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Abstract—Putative protein sequences decoded from the 

messenger ribonucleic acid (mRNA) sequences are composed of 

twenty amino acids with different physical-chemical properties, 

such as hydrophobicity and hydrophilicity (uncharged, positively 

charged or negatively charged amino acids). In this paper, the 

power spectral estimate (PSE) technique for random processes is 

applied to the protein sequence matching framework. First, the 

twenty kinds of amino acids are classified based on their 

hydrophobicity and hydrophilicity. Then each amino acid in the 

protein sequence is mapped to a corresponding complex value. 

Consider the various Hidden Markov chain orders in the 

complex valued sequences. The PSE method can explore the 

implicit statistical relations among protein sequences. The mean 

squared error between the power spectra of two sequences is 

determined and then used to measure their similarity. The 

experimental results verify that the proposed PSE method 

provides the consistent similarity measurement with the well-

known ClustalW and BLASTp schemes. Moreover, the proposed 

PSE can show better similarity relevance than ClustalW and 

BLASTp schemes. 

Keywords—protein sequence; amino acids; digital signal 

processing; parametric spectral estimate; hydrophilicity; 

hydrophobicity; Markov chain 

I. INTRODUCTION 

In the past two decades,  deoxyribonucleic acid (DNA) and 
protein sequences in various organisms have been massively 
obtained with the help of high-throughput sequencing 
technologies [1]. Biologists unravel the functionality and 
capability of numerous protein sequence domains by 
understanding their 3-D structures obtained by the x-ray 
diffraction technique or NMR technology. These procedures 
require laborious preparations of protein crystals and  are 
extremely time-consuming. Therefore, alternative methods 
based on digital signal processing (DSP) technique were 
developed to circumvent the extremely complicated 
crystallographic tasks. Generally speaking, two types of 
methods are commonly used to analyze the protein sequences 
and predict their functions : (1) Statistical methods [2], which 
apply the well-known mathematical models in stochastic 
processes to analyze the sequences. (2) Geometrical methods 
[3], which apply graphs to represent the sequences and then 
analyze them. Both types of methods first transform the 
symbolic amino acids to numerical values. The global or local 
similarity of any two sequences can then be measured 
according to the differences between the extracted sequence 

features. High similarity between two sequences may infer two 
meanings: (1) the two sequences could be homologous; (2) the 
protein structures and/or their biological functions are similar. 

Recently, various methods are proposed to study the DNA 
and protein sequences. Among them are the DSP-based 
methods [4]-[7]. Some of the related studies put the focus on 
the visualization of sequences in various graphic forms [8]-
[15]. In DSP techniques, each character in the DNA sequences 
or each amino acid in the protein sequence is mapped to a 
numerical value. According to the characteristics of the 
organisms, the different values used in the numerical mapping 
can be designed to accordingly fit the physical-chemical 
properties [16]-[21]. Thus, the comparison method especially 
utilizing certain properties of the residence in the DNA or 
protein sequence must be specifically designed. There are two 
well-known character-based tools for DNA and protein 
sequence comparison; ClustalW [22] and BLAST [23]. 
ClustalW is designed by using multiple-sequence alignment 
based on the meta-heuristics methods. The feature that the 
arrangement of each amino acid is similar in the evolution of 
the same species is utilized. On the other hand, BLAST 
alignment has four components: query, database, program, and 
search purpose/goal.  BLAST is designed to locate the 
homologous sequence sites between two sequences using a 
heuristic approach. It compares partial sequences 
progressively, such that the local alignment results are 
obtained. Standard protein-protein BLAST (BLASTp) 
compares an amino acid query sequence against a protein 
sequence database. It is used for both identifying a query 
amino acid sequence and for finding similar sequences in 
protein databases. 

In this paper, a parametric spectral estimate (PSE) method 
based on stochastic signal processing is proposed for protein 
sequence comparison. The numerical signals are used to 
represent the protein sequences and then analyzed in the 
frequency domain. First, a new model of mapping complex 
values to amino acids according to the physical-chemical 
characteristics is proposed. Next, the PSE method is used to 
determine the power spectrum density (PSD) of each numerical 
protein sequence. Finally, the mean squared error (MSE) 
values between two power spectra under various Markov 
orders are determined and served as a metric for sequence 
similarity measurement. As compared to the ClustalW and 
Blastp methods, our experimental results show that the 
proposed method provides an alternative way to efficiently 
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distinguish the differences between two protein sequences. The 
remaining part of this paper is organized as follows: Section 2 
describes the proposed PSE method. The experimental results 
under different perspectives and their discussions are provided 
in Section 3. Finally, the conclusion is drawn in Section 4. 

II. METHODS 

Figure 1 shows the block diagram of the proposed method 
for protein sequence comparison. There are three parts in this 
method: (1) numerical mapping; (2) PSE with different 
Markov orders; (3) MSE estimations, which are described in 
the following subsections. 

Group of protein 

sequences

Numerical 

mapping

PSE with 

different 

Markov orders

MSE-based 

similarity 

estimations

Classification 

results

 
Fig. 1. The block diagram of the proposed method 

A. Numerical mapping  

Table 1 shows the standard one-letter abbreviation of the 20 
amino acids and their properties on charge, hydrophilicity or 
hydrophobicity, which are important for protein structure and 
protein-protein interaction. [24, 25]. 

According to the physical-chemical properties, twenty 
kinds of amino acids can be represented by twenty complex 
values which locate at the different positions on the unit circle 
in the complex plane. Figures 2(a)-2(d) show the four 
arrangements, Methods 1-4, of mapping the symbolic amino 
acids to the numerical ones. The twenty complex values are 
distributed on the unit circle whose center is at the origin of the 
complex plane. As shown in Fig. 2(a) (Method 1), the 
hydrophilic amino acids are distributed on the upper part of the 

circle. The first amino acid H is assigned to be 45。 with 

respect to the real axis of the circle. The other amino acids {R, 

K, E, D, Q, N, Y, C, T, and S}, which have 9。 separation 

from each other, are assigned after the amino acid H. The 
hydrophobic amino acids are distributed on the lower part of 

the circle. The first amino acid G is assigned to 234。 with 

respect to the real axis on the circle. The other amino acids {A, 

V, L, I, P, M, F, and W}, which have 9。 separation from each 

other, are assigned after the amino acid G. In addition to the 
hydrophobic and hydrophilic properties, we assign the 
positions according to their basic structures and the general 
chemical characteristics in their side chain (R) groups [26]. 
According to the position of the amino acids on the circle, the 
mapping is established so that every amino acid is adequately 
separated. 

In addition to Method 1 shown in Fig. 2(a), three other 
mapping methods shown in Figs. 2(b)-2(d) are also proposed 
for performance comparison and evaluation. Table 2 shows the 
complex values corresponding to the coordinates of the 20 
amino acids on the circle. In addition to Method 1, Methods 2, 
3, and 4 are proposed to verify the effects of amino acid 
properties in this study by changing the positions on the circle. 
In Methods 2 and 3, the 20 amino acids still conform the rules 
of the characteristics of hydrophilicity and hydrophobicity, but 
the position can be exchanged in the random and horizontally 
reversed ways, respectively. In Method 4, the mappings are 

random, and thus none of the rules of the characteristics of 
hydrophilicity and hydrophobicity is obeyed. 

B. Parameter spectrum estimation (PSE) method 

Consider a stochastic process with the random variable 
(RV) {Xn, n = 1, 2, 3, … , m}, which describes a protein 
sequence composed of twenty kinds of amino acids and m is 
the sequence length. Let a sequence be denoted in Eq. (1), 
where   represents that the status is i when an amino acid is at 
the nth position in the sequence. 

mn XXXX ,...,, 21 ,   W,E,K,R,H,  inX         

Let Pij denote a transition probability given that the current 
status is i and the next status is j. 
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Note that Eq. (2) denotes a Markov chain process, in which 
the probability of the current amino acid Xn is only dependent 
on the previous amino acid Xn-1. A one-step transition 
probability matrix of order 20×20 is obtained by letting the 
first–order Markov chain model corresponding to the possible 
transitions between two amino acids in a protein sequence and 
is shown in Eq. (3). 
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Let the amino acids in a protein sequence be denoted as a 
discrete signal source where the occurrence probability of each 
element is pi, i=1, 2,…, m. Equation (4) defines the information 
amount I(xi) of  xi for an event which occurs with a probability 
pi. 
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The average information or entropy of X is defined in Eq. 
(5): 
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The conditional entropy of the current RV, X, given the m 
previous RVs: x1, x2,…,xm,  is defined in Eq. (6): 
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The entropy of a first-order Markov process is defined in 
Eq. (7): 
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where p(xi1,xi2) is the probability when the two values xi1 
and xi2 occur together. The entropy of a second-order Markov 
process is defined in Eq. (8): 
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The homologous gene sequences have similar entropies 
when a higher-order Markov process is used [27]. In a lower 
order, however, each set of homologous gene sequences have 
various entropy values. The q

th
-order Markov model is shown 

in Eq. (9) 
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where both RVs X and W are zero-mean and the variance 

Var{W[n]} of W is denoted as  
2
W . In the estimation of 

random variables [28], the q-dimensional vector is denoted as 

X≜
T])[],2[,]1[( qnXnXnX   . The Equation 
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scalar random variable ][nXY    in terms of the ak. The 

coefficients a≜ T
qaaa ),,,( 21   are determined as the solution 

of the orthogonal equation, and the optimum value of a, 
denoted as ao is shown in Eq. (10). 
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Equations (11) and (12) define the cross covariance vector 
and the covariance matrix of X[n], respectively. 
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To obtain a simple PSD estimate, the covariance function 

kXX[ ] is replaced as shown in [28], and the solution yields 

parameter estimates qaaa ˆ,,ˆ,ˆ
21  . Finally, the PSD estimate is 

defined in Eq. (13): 
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where 
2ˆ
W  denotes the variance and kâ  is a parameter of 

RV. The covariance matching property when the PSD function 
is regarded to as an auto-regressive model is defined in Eq. 
(14). 
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where IFT{} denotes the inverse Fourier transform,   is 

the power spectral order, q’ is the highest order, and xR̂  is the 

auto-correlation function of  )(ˆ S . 

C. MSE determination 

When the PSD of each sequence in the q
th
 Markov order is 

determined by the use of PSE, the PSD values are normalized 
within the range [0, 1]. Next, the MSE defined in Eq. (15), is 
used to compare the similarity between two protein sequences 
yi and yj under the q

th
 Markov order. 
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where the parameter N is the length of protein sequence, 
q
iy   and 

q
jy  are the normalized PSD values under the q

th
 order 

transformed from one and the other protein sequences, 
respectively. If the lengths of two sequences are different, their 
PSDs are not of the same length, either. Thus the MSE cannot 
be directly computed. To solve this problem, two methods are 
used to make two sequences the same length. First, the shorter 
sequence is interpolated to be of the same length with the 
longer one and is denoted as ysl. Second, the longer sequence is 
down-sampled to be of the same length with the shorter one 
and is denoted as yls. These two methods are determined by Bi-
linear interpolation shown in Eqs. (16) and (17). 
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Here Ns and Nl are the lengths of the shorter and longer 
sequences, respectively,  j’n is between j and j+1, and 

)'( jj nn   . In the proposed methods, the MSE based on 
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short sequences, MSEs, and the MSE based on long sequences, 
MSEl, under a certain Markov order q, are determined, 
respectively, to obtain the average value MSEfinal shown in Eq. 
(18). 
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TABLE I.  THE STANDARD ONE-LETTER ABBREVIATION OF THE 20 AMINO ACIDS AND THEIR PROPERTIES ON POLARITY, CHARGE, AND HYDROPHILICITY OR 

HYDROPHOBICITY 

Amino acid 1-letter 

abbreviation 

Side-chain polarity Side-chain 

charge 

Hydropathic index 

Alanine A Nonpolar Neutral 1.8 

Arginine R Basic polar Positive −4.5 

Asparagine N Polar Neutral −3.5 

Aspartic acid D Acidic polar Negative −3.5 

Cysteine C Nonpolar Neutral 2.5 

Glutamic acid E Acidic polar Negative −3.5 

Glutamine Q Polar Neutral −3.5 

Glycine G Nonpolar Neutral −0.4 

Histidine H Basic polar Positive (10%) 
Neutral (90%) 

−3.2 

Isoleucine I Nonpolar Neutral 4.5 

Leucine L Nonpolar Neutral 3.8 

Lysine K Basic polar Positive −3.9 

Methionine M Nonpolar Neutral 1.9 

Phenylalanine F Nonpolar Neutral 2.8 

Proline  P Nonpolar Neutral −1.6 

Serine S Polar Neutral −0.8 

Threonine T Polar Neutral −0.7 

Tryptophan W Nonpolar Neutral −0.9 

Tyrosine Y Polar Neutral −1.3 

Valine V Nonpolar Neutral 4.2 

TABLE II.  THE COMPLEX VALUES OF 20 AMINO ACIDS IN THE PROPOSED FOUR MAPPING METHODS 

 Amino acids (property) Method 1 Method 2 Method 3 Method 4 

Hydrophilic amino 
acid 

H (Basic) 0.707+i 0.707 0.309+i 0.951 -0.707+i 0.707 0.707+i 0.707 

R (Basic) 0.588+i 0.809 -0.707+i 0.707 -0.587+i 0.809 -0.588-i 0.809 

K (Basic) 0.454+i 0.891 0.156+i 0.987 -0.454+i 0.891 0.454+i 0.891 

E (Acidic and their Amide) 0.309+i 0.951 -0.309+i 0.951 -0.309+i 0.951 -0.309-i 0.951 

D (Acidic and their Amide) 0.156+i 0.987 0.454+i 0.891 -0.156+i 0.987 0.156+i 0.987 

Q (Acidic and their Amide) i -0.454+i 0.891 i -i 

N (Acidic and their Amide) -0.156+i 0.987 -0.156+i 0.987 0.156+i 0.987 -0.156+i 0.987 

Y (Aromatic) -0.309+i 0.951 0.707+i 0.707 0.309+i 0.951 0.309-i 0.951 

C (Hydroxyl or Sulfur-containing) -0.454+i 0.891 i 0.454+i 0.891 -0.454+i 0.891 

T (Hydroxyl or Sulfur-containing) -0.587+i 0.809 -0.587+i 0.809 0.588+i 0.809 0.454-i 0.891 

S (Hydroxyl or Sulfur-containing) -0.707+i 0.707 0.588+i 0.809 0.707+i 0.707 -0.707+i 0.707 

Hydrophobic 
amino acid 

G (Aliphatic) -0.588-i 0.809 -i 0.588-i 0.809 0.588+i 0.809 

A (Aliphatic) -0.454-i 0.891 -0.454-i 0.891 0.454-i 0.891 -0.454-i 0.891 

V (Aliphatic) -0.309-i 0.951 0.156-i 0.987 0.309-i 0.951 0.309+i 0.951 

L (Aliphatic) -0.156-i 0.987 -0.588-i 0.809 0.156-i 0.987 -0.156-i 0.987 

I (Aliphatic) -i -0.156-i 0.987 -i i 

P (Cyclic) 0.156-i 0.987 -0.309-i 0.951 -0.156-i 0.987 0.156-i 0.987 

M (Hydroxyl or Sulfur-containing) 0.309-i 0.951 0.588-i 0.809 -0.309-i 0.951 -0.309+i 0.951 

F (Aromatic) 0.454-i 0.891 0.454-i 0.891 -0.454-i 0.891 -0.587+i 0.809 

W (Aromatic) 0.588-i 0.809 0.309-i 0.951 -0.588-i 0.809 0.588-i 0.809 

http://en.wikipedia.org/wiki/Hydropathy_index
http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Arginine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Cysteine
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Valine
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Fig. 2. Graphs of the mapping between the 20 amino acids and their corresponding positions on the circle in the proposed four mapping methods: (a) Method 1, 

(b) Method 2, (c) Method 3, and (d) Mehtod 4 

III. EXPERIMENTAL RESULTS 

Eighteen proteins sequences extracted from NCBI 
databases shown in Table 3 are considered in our experiments. 
According to their amino acid (aa) numbers, these sequences 
are categorized into six groups: Group 1 (<200 aa), Group 2 
(300-400 aa), Group 3 (401-800 aa), Group 4 (801-1200 aa), 
Group 5 (1201-2000 aa), and Group 6 (2001-3000 aa) 
sequences. In each group, two sets of different homologous 
sequences are tested. The nine MSE values corresponding to 
the Markov orders from one to nine are determined in each 
sequence pairs. Then, the average value is regarded the final 
result in each experiment. Four experiments according to the 
four mapping schemes (Methods 1-4) shown in Table 2 are 
designed. Method 1 encounters the properties of hydrophilic 
and hydrophobic amino acids sorted by the physical-chemical 

properties. Method 2 only encounters the properties of 
hydrophilic and hydrophobic. The amino acids are randomly 
distributed at hydrophilic part with the property of hydrophilic 
and hydrophobic part with the property of hydrophobic. 
Method 3 is a similar mapping with Method 1, but the amino 
acids are distributed in a horizontally reversed way. Finally, the 
mapping in Method 4 encounters none of the physical-chemical 
properties of the amino acids. The comparison results with the 
well-known ClustalW (Pairwise Alignment: 
SLOW/ACCURATE, Weight Matrix: BLOSUM, Gap Open 
Penalty: 10, Gap Extension Penalty: 0.1) and BLASTp (Weight 
Matrix: BLOSUM62) schemes are provided to validate the 
proposed methods. 

Based on Method 1 shown in Table 2, the PSDs of the 
protein sequences in these six groups are determined. Figure 3 
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shows the power spectra of the various Markov orders obtained 
by using the PSE method for the sequences in Group 1. The 
blue and red lines represent the normalized power spectral 
values of two sequences. The x-axis denotes the angular 

frequency ( 2-0 ), while the y-axis denotes the normalized 

PSD. For each pair of protein sequences, five power spectra 
corresponding to five Markov orders q=1-5 are determined. If 
these two lines are close to each other in the same Markov 
order, we may infer that the two sequences are significantly 
related.  For example, the PSDs in Figs. 3(a), 3(b), 3(f), 3(m), 
3(n), and 3(o) are similar in each Markov order because all the 
sequence pairs are homologous protein sequences, while in 
Figs. 3(c), 3(d), 3(e), 3(g), 3(h), 3(i), 3(j), and 3(l) are 
obviously different because the sequence pairs are non-
homologous. 

Based on Methods 1-4 shown in Table 2, Tables 4 to 9 
show the comparison results of the MSE values between 
various pairs of the sequences in the six groups, respectively. A 
smaller MSE value represents less difference between two 
sequences. In these six tables, all the MSE values of the 
homologous sequence pairs are smaller than 0.2. On the 
contrary, the MSE values of the non-homologous sequence 
pairs are greater than 0.2. This can be observed in the other 
parts in these tables as well. The proposed method contributes 
the classification of protein sequences and thus can serve as an 
alternative for the sequence comparison task. 

Figures 4(a)-4(f) illustrate the comparison results of the 
proposed method, ClustalW, and BLASTp in Tables 4 to 9. 
The horizontal axis denotes the set of experiments (sequence 
pair), while the vertical axis denotes the normalized difference 
value. In order to compare the sequence similarly in each 
method accordingly, the BLASTp scores are replaced by the 
value 1-BLASTp to correspond to the same numerical 
characteristics with that in the proposed methods and ClustalW.  
In Table 3, some results of BLASTp method are shown as NF, 
which means that the two protein sequences have no similarity 
found. Here, we set the NF value as 0 and then the value of 1-
BLASTp is 1, which denotes the maximal difference. In Fig. 
4(a), the depicted lines of MSE1, MSE2, MSE3, MSE4, and 
ClustalW have the similar rising and descending trends for the 
short sequences. The scores in all the six methods basically can 
be used to distinguish the homologous and non-homologous 
sequences. However, in Figs. 4(b) and 4(c), MSE2 and MSE4 
are not consistent to MSE1, ClustalW, and 1-BLASTp for the 

medium and long sequence pairs. In Figs. 4(b) and 4(f), the 1-
BLASTp scores are quite different from other scores and the 
variations among these methods are larger than that in the other 
figures. Note that the MSE4 values are higher than other values 
for Sequence pairs 14, and 15 in Figs. 4(d) to 4(f). The 
experimental results show that the mapping methods while 
encountering characteristics of hydrophilic amino acids and the 
general physical-chemical properties of amino acids can affect 
the comparison results. In Figs. 4(a) to 4(f), the MSE1 and 
MSE3 are nearly the same because the separation between each 
two amino acids is the same even if the mapping positions are 
horizontally reversed. 

According to the results of the proposed methods, 
ClustalW, and BLASTp, the following observations are 
obtained: (1)  The numerical mapping according to the 
physical-chemical characteristics of amino acids affect the 
results of comparison. In the experimental results, the more 
characteristics of protein are considered and arranged, the more 
correct results are obtained. (2) The MSE1 results are similar to 
the ClustalW scores, which means that the mapping scheme is  
consistent with the ClustalW method. (3) BLASTp and 
ClustalW are different methods, especially designed for the 
global and local sequence comparisons, respectively. The 
differences shown in the experimental results are especially 
obvious for the sequences in Groups 2 and 6. 

IV. CONCLUSION 

We proposed a new comparative tool for protein sequence 
comparison utilizing the parametric spectral estimate in 
stochastic processes to analyze protein sequences. The concepts 
of hydrophobicity in the amino acid physical-chemical 
properties are used to transform amino acids to numerical 
values. The experimental results show that the proposed 
methods effectively achieved the consistent comparison results 
with the well-known ClustalW and BLASTp. This research 
provides a new insight for the biologists as to how protein 
sequences can be analyzed. In our future work, more protein 
sequences will be tested by the proposed method. The problems 
encountered by two protein sequences with large difference in 
length  will be tackled as well. 
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TABLE III.  THE THREE GROUPS OF THE TEST PROTEIN SEQUENCES IN OUR EXPERIMENTS 

 No. Index Class Length (aa) 

Group 1 
(<200) 

1 XP_933607.1 PREDICTED: hypothetical protein 90 

2 XP_001129788.1 PREDICTED: hypothetical protein 90 

3 XP_001129824.1 PREDICTED: hypothetical protein 90 

4 NP_001463.1 G antigen 2 [Homo sapiens] 116 

5 NP_001468.1 G antigen 7B [Homo sapiens] 117 

6 NP_036328.1 G antigen 8 [Homo sapiens] 116 

Group 2 
(300~400) 

7 CAI46074.1 hypothetical protein [Homo sapiens] 329 

8 EFB16212.1 hypothetical protein PANDA_018121 [Ailuropoda melanoleuca] 329 

9 CAH89386.1 hypothetical protein [Pongo abelii] 323 

10 AAB51177.1 human RAD23A homolog [Homo sapiens] 363 

11 AAI33283.1 RAD23A protein [Bos taurus] 362 

12 AAH84695.1 RAD23 homolog A [Rattus norvegicus] 351 

 13 AAH33781.1 PAXIP1 protein [Homo sapiens]   757 
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Group 3 

(401~800) 

14 CAD98066.1 hypothetical protein, partial [Homo sapiens] 675 

15 AAB91434.1 CAGF28, partial [Homo sapiens] 744 

16 AAP04006.1 NIMA-family kinase NEK8 [Homo sapiens] 692 

17 NP_001179652.1 serine/threonine-protein kinase Nek8 [Bos taurus] 698 

18 DAA19021.1 TPA: NIMA-related kinase 8-like [Bos taurus] 703 

Group 4 
(801~1200) 

19 NP_031375.3 PAX-interacting protein 1 [Homo sapiens] 1069 

20 EHH17890.1 hypothetical protein EGK_14374, partial [Macaca mulatta] 1049 

21 AAH77588.1 K14 protein [Xenopus laevis] 1320 

22 CAC35387.1 suppression of tumorigenicity 5 [Homo sapiens] 1137 

23 AIC55177.1 ST5, partial [synthetic construct] 1137 

24 JAA49668.1 Putative ras signaling inhibitor st5 [Desmodus rotundus] 1137 

Group 5 
(1201~2000) 

25 BAA13389.1 KIAA0259, partial [Homo sapiens] 1550 

26 AFJ70237.1 DNA topoisomerase 2-binding protein 1 [Macaca mulatta] 1527 

27 AAI51238.1 Topoisomerase (DNA) II binding protein 1 [Homo sapiens] 1435 

28 AAI12162.1 Tumor protein p53 binding protein 1 [Homo sapiens] 1972 

29 BAE06107.1 TP53BP1 variant protein, partial [Homo sapiens] 1984 

30 JAB19186.1 tumor suppressor p53-binding protein 1 isoform 1 [Callithrix jacchus] 1970 

Group 6 

(2001~3000) 

 

31 BAA83718.1 RNA binding protein [Homo sapiens] 2752 

32 NP_057417.3 serine/arginine repetitive matrix protein 2 [Homo sapiens] 2752 

33 BAA20782.3 KIAA0324 protein [Homo sapiens] 2800 

34 AAK39635.1 DNA polymerase theta [Homo sapiens] 2724 

35 CAI56770.1 hypothetical protein [Homo sapiens] 2149 

36 ELK18077.1 DNA polymerase theta [Pteropus alecto] 2597 

TABLE IV.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 1 (<200 AA) SEQUENCES 

Set of 

experiments 

Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 ClustalW Blastp score 1-Blastp score 

1 (1,2) 0.0919  0.0623  0.0919  0.0946  0.0111  0.98 0.02 

2 (1,3) 0.0166  0.0348  0.0166  0.0182  0.0056  0.99 0.01 

3 (1,4) 0.3502  0.2343  0.3504  0.2682  0.4667  NF 1 

4 (1,5) 0.3472  0.2273  0.3475  0.2545  0.4667  NF 1 

5 (1,6) 0.3525  0.2346  0.3527  0.2605  0.4667  NF 1 

6 (2,3) 0.0864  0.0572  0.0864  0.1043  0.0056  0.99 0.01 

7 (2,4) 0.3755  0.2532  0.3751  0.2887  0.4667  NF 1 

8 (2,5) 0.3718  0.2448  0.3715  0.2714  0.4667  NF 1 

9 (2,6) 0.3770  0.2537  0.3767  0.2815  0.4611  NF 1 

10 (3,4) 0.3540  0.2414  0.3540  0.2697  0.4667  NF 1 

11 (3,5) 0.3505  0.2332  0.3507  0.2580  0.4667  NF 1 

12 (3,6) 0.3564  0.2417  0.3564  0.2613  0.4667  NF 1 

13 (4,5) 0.0567  0.0684  0.0567  0.0504  0.0086  0.97 0.03 

14 (1,2) 0.0171  0.0055  0.0171  0.0247  0.0043  0.99 0.01 

15 (1,3) 0.0585  0.0653  0.0586  0.0441  0.0129  0.97 0.03 

TABLE V.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 2 (300 – 400 AA) SEQUENCES 

Set of 

experiments 

Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 

ClustalW 

score 
BLASTp score 1- BLASTp score  

1 (7,8) 0.0409 0.1644 0.0409 0.0719 0.0304 0.94 0.06 

2 (7,9) 0.1331 0.1834 0.1331 0.2182 0.2307 0.54 0.46 

3 (7,10) 0.3324 0.3035 0.3325 0.1600 0.4863 0.71 0.29 

4 (7,11) 0.3119 0.3181 0.3120 0.1860 0.4863 0.71 0.29 

5 (7,12) 0.2822 0.2702 0.2823 0.1572 0.4742 0.83 0.17 

6 (8,9) 0.1383 0.2212 0.1383 0.2146 0.2260 0.54 0.46 

7 (8,10) 0.3309 0.3022 0.3312 0.1467 0.4620 0.71 0.29 

8 (8,11) 0.3129 0.3130 0.3132 0.1736 0.4666 0.71 0.29 

9 (8,12) 0.2862 0.2926 0.2864 0.1375 0.4681 0.71 0.29 

10 (9,10) 0.3268 0.2768 0.3270 0.2615 0.4598 0.41 0.59 

11 (9,11) 0.3183 0.3027 0.3186 0.2810 0.4721 0.41 0.59 

12 (9,12) 0.2835 0.2320 0.2838 0.2584 0.4861 0.30 0.70 

13 (10,11) 0.1175 0.2194 0.1175 0.0466 0.0221 0.93 0.07 

14 (10,12) 0.1957 0.2301 0.1958 0.0421 0.0627 0.94 0.06 

15 (11,12) 0.1653 0.2967 0.1654 0.0598 0.0698 0.91 0.09 
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TABLE VI.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 3 (401 – 800 AA) SEQUENCES 

Set of 

experiments 

Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 

ClustalW 

score 

BLASTp 

score 

1-BLASTp 

score 

1 (13,14) 0.0823 0.0272 0.0823 0.0330 0.0007 0.99 0.01 

2 (13,15) 0.1413 0.2633 0.1413 0.3128 0.0894 0.96 0.04 

3 (13,16) 0.3831 0.4798 0.3832 0.2793 0.4523 0.28 0.72 

4 (13,17) 0.3687 0.4880 0.3688 0.2105 0.4592 0.27 0.73 

5 (13,18) 0.3770 0.4945 0.3771 0.2209 0.4595 0.28 0.72 

6 (14,15) 0.1570 0.2747 0.1569 0.3338 0.1089 0.96 0.04 

7 (14,16) 0.3769 0.4823 0.3769 0.2879 0.4511 0.28 0.72 

8 (14,17) 0.3666 0.4910 0.3666 0.2097 0.4578 0.28 0.72 

9 (14,18) 0.3702 0.4976 0.3720 0.2203 0.4578 0.28 0.72 

10 (15,16) 0.4245 0.4603 0.4246 0.3161 0.4798 0.44 0.56 

11 (15,17) 0.4021 0.4617 0.4022 0.3442 0.4807 0.33 0.67 

12 (15,18) 0.4044 0.4676 0.4044 0.3478 0.4808 0.33 0.67 

13 (16,17) 0.0702 0.0816 0.0703 0.1614 0.0260 0.94 0.06 

14 (16,18) 0.0750 0.0798 0.0751 0.1547 0.0318 0.94 0.06 

15 (17,18) 0.0264 0.0214 0.0264 0.0279 0.0064 1.00 0 

TABLE VII.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 4 (801 – 1200 AA) SEQUENCES 

Set of experiments 
Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 ClustalW score BLASTp score 1- BLASTp score 

1 (19,20) 0.1147  0.1193  0.1148  0.0734  0.0186  0.96  0.04  

2 (19,21) 0.1811  0.1667  0.1814  0.1116  0.1240  0.84  0.16  

3 (19,22) 0.3297  0.3615  0.3298  0.3311  0.4528  0.16  0.84  

4 (19,23) 0.3326  0.3628  0.3327  0.3313  0.4511  0.16  0.84  

5 (19,24) 0.3586  0.3763  0.3587  0.3442  0.4602  0.29  0.71  

6 (20,21) 0.1925  0.1113  0.1928  0.0605  0.1239  0.82  0.18  

7 (20,22) 0.3396  0.3470  0.3397  0.3527  0.4561  0.40  0.60  

8 (20,23) 0.3452  0.3498  0.3452  0.3518  0.4557  0.40  0.60  

9 (20,24) 0.3677  0.3710  0.3677  0.3787  0.4576  0.29  0.71  

10 (21,22) 0.3011  0.3714  0.3011  0.3738  0.4705  0.37  0.63  

11 (21,23) 0.3154  0.3738  0.3154  0.3721  0.4705  0.30  0.70  

12 (21,24) 0.3266  0.3821  0.3265  0.4029  0.4776  0.26  0.74  

13 (22,23) 0.0319  0.0235  0.0319  0.0319  0.0022  0.99  0.01  

14 (22,24) 0.0813  0.1339  0.0813  0.1763  0.0299  0.94  0.06  

15 (23,24) 0.0881  0.1329  0.0881  0.1842  0.0312  0.94  0.06  

TABLE VIII.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 5 (1201 – 2000 AA) SEQUENCES 

Set of experiments 
Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 ClustalW score BLASTp score 1- BLASTp score 

1 (25,26) 0.0298  0.0390  0.0298  0.0811  0.0111  0.98  0.02  

2 (25,27) 0.0377  0.0456  0.0376  0.0716  0.0000  1.00  0.00  

3 (25,28) 0.3208  0.2858  0.3208  0.4020  0.4452  0.30  0.70  

4 (25,29) 0.3238  0.2841  0.3238  0.4076  0.4445  0.30  0.70  

5 (25,30) 0.2909  0.2970  0.2910  0.4384  0.4287  0.28  0.72  

6 (26,27) 0.0594  0.0562  0.0594  0.1174  0.0098  0.98  0.02  

7 (26,28) 0.3218  0.2835  0.3218  0.3992  0.4601  0.23  0.77  

8 (26,29) 0.3245  0.2829  0.3245  0.4070  0.4430  0.23  0.77  

9 (26,30) 0.2892  0.2974  0.2892  0.4289  0.4280  0.26  0.74  

10 (27,28) 0.3166  0.2866  0.3166  0.3912  0.4408  0.33  0.67  

11 (27,29) 0.3198  0.2868  0.3198  0.3970  0.4401  0.33  0.67  

12 (27,30) 0.2905  0.3018  0.2906  0.4190  0.4300  0.26  0.74  

13 (28,29) 0.0138  0.0120  0.0138  0.0325  0.0005  0.99  0.01  

14 (28,30) 0.0922  0.0694  0.0922  0.1595  0.0251  0.95  0.05  

15 (29,30) 0.0877  0.0698  0.0877  0.1715  0.0244  0.95  0.05  
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TABLE IX.  THE COMPARISON RESULTS OF THE PROPOSED, CLUSTALW, AND BLASTP METHODS FOR GROUP 6 (2001 – 3000 AA) SEQUENCES 

Set of experiments 
Sequence 

pairs 
MSE1 MSE2 MSE3 MSE4 ClustalW score BLASTp score 1- BLASTp score 

1 (31,32) 0.0026 0.0026 0.0026 0.0012 0.0002 0.99 0.01 

2 (31,33) 0.0059 0.0094 0.0059 0.0023 0.0004 0.99 0.01 

3 (31,34) 0.3391 0.4435 0.3391 0.5081 0.4670 0.88 0.12 

4 (31,35) 0.3242 0.4118 0.3241 0.5117 0.4591 0.88 0.12 

5 (31,36) 0.3251 0.3371 0.3251 0.4379 0.4704 0.44 0.56 

6 (32,33) 0.0061 0.0077 0.0061 0.0023 0.0002 0.99 0.01 

7 (32,34) 0.3384 0.4443 0.3384 0.5079 0.4670 0.88 0.12 

8 (32,35) 0.3233 0.4127 0.3233 0.5115 0.4591 0.88 0.12 

9 (32,36) 0.3245 0.3375 0.3245 0.4378 0.4704 0.44 0.56 

10 (33,34) 0.3391 0.4485 0.3391 0.5078 0.4662 0.88 0.12 

11 (33,35) 0.3241 0.4172 0.3240 0.5114 0.4581 0.88 0.12 

12 (33,36) 0.3254 0.3385 0.3254 0.4373 0.4704 0.44 0.56 

13 (34,35) 0.0998 0.1003 0.0999 0.1355 0.0016 0.99 0.01 

14 (34,36) 0.1142 0.254 0.1142 0.3358 0.09261 0.81 0.19 

15 (35,36) 0.1394 0.2791 0.1394 0.3236 0.10051 0.80 0.20 
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Fig. 3. The PSE comparison results between each sequence pair in Group 1 under various Markov orders q=1-5 
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Fig. 4. The graphical reprsentations of the comparison results on MSE1, MSE2, MSE3, MSE4, ClustalW, and 1-BLASTp in (a) Table 3; (b) Table 4; (c) Table 5; 

(d) Table 6; (e) Table 7; and (f) Table 8 

REFERENCES 

[1] M. Guarnaccia, G. Gentile, E. Alessi, C. Schneider, S. Petralia, and S. 
Cavallaro. “Is this the real time for genomics?” Genomics, vol. 103, no. 
2-3, pp. 177-182, 2014. 

[2] G. A. Price, G. E. Crooks, R. E. Green, and S. E. Brenner, “Statistical 
evaluation of pairwise protein sequence comparison with the Bayesian 
bootstrap,” Bioinformatics, vol. 21, pp. 3824-3831, 2005. 

[3] Z. G. Yu, V. Anh, and K. S. Lau, “Chaos game representation of protein 
sequence based on the detailed HP model and their multifractal and 
correlation analyses,” Journal of Theoretical Biology, pp. 341-348, 
2004. 

[4] E. A. Cheever, D. B. Searls, W. Karunaratne, and G. C. Overton, “Using 
signal processing techniques for DNA sequence comparison,” 
Proceedings of the 1989 Fifteenth Annual Northeast Bioengineering 
Conference, pp. 173-174, 1989. 

[5] D. Anastassiou, “DSP in genomics: processing and frequency-domain 
analysis of character strings,” IEEE International Conference on 
Acoustics, Speech, and Signal Processing, vol. 2, pp. 1053-1056, 2001. 

[6] P. Cristea, “Genetic signal analysis,” Sixth International Symposium on 
Signal Processing and Its Applications (ISSA 2001), vol. 2, pp. 703-706, 
2001. 

[7] H. T. Chang, C.J. Kuo, N.-W. Lo, and W.-Z. Lv, “DNA sequence 
visualization and comparison based on quaternion number system,” 
International Journal of Advanced Computer Science and Applications, 
vol. 3, no. 11, pp. 39-46, 2012. 

[8] D. Wu, J. Roberge, D. J. Cork, B. G. Nguyen, and T. Grace, “Computer 
visualization of long genomic sequence,” Proceedings of IEEE 
Conferences on Visualization, pp. 308-315, 1993. 

[9] E. H.-H Chi, P. Barry, E. Shoop, J. V. Carlis, E. Retzel, and J. Ried, 
“Visualization of biological sequence similarity search results,” 
Proceedings of IEEE Conferences on Visualization, pp. 44-51, 1995. 

[10] H. H. Chi, J. Riedl, E. Shoop, J. V. Carlis, E. Retzel, and P. Barry, 
“Flexible information visualization of multivariate data from biological 
sequence similarity searches,” Proceedings of IEEE Conferences on 
Visualization, pp. 133-140, 1996.  

[11] H.T. Chang, N.W. Lo, W.C. Lu, and C.J. Kuo, “Visualization and 
comparison of DNA sequences by use of three-dimensional trajectory,” 
The First Asia-Pacific Bioinformatics Conference (APBC 2003), vol. 
19, pp. 81-85, Adelaide, Australia 2003. 

[12] H.T. Chang, S. W. Xiao, and N.-W. Lo, “Feature extraction and 
comparison of TDTs: an efficient sequence retrieval algorithm for 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 11, 2015 

158 | P a g e  

www.ijacsa.thesai.org 

genomic databases,” The Third Asia-Pacific Bioinformatics Conference 
(APBC 2005), pp. 86, 2005. 

[13] N.-W. Lo, H.T. Chang, S.W. Xiao, and C.J. Kuo, “Global visualization 
of DNA sequences by use of three-dimensional trajectories,” Journal of 
Information Science and Engineering, vol. 23, no. 6, pp. 1723-1736, 
Nov. 2007. 

[14] H.T. Chang, “DNA sequence visualization,” in Advanced Data Mining 
Technologies in Bioinformatics , Chapter 4, pp. 63-84, Edited by Dr. 
Hui-Huang Hsu, Idea Group Publishing, ISBN 195140864-4, 2006. 

[15] H.T. Chang, S.W. Xiao, and C.H. Lee, “Feature extraction for fast data 
retrieval for visualized DNA sequence,” National Symposium on 
Telecommunications, Kaoshiung Taiwan, 2006. 

[16] W. Wong and D. H. Johnson, “Computing linear transforms of amino 
acidic signals,” IEEE Transactions on Signal processing, vol. 50, pp. 
628-634, 2002. 

[17] P. D. Cristea, “Conversion of nucleotides sequences into genomic 
signals,” Journal of Cellular and Molecular Medicine, vol. 6, no 2, pp. 
279-303, 2002. 

[18] P.J.S.G. Ferreira, V. Afreixo, and D. Santos, “Spectrum and amino acid 
distribution of nucleotide sequences,”  Digital Signal Processing, vol. 
14, pp. 523-530, 2004. 

[19] R. Gupta, A. Mittal, and S. Gupta, “An efficient algorithm to detect 
palindromes in DNA sequences using periodicity transform,”  Signal 
Processing, vol. 86, pp. 2067-2073, 2006. 

[20] X. Meng and V. Chaudhary, “A high-performance heterogeneous 
computing platform for biological sequence analysis,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 21, pp. 1267-
1280, 2010. 

[21] N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier, and P. Peterlongo, 
“Compareads: comparing huge metagenomic experiments,” BMC 
Bioinformatics, vol. 13, (Suppl 19): S10, 2012. 

[22] http://www.clustal.org/clustal2/ 

[23] http://blast.ncbi.nlm.nih.gov/ 

[24] R. E. Hausman and B. M. Cooper, The cell: a molecular approach. 
Washington, D.C: ASM Press. pp. 51. ISBN 0-87893-214-3, 2004. 

[25] J. Kyte and R. Doolittle, “A simple method for displaying the 
hydropathic character of a protein,” Journal of Molecular Biology, vol. 
157, no. 1, pp. 105–32, May 1982 

[26] https://www.boundless.com/biology/definition/r-group/   (R group) 

[27] H.T. Chang, Y.-L. Liu, C.J. Kuo, C.H. Lee, and N.-W. Lo, “Analysis of 
genomic DNA sequence by use of parametric spectral estimate,”  
Bioinformatics in Taiwan (BIT2005), pp. 68, Tainan Taiwan, Sep. 2005 

[28] H. Stark and J. W. Woods, Probability and Random Process with 
Applications to Signal Processing, Chapter 9. Applications to Statistical 
Signal Processing, pp. 553-619, Third Edition, Prentice Hall, ISBN-10: 
0130200719, 2001. 

 


