
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

139 | P a g e

www.ijacsa.thesai.org

Proactive Software Engineering Approach to Ensure

Rapid Software Development and Scalable

Production with Limited Resources

A. B. Farid

Information Systems Department

Faculty of Computers & Information, Helwan Univ.

Cairo - Egypt

Abstract—Nowadays, the need for building scalable systems

in narrow time window is needed. While the efforts and accuracy

usually required for building high scale systems is not simple, the

agile nature of system requirements spawn a need for enhancing

some software engineering practices. These practices should be

integrated together in order to help software (SW) development

teams to build, and test scalable systems rapidly with a high

confidence level in their scalability.

This research explains the proposed Proactive Approach,

which presents a set of software engineering practices that could

help in producing scalable system while minimizing the wasted

time within the production cycle. This set of practices have been

validated, verified and tested through building 46 releases of one

of the most important, mission critical and scalable systems.

Applying these practices succeeded to enhance average response

time of web pages by %1921.5, test code churn by more than %

5000, time to release by % 300, and succeeded to produce a

system that could stand against 95375 users with % 99.921

scalability ratio.

Keywords—Software Engineering; Load Testing; Test

Analysis; ISO 29119; Continuous Integration; Static Analysis;

Stress Analysis; Application Scalability; Building High Scalability

System; Build Verification Test; Software Configuration

Management; Version Control; Source Control

I. INTRODUCTION

Working in a project that targets building scalable system
with a limited man-power is a common request those days.
Using Agile practices in an organized way may lead to
eliminating a notable portion of wasted time [1], [2], [3].
Many previous research work have spoken about how to
develop a high quality scalable system. Unfortunately, all
previous work efforts assumed the availability of enough
resources to accomplish the mission conveniently
[4],[5],[6],[7],[8]. Going through a software (SW)
development project that has limited amount of different types
of resources including; budgets, time, and man-power
resources, needs to implement an enhanced approach that
presents a set validated set of enhanced engineering practices.
This set of practices should assure, not only, building the
system with the limited set of resources, but also it should help
in assuring the scalability of the system when this is needed.
This paper is targeting bridging this gap through designing a
proposed approach of engineering practices that target
achieving three objectives:

1) Achieving the development tasks rapidly without

wasting time in fixing code through:

a) Minimizing the Inability of development teams to

comply with the code writing best practices standards (e.g.

writing secure code best practices, writing a reliable multi-

threaded code, code naming conventions,...etc.)

b) Designing the version control change- sets taxonomy

in a way that helps in extending the code with newer releases,

batches, and fixes in a way that minimizes code churn, and

code rewriting.

c) Establishing a proactive Quality controls that make

sure that the code units are performance-friendly units.

2) Automating many SW engineering tasks that may need

some technical staff. This could help in minimize the

dependency on man-power thus, minimizing the amount of

needed man-power.

3) Assuring acceptable scalability levels of systems

through passing reliable set of load tests.
In order to verify the proposed practices, a 4.5 year

research study has been conducted on one of the highly
scalable systems that has load of 95,375 simultaneous users
with a 55 million potential users. At the early stages of this
study, Microsoft has published a case study about the
engineering practices that have been developed overtime, and
marked those practices as successful [9]. It is important to
mention that this research results could help under the
following assumptions:

1) Team size doesn’t exceed 9 members including all roles

2) Time to release is limited relative to the amount of

required work items.

3) Computation resources are limited.

4) The required system should be scalable to huge amount

of users.
This paper will directly goes through the proposed SW

engineering approach‟s practices. First, it will introduce the
recommended design of the version control workspaces for the
code stored during the development phase. Second, the paper
will show how these practices could assure proactively the
code quality during the development and before moving to the
quality control. Third, the paper will explain the recommended
steps towards conducting a reliable load testing for assuring

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

140 | P a g e

www.ijacsa.thesai.org

system scalability. This part will talk also about analysing the
load test result and applying corrections. Then, the paper will
explain more details about the study that has been conducted
to verify these practices and the results that has been shown
out of it. The paper ends with showing the future work and
conclusion.

II. LIFECYCLE CONFIGURATION MANAGEMENT‟S

CONTROLS

The name of the game for building a reliable solution
rapidly is to design the development process in a way that
helps in accelerating the development lifecycle while
maintaining high quality levels for the written code. The
proposed set of practices assumes a group of pre-set controls.
These controls are:

 Version Control (VC) Server has to be used[1].

 Before Uploading code to the Version Control Server
the code has to automatically pass through static
analysis code reviews.

 Before being uploaded to the server some unit tests has
to be passed by the uploaded code.

 To assure high level of continuous integration, the
version control has to test the written code before
accepting it.

III. CONFIGURING THE VERSION CONTROL BRANCHES

The VC server such as Microsoft Team Foundation Server
(TFS), or IBM Rationale [10] has to be configured in a way
that helps in automating the code uploading process that is
usually called „Checkout‟. It is important to organize source
codebase in a way that simplify any development, and
maintenance of the application‟s source code.[11] Fig. 1 and

Fig. 2 depicts how the source code could be organized in a
way that simplifies applying fixes, and releases.

The Main codebase workspace branch could be created
over version control as baseless branch from the older version
[12]. Fig.2 depicts the taxonomy of branches for version 2.
This simple model provides an easy and consistent VC
taxonomy for utilizing Forward Integration (FI) and Reverse
Integration (RI) models between the Main and Dev branches,
yet allows for increasing complexity with the addition of
future development branches when needed. A development
branch has been taken from the Main branch of code to drop
all required components and write new replacing ones.

Multiple development areas are supported by creating
additional development branches from Main. These are peers
to each other and children of Main.

Any additional releases are supported by creating
additional release branches for each product release. Each
release branch is a child of Main and a peer to each other (e.g.
release2.0 branch is peer to release3.0 and both are children of
Main). Once the release branch is created Main and the Dev
branches can start taking changes approved for the next
product release. After the first Reverse Integration of the code
(RI1) the first final release build takes place and this generates
Version 1.0. After this point a new branch is being created
which is the Release child branch. While running the release
in production, the cycle of load testing begins (for more
information concerning what are the proposed steps for
conducting a reliable load test , please check section V).
According to the issues that will be discovered during load
testing, some fixes are expected to be applied over the release
branch that has updated the Main branch through Reverse
Integration RI2 that in turn updates the Dev branch through
the Forward Integration FI2.

Fig. 1. The Design of the Version Control Workspace based on a previous available version

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

141 | P a g e

www.ijacsa.thesai.org

Fig. 2. A Proposed Branching Taxonomy of Version Control Workspace

After fixing some minor final bugs in the Dev branch, the
main branch should be updated back through Reverse
Integration RI3. This version of Main is built to generate
version 1.1 that updates Release 2 branch through the Forward
Integration 3 (FI3). A new branch could be created at this
point that is release 3. Release 3 could be managed as a major
final release. This release is assured to be scalable enough and
complying with the code writing conventions and standards!

IV. PROACTIVE QUALITY CONTROL CHECK-UP

Configuring Version Control (VC) code uploads (check-
ins) in a way that helps in controlling the quality in a proactive
mood is, of a great importance for the team. This could save
the time and staff that are needed to review the code in a
manual mood with humanitarian effort. This applied specially
when the available time is too tight, and no room is available
for discovering the bugs even after regular nightly builds are
accompanied with Build Verification Tests (BVTs).

When a developer checks-in a new code that breaks the
build, the result could be a significant hassle for the teams.
The cost to larger teams can be even more expensive when
measured by lost productivity and schedule delays. To guard
the code base against these problems, a fake build Server
could be configured. This fake build server could be an
auxiliary build server. Before checking the code into the VC
server, the VC server sends first the code to the fake build
server where specific build definition along with its Build
Verification Tests (BVTs) are being applied. The build
definition doesn‟t really build the code. Instead, it helps in
determining whether the source code that is required to be
checked-in, will most probably pass the BVTs, and the build
when they take place, or not? This minimizes the number of
build failures thus, minimizing the lost time, while preserving
the flexibility of Continuous Delivery (CD) [13]. To achieve
this, the VC server (e.g. TFS) could be configured through
writing a program that acts as a coded Check-In rule. Each

time a piece of source code is requested to be checked-in to
the VC server, this Check-in rule triggers that verification
build definition in order to run over the fake build server
before checking-In the source code. The build definition in
turn, triggers the associated Build Verifications Tests (BVTs)
that has to be applied automatically over the source code. Part
of these tests and checks was about checking the architecture
rule and constraints. These collections of constraints have put
some mandates on the architecture of the system. For instance,
a rule that prohibits any developer from checking in a code
that directly access the System‟s database (DB) from
presentation tier, or application tier components. If the code
passes this set of BVTs and checks; the fake build server
notifies the VC server that the source code is acceptable to be
checked-in otherwise, it notifies the VC server to reject
checking-in the source code. Fig. 3 explains these steps in a
graphical way.

Fig. 3. Proactive quality control check-up steps

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

142 | P a g e

www.ijacsa.thesai.org

V. LOAD TESTING SCALABILITY OF THE SYSTEM

Building a scalable system that is intended to serve for
instance millions of users is not an easy task. Unless the
system is scalable enough the system will be useless and all
investments that have been spent into building it will vanish.
When the system has a strategic importance (e.g. mission
critical systems, financial institutions systems, or national-
level), the financial loss is nothing compared to the loss it
might be caused to the national security. That is why, it is
crucial to assure that the system of this effort will scale to the
required amount of users [14]. That is why it is important to
have a clear load test plan for assuring the scalability of the
system throughout the application lifecycle [15],[16]. The plan
is highly recommended to be based on ISO 29119 Part 2 that
describes the test process, 29119 part 3 that describes test
documentation, and 29119 part 4 that describes the test
techniques [17], [18], [19], [20]. This roadmap should include
the following ordered tasks:

 Envisioning, and planning for the system scalability.

 Conducting an assurance Strategy.

 Planning for a load test.

 Conducting the load test.

 Analysing results

 Taking corrective actions.

 Conducting Isolation retesting.

 Reviewing lessons learned.

A. Envisioning, and planning for the system scalability

During envisioning, it is important to understand the vision,
and the required scale of the system. During the planning of
the system, it is important to calculate the maximum expected
number of users. Sometimes, it could be a fixed expected
number (e.g. the total number of citizens of a country for
national systems, or total number of employees for enterprise
systems,..etc.). This is the planned number that the team has to
put in consideration while planning for system‟s capacity.
Understanding the potential load of a given system is crucial
towards understanding the required appropriate system
architecture to be designed.

B. Conducting an Assurance Strategy

At first place, it is important for the team to assure that the
code performance on a single user mood will be acceptable
enough, and no design or code writing performance unti-
patterns will be made. Afterwards, it is important to make
sure that the whole application will be scalable enough against
the expected users load, and no architectural mistakes will be
committed. This should be done through configuring the
proactive check-ups during checking the code into the VC
server (for more information about proactive check-ups,
please check The Proactive Quality Control Check-ups).
These check-ups assures in certain way that the written code
complies with the code writing performance friendly best
practices that are requested by the team‟s leadership. It is
phenomenal fact that the overall system scalability couldn‟t be

assured for huge amount of users unless performance
suitability level could be assured initially in a single user level.
That is why part of the proactive pre-Check during conducting
tests should be; the Performance tests. If the page or unit of
code will not pass the predesigned QC proactive checks
through achieving certain performance threshold levels, the
VC server refuses to accept checking in this source code. This
assures the quality of the code during the code writing phase,
and before transferring it to any Quality Control (QC) team.

C. Planning for a Load Test

After building the first release of the system, it is
important to conduct a comprehensive load test over the
system. Conducting this load test is one of the most crucial
tasks during the development lifecycle in order to check the
system resources‟ behaviour against the expected users load.
This should include the following steps:

1) Preparing the Testing Environment: In order to

conduct a realistic load test, it is important to have a test

environment that typically imitates the actual production

environment from the resources capacity point of view (i.e.

network bandwidth, storage, memory, Input-Output (IO)

speed, and processing power) capacity. That is why deploying

this environment over physical machines is highly

recommended and preferred than using a collection for virtual

machines.

2) Defining the duration of the load test: Defining a

suitable duration period of the load test is crucial towards

receiving accurate results. According to this study, the suitable

load test duration should be defined according to the amount

of time that you expect to have a peak load in. For instance, if

it is expected to have a three day special offer on an e-

commerce system, it expected to have a peak load during

these days. In this case the suitable load test duration length

should be 72 hours. Choosing a shorter period of the load test

may result in experiencing a crash of the system when being

put in production for a longer period. According to the

experiences that have been gained through this study, part of

the load is coming not only from the number of users, but also

from the amount of this number that is pressing on the

system‟s resource for certain amount of time.

3) Calculating the actual load size:
Calculating the expected users load means calculating the

simultaneous users that use the system at any point of time.
Three factors always affect calculating the expected user load;
the total number of users, duration of load, and the major
usage scenario that mostly unveils the peak time of load. If the
expected users have specific maximum number then, you have
to have an assumption on how much time it is expected to find
all users visiting the system (e.g. one day, one week, one
months,…etc.). This means it is needed to calculate the peak
load based on that. Additionally, you need to calculate the
average time that each user will consume while working on
the system based on the main user story. For instance; let us
assume that the total number of users is 54 million users over
48 hours with an average usage time of five minutes per user.
Based on that, it is possible to calculate the maximum
expected simultaneous users as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

143 | P a g e

www.ijacsa.thesai.org

Total Number of targeted users (TNV) = 54 Million.

Peak Duration (PDM) in Min. =48 hrs. * 60

Average Time/Usage Scenario (AVU) = 5Min.

Number of Simultaneous Users Load (SUL).

 (1)

SUL = 5 (54,000,000/2880)

SUL = 93750 Simultaneous Users Load.

After adding a safe Margin of 5%

The Final User Load (FSUL) = 98500 Users

4) Setting an architecture for the load test Architecture
Fig. 4 depicts a the proposed load test servers‟ architecture.

Based on this architecture, there is only one Test Controller
(TC) server that executes and controls the test, and finally
sends back to the client machine the load test counters‟ values.
In another hand this TC server manages and calls one or more
Test Agent (TA) servers that imitate the actual users load.

Fig. 4. Load Test Architecture

Each Test agent is responsible of generating number of
certain number of users. The main challenge is to define the
suitable number of agents that can generate the desired
number of users. One good technique to define this number is
the Goal Based Load Test. This gives the number of generated
users when the TA resources reach certain threshold level.
Assuming that the amount of users load that could be
smoothly generated by the TA is η. Then the number of
required TAs NTA to conducted a load test that could give
reliable could be calculated as follows:

 (2)

5) Risk Mitigation is an important part of any test. Based

on the previous assumption of resources limitations, the whole

test load test process is in a risk of experiencing any hardware

failure. If hardware crashed, there will not be enough

resources available including money, and time to replace these

resources. According to ISO 29119, it is important to have a

risk mitigation plan. This mitigation plan should be based on

using the cloud infrastructure instead of using the on premise

deployment. This may provide a more appropriate economical,

and fast to gain solution especially when the amount of servers

needed is not attainable due to resources limitation. Working

over the cloud is another effort that will be extended in the

near future.

D. Conducting a Load Test

In order to have a good analysis to what is going on; the
load test should be conducted through a gradual step by step
process. According to the study, Scalable load tests should go
gradual since they need to run for long times. Since it needs a
serious amount of resource to be available, it is not practical to
start a 48 hours intensive load test all of a sudden. This should
take place as follows:

Step 0: Running a constant load of the designated
potential users load (previously referred to as SUL) for 10
minutes.

It is important to begin with a short period of test to make
sure that the deployed architecture could stand against the
potential load or not. Sometimes, the resources shows
inability to stand against the load at all, and the load crashes at
the early beginning or malfunctions so, running the test for
this short amount of time could be a good start as just try.

Step 1 Run the test for an hour.

Running the test for one full hour gives more confidence in
the available resources and their ability to cope with the load
test itself. While the remaining steps are directed towards
testing the system itself, steps 0 and 1 are directed towards
testing the load test itself. Fig. 5 shows an example of the
intense of errors that could arise when the resources are not
enough. The message alert says that the agent has failed.

Fig. 5. shows an excerpt of erros after 1 hour

Step 3: Run same load test ¼ the total load test duration
with full load size:

For instance, if the system is expected to work with the
maximum load for 48 hours, accomplish this load test step for
12 hours. This gradual load test duration is important to have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

144 | P a g e

www.ijacsa.thesai.org

when there is a large scale of users that is expected for a
constant relatively long period. In relatively long tests that
exceeds 24 hours, it is important to accomplish the load test
gradually so, if your test spawns number of errors that exceeds
the predefined threshold you don‟t need to wait till the end of
the long load test. This saves resources, time, and increase the
speed of reaching a more stable system.

Fig. 6 shows one of these experienced cases during the
study, more than 60 errors have been discovered during the
first 2 hours. This is enough to stop the first run to analyse and
trace logs. When such experience happens, it is highly
recommended to trace the log files to check the root cause of
the resulting errors. One of the most common root causes is
the capacity of the Input-Output storage capacity. Due to the
huge load, load agents fail to continue applying the load test
due to problems with Input-Output storage unit that writes the
test log. Whatever the problem is, it should be solved and the
test should be restarted smoothly gain with no issues. Running
the test successfully for ¼ of the total test length period (12
hours if more than 24 hours) could be the first positive sign
that the architecture of the system is scalable enough to stand
against such huge load for certain amount of time. In another
hand, it couldn‟t assure that the system will perform well for
the full required duration.

Fig. 6. Reviewing load Agents‟ status and log files

Step 4: Run Load Test of a half duration length.

Running a test for 1/2 duration gives more confidence to
the test analyst through showing a clear image about the
resources required to accomplish the actual full duration test.
Usually, running the test with this period will give some
lessons that could be helpful towards conducting the full-
length test. Fig. 7 shows an excerpt of a sample run of 24
hours (1/2 duration length in the study) that shows a smooth
load run. The figure shows that the number of errors has been
dropped significantly after 24 hours (less than 10 during 24
hours).

Step 5: Run the predesigned full test duration period.

This is the actual planned load test. After solving the load
test issues gradually over different durations, through the
previously conducted load test steps, the test has to pass the
test duration successfully. This doesn‟t always mean running
the test with no errors; it means that the number of errors
shouldn‟t exceed a threshold that is defined during the test
planning phase.

Fig. 7. An excerpt of the Load test analysis for the 24 hours load test run

E. Analysing Test Results and Applying Corrections

Some errors/warnings may appear at the end of the load
test that was related to the storage speed, processing power,
and a minor warning for the network bandwidth.

According to the conducted study, after investigating the
possible causes for the load tests for 46 releases under the
verification study, the root cause of the insufficient average
response-time may be the processor clock speed and storage
IO speed. Enhancing the response time with a significant
enhancement, while consuming the least possible resources
could be achieved through two logical options:

1) Option -1 Increasing the Processing Clock Speed
Firstly it is important to decide whether it is more feasible

to enhance the performance through increasing the number of
processors, or to enhance the performance through enhancing
the IO storage speed? If the recourses availability is infinite
then, there will be no issues however; the truth is that always
in software development, it is important to trade-off decisions
with the available resources. This enforces tackling the
available budget for availing resources. In order to answer this
question it is important to find out the percentage
enhancement based on the dollars spent in that. If the
dedicated budget would increase the number of CPUs 4 times
from 8 to 32, and giving in considerations that 60% of the
system‟s code is written as a parallel code. Based on that
Amdahl‟s law [21] could be used to calculate the expected
performance enhancement if CPUs increased from 8 to 16,
from 16 to 32, and from 32 to 64. Table 1 shows Amdahl‟s
Law calculation for 10% parallel code [21]. This law
calculates the performance enhancements due to CPU increase
knowing the percentage of existing parallel code as follows:

Amdahl‟s Law: (2)

Where:

 : The maximum speedup that could be achieved.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

145 | P a g e

www.ijacsa.thesai.org

 : The percentage of the sequential code in the system.

 : Number of processors used

TABLE I. PERFORMANCE INCREASE DUE TO PROCESSOR COUNT

INCREASE IN CASE OF 10% PARALLEL CODE

Trial # Performance

Increase

Cumulative

Increase

1 8 1.09589 N/A N/A

2 16 1.10345 0.69% 0.69

3 32 1.10727 0.35% 1.04%

Fig. 8 shows the achieved speedup for a system with 50%,
and 60% parallel code. These numbers shows that the
maximum possible speedup that could be achieved with a
reasonable amount of cores (510 Core) is less than 1.5. This
means that if it is needed to increase the speed of a given
system. Adding additional processing power will not result
into a huge difference. This leads to searching for another
option for making an evolutionary speedup enhancement.

Fig. 8. System Speedup according to No. of processing Cores when parallel

code percentages are 50%, and 60%

2) Option -2 increasing the Storage speed
Usually, in a limited resources environments system are

being deployed on storage regular storage Hard disk drives
(HDDs), or HDDs enrolled in RAID array. Increasing the
speed of the system may need increasing the IO speed.
According to many studies and benchmarks that has been
applied and tested during this research moving all database
files to a solid stage device (SSD) storage media could
enhance the speed of the overall system up to 2030.34%. SSD
technology has been compared to Flash SSD technology. It is
very well known for everybody that SSD storage technology
is faster than regular SAS HDD storage devices. According to
DELL [22], and IBM [23] using Flash SSD is highly
recommended for READ/Random-Access intensive systems
specially when the read ratio is not less than 85%

According to a study that has been conducted by DELL
[22] on random access, Read intensive systems, Flash SSD
storage can perform up to 59.46 times better than SAS HD,
with a price(USD)/IOPS (IO Operations Per Second) ratio of
only 33% [22]. This means that the performance gain is
strongly justifying the price difference! This shows that
enhancing the storage speed (Maximum enhancement could
be 5946%) will give better results than enhancing the

processing power (maximum performance enhancement could
be 1.04%).

According to some studies that has been conducted
previously, and to the research that has been for done this
study, moving the DB indexes to SSD drives enhance the
system performance with less than 10% extra cost [23].

VI. PRACTICES VERIFICATION

In order to measure the ability of the previous software
engineering practices in enhancing the speed of building a
scalable system, a four years study has been conducted as part
of the process of building two of the national information
systems with a potential total load size of 55 million users and
95375 simultaneous users [9]. The study began on March
2011, and finished on September 2015. During this study, six
full development cycles/Major versions have been conducted
with 46 different releases [24][25], [26].

The first Major version was managed without applying any
part of the above proposed practices to be the reference
sample version for any changes that could happen after
applying the above proposed engineering practices. In 2012
the system has been fully rebuilt with a new version 2.0 while
developing, applying and verifying the proposed engineering
practices. Then, another four releases of both systems has
been produced (Version 3.0, Version 4.0, Version 5.0, and
version 6) through separate four development major versions.
During each version out of the five (Ver. 2 to Ver. 6), some
lessons have been learned and the practices have been
enhanced to help in enhancing the next release production.
Table 2 shows a comparison between Version 1.0 practices
situation and version 6.0 including; the group of proposed
practices that have been applied in Version1 and version 6.0
Fig. 9 shows the final load test result of the final release
(release 46) of this study with no load errors.

Fig 10 shows the enhancements that happened in the Code
Churn metrics due to applying the proposed practices. It is
clear that the effect of applying the proposed practices has led
to a significant improvement in the No. of lines of codes that
are deleted, and modified.

TABLE II. SUPPORTED PRACTICES IN VER.1.0 AND VER. 6.0

Practice Ver. 1.0 Ver. 6.0

Using Proposed Branching Taxonomy No Yes

Using Proposed Proactive architecture check-
up

No Yes

Using Proposed Proactive Static code

analysis
No Yes

Using Proposed Proactive Code Performance
Test

No Yes

Using Proposed Proactive build checks using
fake build server

No Yes

Using Proactive BVT No Yes

Using Proposed Goal Based Load Test to

define required number of test agents
No Yes

Applying Gradual Load Test. No Yes

Storing Database Indexes of the system data

on a SSD drive
No Yes

Update proactive check-ups based on lessons

learned
No Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

146 | P a g e

www.ijacsa.thesai.org

Fig. 9. the results of the load test with no errors after 37 hours of the Load

test run

Fig. 10. Enhancements in Code Churn metrics across versions

The numbers of lines that have been added are basically
depending on the new set of requirements that have been
requested over the six major versions of the system under
development during the study. The difference between the
Ver.1 where no practices have been applied and other
practices is clear to be noticed.

According to the Fig.10, applying the proposed SW
engineering practices has enhanced the test code churn more
than % 5000. The Average response time of the system pages
has been enhanced from 73 seconds to 3.8 seconds by %
1921.5 enhancement ratio. The time to release has been cut
down from 15 weeks though 5 sprints to 5 weeks through two
sprints with % 300 enhancements. Additionally, it succeeded
to reach the required availability percentile of 99.92 after
being 17.886% only. At the same time the system scaled up
from 1843 simultaneous users to 95375 with 5170%
scalability enhancement rate. Table 3 concludes the key
enhancements that could be measured between version 1.0
that used regular agile practices, and version 6.0 that applied
the Proactive Quality Approach. Table 3 summarises these
results with the enhancement achieved in each results between
Ver.1.0 that has used none of the proactive approach‟s
practices, and Ver. 6.0 that has used all practices of the
approach. Fig.11 summarises how are these practices

distributed over the different cycle activities. According to the
figure, it clear that the lessons learned during the different
phase over the cycles should lead to updating the proactive
test rules that are being applied on the uploaded code to the
version control server in the next releases.

TABLE III. COMPARISON BETWEEN USING REGULAR AGILE PRACTICES IN

VER.1.0 AND USING THE PROACTIVE QUALITY APPROACH IN VER. 6.0

Comparison Aspect Ver. 1.0 Ver. 6.0
Enhancement

%

Code churn(Lines
modified)

6321 75 842.8

Average page

response time
73 Sec. 3.8 Sec. 1921.5

Time to release (Per
sprint)

15
Weeks

5 Weeks 300

Availability 17.886 99.92 558.6

User Scalability 1843 95375 517.5

Fig. 11. Major practices of the Proposed Proactive approach across the

different cycle activities

VII. FUTURE WORK

In the future this research study will be repeated over
cloud-based platform in order to test the effect of using the
cloud vs. using the on premise deployment within a limited
resources based project. Some extra Application Lifecycle
Management (ALM) maybe used to enhance the overall
quality of the system.

VIII. CONCLUSION

This research study has shown the planning of the SW
engineering process design for developing a resource-limited
high-scale, and mission-critical system. The study showed
how does version control could be utilized to streamline any
changes that may arise in the middle of the project, and how
continuous integration could be mixed with some proactive
check controls that can assure the compliance of the checked-
in code with the predefined quality assurance measures.

The study explained the proposed gradual load testing
process that has to be conducted to assure the scalability of the
system to the expected amount of transactions and users.
Having a clear load testing strategy that complies with the
major business requirements is a major success factor for the
whole system. This is compliant with ISO standard number
29119 that is concerned with SW testing. Conducting the load
test in a right way is important, however, analysing the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

147 | P a g e

www.ijacsa.thesai.org

resulting errors and taking corrective actions could make the
load testing more valuable since it helps in enhancing the
overall scalability of the system. Some good lessons have been
learned and elaborated at the end of this study. Applying the
proposed practices has led to enhance many indicators with a
notable percentage.

REFERENCES

[1] Otvio Augusto Lazzarini Lemos, Sushil Bajracharya, Joel Ossher,
Paulo Cesar Masiero, and Cristina Lopes, “A test-driven approach to
code search and its application to the reuse of auxiliary functionality”,
Information and Software Technology, No. 53, P. 294-306, 2011, ,
ElSevier.

[2] F.G. Wilkie , “An Investigation of coupling, reuse, and maintenance in a
commercial C++ application”, Information and Software Technology,
No. 53, P. 801-812, 2001: ElSevier,

[3] Y. M. Helmy , A. B. Farid, and A. S. Abd elghany, “Simplifying CMMI
Version 1.3 Implementation By Using Agile Practices: An Empirical
Study”, International Journal Computing, and Information Science”,Vol.
14, No. 4, P.31-45, Oct. 2104.

[4] M. Rizwan Jameel Qureshi, and Isaac Sayid,”Scheme of Global Scrum
Management Software”,, Information Engineering and Electronic
Business, Vol. 7, No. 2, P.1-7, 2015: MECS

[5] Saja Al Qurashi, M. Rizwan Jameel Qureshi, “Scrum of Scrums
Solution for Large Size Teams Using Scrum Methodology”, Life Science
Journal.Vol. 11 No. 8, 2014.

[6] Samireh Jalali, Claes Wohlin, “Agile Practices in Global Software
Engineering - A Systematic Map”, International Conference on Global
Software Engineering (ICGSE),2010. Princeton,NJ – USA.

[7] Del Nuevo, E., Piattini, M., Pino, F.J., “Scrum-based Methodology for
Distributed Software Development”, Global Software Engineering
(ICGSE), 6th IEEE International Conference, 2011.

[8] Jeong Ah Kim, Seung Young Choi, Sun Myung Hwang, “Process
Evidence Enable to Automate ALM (Application Lifecycle
Management”, Parallel and Distributed Processing with Applications
Workshops (ISPAW) 9th IEEE International Symposium, 2011.

[9] Microsoft, “Egyptian Ministry Facilitates Transparently Open Elections
with New Applications: a Solution Case
Study”.[Online].Available:https://customers.microsoft.com/Pages/Down
load.aspx?id=15111

[10] T. E. Murphy et al., “Gartner, magic quadrant for application
development life cycle management”, 19 November 2013.

[11] Steven St. Jean et al, “Professional Team Foundation Server 2013”,
Wrox, May 19 2014.

[12] Mickey Gousset et al, “Professional application life cycle management
with Visual Studio 2013”, Wrox, March 31 2014.

[13] Eric Sink, “Version control by example”, Pyrenean Gold Press, 2011.

[14] Larry Brader, and Roberta Leibovitz, Jose Luis Soria Teruel “Building
release pipeline using Team Foundation Server 2012 (TFS 2013
Editions)”, Microsoft Patterns and Practices. Feb 2014.

[15] Larry Brader, Howie Hilliker, Allan Cameron Wills, “Testing for
continuous delivery using Visual Studio 2012”, Microsoft Patterns &
Practices, March 2, 2013.

[16] Satheesh Kumar N, , and Subashni S, “Software Testing Using Visual
Studio 2013”, Packt Publishing, July 26 2013.

[17] Software Testing: Concepts & Definitions, ISO/IEC/IEEE Std. 29119-
1:2013, September 2013.

[18] Software Testing: Test Processes, ISO/IEC/IEEE Std. 29119-2:2013,
September 2013.

[19] Software Testing: Test Documentation, ISO/IEC/IEEE Std. 29119-
3:2013, September 2013.

[20] Software Testing: Test Techniques, ISO/IEC/IEEE Std. 29119-4 FDIS
Draft, March 2014.

[21] Amdahl, Gene M.. "Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities". AFIPS Conference
Proceedings (30) P. 483–485. (1967).

[22] Vamsee Kasavajhala, “Solid State Drive vs. Hard Disk Drive Price and
Performance Study”, DELL, May 2012.

[23] Aamer Sachedina and, Mathew Huras, “Best Practices Database
Storage”, IBM, January 2012.

[24] Jiang, Z.; Hassan, A., "A Survey on Load Testing of Large-Scale
Software Systems," in Software Engineering, IEEE Transactions on ,
vol.PP, no.99, pp.1-1 doi: 10.1109/TSE.2015.2445340.

[25] Y.M. Helmy , A. B. Farid, and A. S. Abd Elghany, “Simplifying CMMI
Version 1.3 Implementation By Using Agile Practices: An Empirical
Study”, in International Journal of Intelligent Computing and
Information Science IJICIS, Vol.14, No. 4 OCTOBER 2014.

[26] Ahmed Bahaa Farid, Enas M. Fathy, Mahmoud Abd Ellatif, “Towards
Agile Implementation of Test Maturity Model Integration (TMMI)
Level 2 Using Scrum Practices”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 6, No. 9,P. 230-238.
2015.

