO-SGD   [44] 82.41 

Network1   [ours] 86.73 

Network2  [ours] 88.13 

C. CIFAR-100 

CIFAR-100 is one of the most challenge dataset and it has 
100 classes. Images are similar to CIFAR-10 even with size. 
However, the main difference is that number of image samples 
per class are very few comparing with CIFAR-10. The total 
number of images is 50,000 training examples. Thus each 
class has 500 samples only. Testing samples has 10,000 
samples. Like CIFAR-10, the pixels are scaled to be between 
[0, 1] before the training. Since CIFAR-100 is similar to 
CIFAR-10 are similar, the same setting of CNN was used for 
both networks. 

Table IV shows the final results achieved using the 
proposed two models. The first network achieves 53.52% test 
accuracy on CIFAR-100 while network2 achieves higher 
accuracy which is 59.85%. 

TABLE IV.  TEST SET ACCURACY RATES ON CIFAR-100 DATASET 

Method  Reference # Accuracy  

CONV. NET + PROBOUT  [45] 61.86% 

Baseline + learned tree [46] 63.15% 

NOMP encoder  [47] 60.8% 

Stochastic Pooling [23] 57.49% 

NIN [3] 64.32% 

Smooth Pooling Regions [48] 56.29% 

Beyond Spatial Pyramids [49] 54.23% 

Maxout Networks [5] 61.43% 

Network1 ours 53.52% 

Network2 ours 59.85% 

VI. CONCLUSION 

In this work, image recognition using the deep neural 
network is introduced. Different model architectures are 
proposed by incorporating different prior elegant CNNs. 
Specifically both NIN and SPPnet are incorporated in a single 
unified model that achieves superior results comparing to 
former results. Then a new model is presented and 
outperforms prior work and accomplishes state-of-the-art 
results on the datasets. Also, different model architectures are 
introduced, and extensive parameters are discussed that can 
influence model performance. Deeper exploring different 
parameters that can be suited for CNN recognition model are 
presented as well. For evaluation, the experiments are 
conducted on challenge datasets. MNIST, CIFAR-10, and 
CIFAR-100 are the datasets used in this work. 

http://arxiv.org/pdf/1301.3557.pdf
http://www.eecs.berkeley.edu/~jiayq/assets/pdf/cvpr12_pooling.pdf
http://jmlr.org/proceedings/papers/v28/goodfellow13.pdf
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FUTURE WORK 

In feature work, more effort will be devoted in exploring 
more powerful network to handle more challenge tasks. More 
enhancements can be achieved by utilizing more technique to 
be recruited together and implemented the final model. Future 
works could also include more details such as reporting time 
consumption for each method and whether it is suitable for 
real-time applications or not.  Also, those implemented models 
can be re-adapted to be used in object detection tasks. 
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