
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

166 | P a g e

www.ijacsa.thesai.org

An Embedded Modbus Compliant Interactive

Operator Interface for a Variable Frequency Drive

Using Rs 485

Adnan Shaout

The Electrical & Computer Engineering Department

The University of Michigan – Dearborn, MI U.S.A.

Khurram Abbas

The Electrical & Computer Engineering Department

The University of Michigan – Dearborn, MI U.S.A.

Abstract—The paper proposes the architecture and software

design of a Modbus Compliant Operator Interface Panel

(MCOIP) for a high speed Variable Frequency Drive (VFD) – a

state of the art embedded design that offers several key

advantages over the existing proprietary industrial models in use

today. The use of serial Modbus RTU communication over

RS485 allows an economically feasible, open source, vendor

neutral, feature laden, robust and safe operating model. Through

the use of an ARM based RISC microcontroller, the low response

time of the design makes the human machine interface more real-

time and interactive.

Keywords—Modbus RTU; Variable Frequency Drive Operator

Panel; Modbus Master VFD

I. INTRODUCTION

A Variable Frequency Drive is an embedded system that
controls the speed and frequency of a motor. The system
consists of a drive Operator Interface Panel along with the
main drive controller as depicted in Figure 1. A high speed
VFD typically requires the user of a remote human machine
interface that can control and monitor the drive. Typically, this
is done through the use of a panel either mounted on the
chassis or remotely through a very short shielded cable. These
panels allow a human operator limited functionality mainly
run, stop and speed control. The panels usually have a
primitive display to indicate drive speed or consist of light
emitting diodes to indicate status of the drive. The drive
parameters are factory programmed according to the
specifications of the customer’s motor ratings as indicated by
the motor name plate. To operate the VFD with different rated
motors, the control board of a drive would have to be shipped
back to factory. Furthermore, control of the VFD through
applications such as a LabVIEWTM environment to build a
sub Virtual Interface is not easy for machine integration due to
the proprietary communication interface developed by VFD
manufacturing vendors.

High speed VFDs also known as AC Motor Drives are used
in very specialized industrial applications such as very high
precision grinding and milling. An exhaustive review of
commercially available VFD brochures was completed to
ensure the need for this design approach. Existing VFDs
require an operator to be in close proximity which often poses
a safety concern with the acoustic noise and the inhalation of
fine particle dust [1, 2].

Fig. 1. High level illustration of a Variable Frequency Drive (VFD)

This limitation is mainly due to the fact that existing
Operator Interface Panels on VFDs use primitive serial
communication such as RS232 and the standard puts
restrictions on the distance between the operator interface panel
and the actual VFD [3]. The proposed design uses RS485 that
can allow the remote Operator Interface Panel to be placed
several hundred meters away reliably alleviating many of the
safety concerns by allowing the operator to control the VFD
from a safe distance or isolated premises.

Fig. 2. Connection to a RS485 Interface

The control board of a VFD contains hundreds of drive
parameters which define the way the drive manipulates the
frequency and voltage to control the motor. An extensive
literature review and survey of commercially available VFDs
reveals that for a consumer to use a differently rated motor
would require factory reprogramming [4, 5, and 6]. A
convenient way to modify these drive parameters on the fly
would make motor control more customized. Furthermore, the
design also opens up the realm of providing access to the
complete parameter table stored in the drive.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

167 | P a g e

www.ijacsa.thesai.org

The afore mentioned RS485 communication illustrated in
figure 2 also offers higher bandwidth than RS232 in present
day VFD Operator Interface Panels to make this increased flow
of bidirectional data between the VFD and the operator station.
This would require adding more peripherals namely a graphics
display and a full keypad. The use of specialized data
structures to handle the read and write requests between the
VFD and the Operator Interface Panel is also proposed in this
design. This is achieved using Modbus at the application layer
of the Open Source Interconnection Model which is an open
source industrial protocol suited for this application. This is
particularly beneficial as the biggest challenge with VFDs is
the lack of standardization and use of proprietary software for
communication. It also makes it easy for the user of a VFD to
replace an Operator Interface Panel with prepackaged Modbus
ready VIs for LabVIEW

TM
 integration. In applications where

the VFD powers up a high speed motor to several thousand
RPMs in a matter of seconds the added responsiveness of the
system makes the speed display (and other parameters) more
real time. This is a desired change as in existing VFD Operator
Interface Panels which use typical seven segment displays for
speed this real time ramp up of speed is not observed.

The paper is organized as follows: section 2 will present
requirements for the Modbus Compliant Operator Interface
(MCOIP) Panel for a high speed Variable Frequency Drive,
section 3 will present the design of the MCOIP, section 4 will
present simulation and results, section 5 will present the
performance of the system and section 6 will present
conclusions.

II. REQUIREMENTS

A. Functional Requirements

Firstly, although an Operator Interface Panel for a VFD is
primarily a communication device it also serves other
purposes. The ability to read/write parameters adds complexity
to the main loop of the embedded device. It requires the use of
various peripherals of the microcontroller to interface with the
graphics display, keypad matrix etc. Furthermore, the
requirement to meet the responsiveness of the VFD is further
constrained if the main loop encompasses other tasks such as
display refresh, keypad scanning etc. in addition to the
communication routine.

The programmability of the design will allow the system to
be used with a wide range of different motor ratings.
Depending on the application, there could be well over 200
drive parameters that could be modified. This feature would
require interactive communication with the VFD through the
use of the operator interface to modify drive motor parameters
(individually on a per parameter basis or in bulk).

The design allows a single operator interface to be used
with various master units (multiple drives/multiple motors).
Various industrial applications require one operator unit and
multiple VFD units (e.g. high precision grinding/milling
applications). Presently, this is done through daisy chaining
and signal mirroring which requires the use of additional
hardware. Modbus is suited for such single slave multiple
master implementation and the software design techniques to
accomplish this will be described in greater detail in the design.

Since the operator panel is always communicating with the
VFD in an open control loop, various drive parameters are
always being retrieved by the operator interface. This is to
ensure that the human operator is always visibly aware of the
drive status while navigating through various different menus
of the operator interface. Modbus has special commands to
read large registers in one go which are purposely placed
contiguously.

Lastly, a requirement of the design is to allow the VFD
operator to be able to connect the drive several thousand feet
away from the actual drive [7]. Existing drives systems use
RS232 which imposes restrictions on the distance between the
operator interface and the drive controller. This limitation can
potentially add risk to the operator in certain applications
where high speed, high voltage AC motors are used. Using
RS485 which uses a differential communication model can
hence offer more safety by allowing the operator interface to be
located farther away with very little error rate [8]. Modbus
standards limit this distance to 1000m [9]. Furthermore,
Modbus also defines the type of connector to be used along
with the pin out.

This paper discusses the various aspects of the project
progress in conjunction with the waterfall model by describing
the requirements, design, implementation, verification (system
performance).

B. Non-Functional Requirements

The functional requirements stated add stringent real time
constraints on the embedded system. To overcome some of
these timing constraints the design would incorporate a phase
locked loop with an aptly selected crystal oscillator. The
embedded coding would also utilize a highly optimized
compiler for code efficiency while keeping in mind the space
limitations to keep the cost down.

The use of timer and peripheral interrupts can delay
execution of tasks within the main system loop and the
execution of the operator interface will require a robust scale of
reentrancy.

The paper aims to put forward a design which should be
compatible with practically any Modbus compliant controller
by simply plugging the operator interface into the port. This
non-functional requirement would require some robustness in
the design.

This embedded system should leverage the use of a watch
dog timer to prevent deadlocks and also offer error handling to
ensure safe drive operation. The system model and state design
machine should ensure all process deadlines are met. A
brownout circuit will also be explored in case of loss of power
detection.

The operator interface being a slave Modbus system should
be interchangeable with any Modbus compliant control
methodology. The software inside the embedded device should
be designed such that it can be ported and used in a National
Instruments LabVIEW

TM
 environment on a computer.

Table I summarizes the key advantages that the proposed
design offers over existing VFD operator panels.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

168 | P a g e

www.ijacsa.thesai.org

TABLE I. KEY ADVANTAGES OF MCOIP

Features MCOIP

Interactivity
 Full keypad array (numeric).

 Fast response time (more real-time).

Programmability

 Through keypad or any Modbus compliant
slave.

 High data transmission rates.

Reliability
 Increased noise immunity.

 Reliable communication.

Flexibility
 Remote operation up to 1000m.

 Vendor neutral.

III. DESIGN

The ATMEL AT91SAM7S series of RISC Processor was
chosen for this embedded system. It incorporates the
ARM7TDMI ARM Thumb Processor and provides 32 bit
RISC architecture. The RISC architecture is suited for Modbus
in an industrial environment as this provides the design
immunity to electromagnetic interference [10]. Figure 3 shows
the peripheral block diagram of the series and illustrates the
outlined peripherals to be used this design [11]. This was
determined in lieu of the prior requirements set forth while
following the software waterfall model.

Fig. 3. AT91SAM7S Block Diagram and Pheripherals Used

A readily available oscillator/crystal with a frequency of
18.432MHz can be used [11].

 ⁄ = 31.91 ns

 ⁄ = 31.91 ns

 ⁄ = 1,566,906

The design in this paper focuses primarily on the main
functional aspects of the Operator Interface Panel for the VFD
although some of the other functions which may be outside the
scope of the paper are mentioned. The design was suited to fit
the needs of the AT91SAM7S and its available multiplexed
peripherals along with a prototype printed circuit board (PCB).
However, it has flexibility and portability to be applied to other
microcontrollers and a different schematic implementation of a
hardware design. Conceptually, the crux of the proposed state
of the art design described next is what makes the
implementation unique and should be adhered to as much as
possible.

Modbus protocol was originally developed and published
for industrial PLC communication in the 70s. It supports
RS323, RS422, RS485 communication interfaces as well as
Ethernet interface (TCP/IP). Figure 4 illustrates the place of
Modbus pertaining to the OSI model. Modbus facilitates
communication between devices and dictates how devices send
requests, responses, handle errors and records. It uses the “big-
Endian” for representation of Big-Endian data item addressing
i.e. most significant byte sent first if more than a single byte
transferred/received.

Register addressing scheme in Modbus will be used to
accomplish the latter. A VFD can design the parameter table in
any way desired as long as it adheres to Modbus registering
format [12]. This makes the Operator Interface Panel (Master)
universally compatible with any Modbus Slave VFD.

Fig. 4. Modbus and the OSI Layer

The data field is closely related to the function code and
can vary with what is sent as shown in Table II.

Modbus also defines the physical connectivity for the serial
RTU implementation [9]. It requires the use of RJ45 serial
connector as shown on the right on Figure 5. The pin out and
the color coding of the signals of the twisted pairs is also
standardized as shown and implemented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

169 | P a g e

www.ijacsa.thesai.org

TABLE II. MODBUS FUNCITON CODE

Fig. 5. RJ45 Jack EIA/Modbus Signal Names

This controller allows formation of an asynchronous state
machine which features a main polled loop. Figure 6 depicts
the high level state machine in terms of a flow chart. Per the
non-functional requirements of this design the loop should
execute within 50ms. The design is completely embedded and
autonomous. It powers up and loads the Parameter Table from
the drive. If that process fails the operator interface loads the
default Parameter Table from code. In the main loop it
performs a check to see if a key was pressed, carries out
Modbus communication and refreshes the graphics display.
This main polled loop is allotted a maximum total execution
time of 50ms. A loop execution time of larger than 50ms will
result in the design losing a responsive feel and will render the
design non-real time.

A. Interrupts

 A timer interrupt set to occur every 1ms is used to
implement key scanning to scan and check key entry
against every row column combination. It is also used
to enough time has passed (50ms) to flash the data
entry cursor and then to process the key to determine if
a key was pressed by the operator and which one.
Figure 7 is a flow chart depicting the ISR for Timer 1.

Main Loop

Key Pressed? Key Processing

Modbus
Communication

Setup Display
Variables

Load Paramter Table

Para Load
Successful?

Power Up/Setup
Peripherals

Load Default Para
Table

No

Yes

Yes

No

Fig. 6. Operator Panel Interface Main Call Graph

 Another timer interrupt is set to trigger every 250usec.
Inside this handler a counter called Frame Silent
Interval Counter is used to keep track of a 3.5 character
delay. Before transmitting via Modbus this is the
counter which is checked to see if that delay has not
yet been met. Another counter keeps track of whether
enough time has passed to determine whether a
message response timeout has occurred or not
(meaning the Modbus slave i.e. VFD control board in
the VFD did not reply). Figure 8 is a flow chart
depicting the ISR for Timer2.

 A Universal Serial Asynchronous Receiver Transceiver
timer is set to trigger every time a character is received.
The ISR first checks to see if the transmission for this
character is complete. It would then go ahead and put
the character in the Modbus Receive Buffer provided
the buffer size has not exceeded 256 Bytes in
conjunction with Modbus stipulations on maximum
buffer size [12]. The ISR then resets the counters
tracking the response timeout and the frame silent
interval. The routine then checks to ensure that a 1.5
character timeout has not occurred again per Modbus
stipulations indicating the frame has been received
[12]. If it has occurred the interrupt is disabled and the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

170 | P a g e

www.ijacsa.thesai.org

response time counter is reset along with the frame
silent interval counter. An end of frame flag is then set
to true indicating successful receives of the Modbus
frame. Figure 9 is a flow chart depicting the ISR for the
UART Receive.

Since the design primarily happens to be a communication
device the highest priority is assigned to the USART Receive
Interrupt. An incoming reception from the Modbus Slave (the
VFD) is the absolute critical task which should be services
immediately. The only exception could potentially be a Analog
to Digital Interrupt which could potentially be triggered on a
drop in voltage of the main power indicating the loss of power.
This can be used in conjunction with a loss of power indication
circuit to immediately service some tasks that require
immediate attention such as locking EEPROM to prevent
corruption, halting master requests gracefully or turning
graphics display backlight off. However, these are beyond the
scope of the proposed design and in normal operation the
Modbus reception of a frame through the use of the USART
receive interrupt has the highest priority. Table III depicts the
interrupts associated with the design along with their priorities
and rate/triggers.

TABLE III. INTERRUPT PRIORITIES

Interrupt
Priority (5 being

highest)
Rate/Trigger

USART0 5 Receive character (1 byte)

TIMER0 4 Every 1ms

TIMER2 3 Every 250usec

Acknowledge Interrupt
Status

Key_Index ++

If Key_Index > 5 Key_Index = 1

Key_scan(key_index)

If Flash Needed Set cursor Flash flag

50ms? Set cursor Flash flag

Proc_Key(key_index)

Yes

Yes

Yes

No

No

No

Fig. 7. Timer 1 (1ms) – Interrupt Service Routine

Acknowledge Interrupt
Status

Frame Silent Interval++

Resp_Timeout_Cntr++

Fig. 8. Timer 2 (250usec) – Interrupt Service Routine

Fill buffer with Rx
Byte; increment
number of recd.

bytes

Get Character on Rx

Buffer Data
Length > 256

Yes

Reset Response
Timeout Counter &

Frame Silent Interval
Counter

No

1.5 timeout?

Disable US interrupt;
Reset Response

Timeout Counter &
Frame Silent Interval

Counter; end of
frame == true

Get USART Status
Register and Active

Interrupt

Yes

Fig. 9. USART Receive Interrupt Service Routine

B. Modbus Communication

Modbus RTU serial communication is carried out using
RS485. This requires using the Universal Synchronous
Receiver Transceiver (USART) in RS485 mode. As defined in
the Modbus specifications a stop bit, even parity, 8 bit mode is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

171 | P a g e

www.ijacsa.thesai.org

used [12]. In order to meet stringent requirements Direct
Memory Access (DMA) is used for transmit. DMA with
Modbus receive cannot be used because a received frame can
be variable length and indeterminate. The Modbus frame is
received through the use of a USART ISR described
previously.

The Modbus communication routine strictly adheres to the
requirements set forth by the standards both in terms of timing
and data structures [12]. Certain status parameters indicate
critical information such as the drive run statistics, speed, fault
etc. depending on what section of the menu a user is in. These
are purposely placed contiguously in the Modbus memory
block for easy of retrieving. Modbus uses Cyclic Redundancy
Check to ensure error free reception and transmission of
frames. This is done by calculating the CRC value that uses a
standard 16 bit generated polynomial to check out 16 bit-check
code for any length information fields [12]. Any Modbus
frames received are also checked for CRC to ensure errors
have not occurred [9, 12]. Modbus frames prepared for
transmissions are also appended with the checksum calculation
to satisfy Modbus requirements and to ensure the slave
receives error free frames.

For timing the communication routine ensures that before it
sends out a new frame the silent interval has passed. There are
certain drive parameters that the Operator Interface Panel is
always reading in every execution of the main poll loop which
executes the Modbus Communication block. Figure 10 shows
the Modbus Slave (VFD) state diagram while Figure 11 shows
the Modbus Master (Operator Panel Interface) state diagram.

In case of a transmission error the frame retransmission is
tried thrice with a delay of 10ms to avoid bus contention with
the Master. If there is a problem that persists then the slave
should do back off retries i.e. introducing an extended delay
between each retry to reduce processing on the slave (VFD)
side. In such a scenario the display would display no data for
the status or the parameter being checked. As soon as
communication is reestablished the data would appear on the
display. The user is still able to browse through the menus and
do limited operations on the Operator Interface Panel in the
event of no communication from the Slave (VFD). This is a
stark improvement to the traditional VFDs in the industry
today where an operator panel with lack of interactivity to
begin with becomes completely unresponsive until
communication is reestablished.

Idle
Formatting and

normal reply

Processing required
action

Checking Request

Normal reply sent

End of processing (broadcast mode)

Check OK

Reception of a request (from
the master)

End of processing

Fig. 10. Modbus Slave State Diagram

Initial State

Idle

Emision

Control and Waiting

Reception
Character received init. and

start t1 and t2

Control frame (CRC, Parity,
Slave addr) flag = frame ok or

NOK

t1 expired (if frame
ok processing frame
else nok then delete

frame

Character received I
init start t1

First charactr
received inti. And

start t1 and t2

Emitted character (if
last emitted

character I Init and
start t1

t1 expiredDemand of emission

t1 expired
t2 expired

Legend:
t1 = 3.5 character times
t2 = 1.5 character times

Fig. 11. Modbus Master Transmission Mode State Diagram

C. Keyscanning

A requirement of the Operator Interface Panel required a
user to be able to do data entry in order for drive parameter
programming. This is made possible through the addition of a 5
x 5 key matrix using tactile switches. This is introduced to
meet the requirements to make the Operator Interface Panel
programmable and fully interactive with rich human-machine
interfacing when it comes to drive parameters.

TABLE IV. KEYPAD ENTRIES

Key Function

Status Go to Status Screen

Parameter Go to Parameter Screen

Setup Go to Setup Screen

Fault Go to Fault Screen

Control Panel Go to Control Panel Screen

0 to 9 Numeric Data Entry

Decimal Decimal Entry

Clear Clear Entry

Enter Accept Entry

Escape Cancel Data Entry

+/Up Scroll Up

-/Down Scroll Down

Start (I) Start Command

Stop (O) Stop Command

F1 Future Use

RST RESET Microcontroller

Key scanning is implemented by putting a software routine
to scan the 5 columns rows inside a 1ms timer as indicated in
Figure 7. The general purpose I/O pins of the AT91SAM7S
translating to 5 rows and 5 column can be used for this purpose
and should be defined as internal pull ups. The 5 column pins
should be defined as inputs only. The un-driven row pins
should be weakly pulled up (open source).

It is assumed that only one key is to be pressed at a time. If
there is a second key pressed either at the same time
(theoretically) or right after the first one, it will be ignored by
the key scanning and key processing routines. In case of a
simultaneous press the order of the key scanning process
dictates what key takes precedence. Table IV highlights the
available options of the 25 keys. This can be customized based
on the needs of Control Interface Panel.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

172 | P a g e

www.ijacsa.thesai.org

The timer interrupt triggering every 1ms shown in Figure 7
does key scanning and processing. The key scanning cycles
through the rows and columns to determine what is pressed
where as the key processing routine implements de-bouncing
and goes ahead and aptly stores the pressed keys into a “First
In First Out” (FIFO) buffer. A gear count is also used in case
the same key is repeatedly pressed to speed up scrolling
processes. The main poll loop checks to see if a key is pressed
by reading the FIFO as indicated in Figure 6. There are certain
menu screens of the Control Interface Panel where pressing a
key can potentially trigger a data entry routine to meet the
requirement of making the design programmable. This could
be a parameter entry. Hence, every key is handled on a case
scenario and special consideration of the state of the Control
Interface Panel keeps track of the data entry.

IV. SIMULATIONS & RESULTS

A. Results

To test the design the Modbus Slave Simulator is
programmed with dummy variables. The Modbus Slave
Simulator is set up using the communication settings as shown
below which are on par with the design code on the USART
peripheral settings i.e. 115Kbps Baud Rate, 8 Data Bits, Even
Parity and 1 Stop Bit.

Fig. 12. Slave Communicating Settings

As an example parameter 2.04 of the drive is chosen
arbitrarily. From the parameter table 2.04 in figure corresponds
to Register Number 40097 as shown in Figure 13.

Fig. 13. Parameter Table Entry of Parameter 2.04

The electrical frequency of a motor is typically a floating
point value. To optimize our design floating point variables
were not used in the design. Floating point values were handled
by using Binary 16 and Binary 32 variables with scaling. For
this parameter, entries were defined in the parameter table; a
snippet shows in Figure 13. The store radix indicates that the
value would be using a 3

rd
 decimal place. The maximum and

minimum are merely for a local master bound check for this
particular application and do not necessarily represent the
actual data structure’s maximum and minimum. Hence an out
of bound value was retrieved by the master is capped to the
maximum applicable value as defined by the parameter table
from Figure 13 for this parameter.

A dummy register entry was made in the Modbus Slave
Simulator in the register 40097 as shown in Figure 14. The
value entered is 23 (0x17).

Fig. 14. Slave Communicating Settings

The Modbus poll request for this frame would be:

01 03 00 60 00 02 45 D7

Device Address: 0x01

Function: 0x03 (Read Holding Register)

Point Address: 40097

Point Code: 2

Checksum: No Error
This is verified by the communications log monitoring of

the Modbus Slave shown in Figure 15 (or through the use of a
Logic Analyzer connected to the RS485 transceiver). The
Modbus response to this poll would be:

01 03 04 00 00 00 17 BA 3D

Device Address: 0x01

Function: 0x03 (Read Holding Register)

Point Count: 2 (Implied by byte count of 4)

Point Index 1: 0x00

Point Index 2: 0x17

Checksum: No Error

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

173 | P a g e

www.ijacsa.thesai.org

Fig. 15. Modbus Slave Communication Log

This value is translated using the data structure definition in
Figure 14 by the case check for the display parameter routine
and displayed on the screen as shown in Figure 16 which
shows an actual snippet while this was performed.

Fig. 16. Parameter 2.04 value retrieved from Slave

B. Simulation

Since Modbus limits the length of the RS485 cable to
1000m a test was done to ensure the design meets the
requirements of being remotely deployed. A 1000m CAT5
Ethernet Cable could be used with the design and a count of
errors through the internal error log as well as the Modbus
Slave Simulator could be performed over time to count CRC
errors. Since a commercially available 1000m Ethernet cable is
expensive, a signal integrity simulation was performed using
Mentor Graphics Hyperlynx to assess the effect of Bit Rate and
Frame Delay Variation (also known as Jitter) vs. cable length.
This was done through the use of exporting the schematic
model available from the Mentor Graphics PADS Schematic to
the Hyperlynx simulation product. The schematic is shown in
Figure 17.

A differential voltage threshold of -100mV and +100mV
was used to demonstrate a practical (and not a perfect)
receiver) between pins A/D0 and B/D1. The simulation charted
in Figure 18 show found to be within acceptable levels for up
to 850 meters which falls slightly short of the 1000m for this
design as set forth by Modbus (highlighted in yellow in Figure
18).

Fig. 17. Schematic of the RS485 circuit

This is a limitation in the Hyperlynx Simulation Tool
however the design specifications of Modbus guarantee
operation up until 1200m. The Baud Rate used in this design
(115Kbps) is also highlighted in purple.

Fig. 18. Chart showing frame delay variation with Bit Rate (Kbps) vs. Cable

Length (m)

V. SYSTEM PERFORMANCE

Due to the nature of the application the timing requirement
of 50ms discussed in the requirements section is critical. Many
techniques were used both to measure and modify the system
response time to ensure that all the tasks complete without the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

174 | P a g e

www.ijacsa.thesai.org

required time. With the use of these techniques it was found
that the main loop on average operation on a typical screen of
the Operator Interface Panel was measured to be:

Worst case execution time for Main Poll Loop = 32ms

Worst case CPU utilization (no retransmissions) = 64%

Some of these techniques to evaluate and improve the
system performance of the device are listed below.

A. Probing

Various routines inside the main polled loop were
individually measured to determine the compositions. This was
easily implemented through the use of probing an unused I/O
pin. The multiplexed I/O pin could be set before the start of the
routine and then cleared after the routine is finished. A digital
oscilloscope (a logic analyzer could be used here as well) was
used to determine the high time of the wave form indicating the
time taken for the routine. The response times of the interrupts
were also evaluated to ensure no unnecessary latency exists.

Decisions to use the SSC peripheral for updating the
display and DMA for USART Transmit were primarily based
on the results of the probing. SSC and DMA access the RAM
independently without bogging down the processor allowing
plenty of headway into the 50ms main polled loop.

B. Communication Response Times

Modbus communication response times from a simulation
Modbus Slave Tool are exported and sent over to an open
source software to perform an analysis [13]. Status 1 screen has
the most amount of communication and represents the worst
case scenario. For this reason it is chosen for testing response
times and results depicted in Table V for the average and
maximum response times (all under 50ms).

TABLE V. STATUS 1 RESPONSE TIMES

 Avg. RT (ms) Max. RT (ms)

1 43.238 45.642

2 41.875 42.327

3 41.056 43.293

4 40.240 43.549

C. Inline Assembly Code

In scenarios instances involving initialization of peripherals
where exact timing is necessary; inline assembly was used to
ensure complete control over timing through the use of
modules based on no operations instructions.

D. Optimized Compiler

An IAR Embedded Workbench Compiler for ARM
processors was used to compile, debug and build the code. A
Segger J-Link JTAG was used to flash the microcontroller. A
balanced approach was taken with regards to optimization for
speed vs. code space.

E. Dissassembly

In order to ensure optimized compiler behavior was not
causing undesired results the disassembly was used as a means
to verify correct operation. This was especially useful in the

ISR to ensure it is short and simple and does not increase
latency.

VI. CONCLUSION

The paper has presented the architecture and a software
design of a Modbus Compliant Operator Interface Panel
(MCOIP) for a high speed Variable Frequency Drive (VFD).
The use of serial Modbus RTU communication over RS485
allows an economically feasible, open source, feature laden,
robust and safe operating model. The use of specialized data
structures to handle the read and write requests between the
VFD and the Operator Interface Panel was proposed in this
design. This is achieved using Modbus at the application layer
of the Open Source Interconnection Model which is an open
source industrial protocol suited for this application. The
programmability of the design allowed the system to be used
with a wide range of different motor ratings through the use of
an ARM based RISC microcontroller. The low response time
of the design made the human machine interface more real-
time and interactive. Based on this proposal, future
implementations can be designed to allow functionality with
other variants of Modbus (namely TCP/IP) and other vendor
neutral open source communication protocols.

REFERENCES

[1] N. Hashemi, L. R. Lisner, D. Holmes. “Accoustic Noise Reduction for
an Inverter-Fed Three-Phase Induction Motor,” Conference Record of
the IEEE, 2004, pp. 2030-2035 vol 3.

[2] “Dust and its control,” Occupational Safety and Health
Administration.“https://www.osha.gov/dsg/topics/silicacrystalline/dust/c
hapter_1.html (last accessed 10/27/2015).

[3] B. Carlson. “Maximum transmission distance for RS-232 Computer
Cables,” Pulp and Paper Ind. Tech. Conf., 1988, pp. 86-93.

[4] J. Kimbrell. “Top 10 Tips for Specifying VFDs,” Design Engineering,
2014, pp. 30-33 vol 60 issue 1.

[5] [12] B. MB and Vishwanath, “Hegde Energy Conservation using
Variable Frequency Drives of a Humidification Plant in a Textile Mill”,
2015 International Conf. on Power and Advanced Control Engineering
(ICPACE).

[6] [13] G. Morris and B. Weiss, “Driving Energy Efficiency with Design
Optimization of a Centrifugal Fan Housing System for Variable
Frequency Drives”, Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), 2012 13th IEEE Intersociety Conf.

[7] G. Guarese, F. Sieben, T. Webber, M. Dillenburg, C. Marcon.
“Exploiting Modbus Protocol in Wired and Wireless Multilevel
Communication Architecture,” Brazilian Symp. on Comput. Sys. Eng.,
Natal, 2012, pp. 13-18.

[8] V. Kumar. “Overcoming Data Corruption in RS485 Communication,”
IEE Int. Conf. on Electromagnetic Interference and Compatibility, 1995,
pp. 9-12.

[9] “Modbus over Serial Line Specifications and Implementation Guide
V1.02,” www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
(last accessed 10/27/2015).

[10] K. Wang, D. Peng, L. Song, H. Zhang. “Implementation of Modbus
Communication Protocol Based on ARM Cortex-M0,” IEEE Int. Conf.
on Systems Sci. and Eng., Shangai China, 2014, pp. 69-73.

[11] “AT91SAM ARM-based Flash MCU,” ATMEL Corporation,
http://www.atmel.com/images/doc6175.pdf (last accessed 10/24/2015).

[12] “Modbus Application Protocol Specifications V1.1b3,”
www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf (last
accessed 10/24/2015).

[13] G Kunzel, C. Pereira. “A Tool for Response Time and Schedulability
Analysis in Modbus Serial Communications,” IEEE Int. Conf. on Ind.
Informatics, 2014, pp. 446-451.

