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Abstract—For meeting the requirements of the high-speed 
Internet and satisfying the Internet users, building fast routers 
with high-speed IP address lookup engine is inevitable. 
Regarding the unpredictable variations occurred in the 
forwarding information during the time and space, the IP lookup 
algorithm should be able to customize itself with temporal and 
spatial conditions. This paper proposes a new dynamic data 
structure for fast IP address lookup. This novel data structure is 
a dynamic mixture of trees and tries which is called Tree-
Combined Trie or simply TC-Trie. Binary sorted trees are more 
advantageous than tries for representing a sparse population 
while multibit tries have better performance than trees when a 
population is dense. TC-trie combines advantages of binary 
sorted trees and multibit tries to achieve maximum compression 
of the forwarding information. Dynamic reconfiguration of TC-
trie, made it capable of customizing itself along the time and 
scaling to support more prefixes or longer IPv6 prefixes. TC-trie 
provides a smooth transition from current large IPv4 databases 
to the large IPv6 databases of the future Internet. 

Keywords—IP address lookup; compression; dynamic data 
structure; IPv6 

I. INTRODUCTION 
Improvement of Internet-base multimedia applications in 

recent years drives new demands for high-speed Internet. It 
seems that the demand for achieving higher bit-rates never 
saturates. Having the fast optical fiber technology for data 
transmission, data processing elements, i.e. routers, became 
main bottleneck of the current Internet speed. Inside a router, 
components that limit its speed are IP address lookup and 
classification engines. The main role of router is to forward 
millions of packets per second on each of its destination by 
finding address of next-hop router or the egress port through 
which packet should be forwarded. This forwarding decision 
is limiting the speed as there are millions of addresses and 
finding destination IP from millions of IPs is not an easy task. 
There is a need to have an algorithm for efficient IP lookup. 
Before we go to details, let’s see how IP addressing 
architecture works and evolving. Reviewing it will help us to 
understand the address lookup problem. IP addressing 
architecture can be divided into two schemes; classful IP 
addressing scheme and classless IP addressing scheme 
Classful IP scheme has two main issues; first, large number of 
IP addresses is wasted because of using IP address classes, 
second, the routing tables become very large. The growth of 
the forwarding tables resulted in higher lookup times and 
higher memory requirements in the routers and threatened to 

impact their forwarding capacity. In order to resolve two main 
issues there are two possible solutions one is IPv6 IP 
addressing scheme and second is Classless Inter-domain 
Routing or CIDR. 

Finding a high-speed, memory-efficient and scalable IP 
address lookup method has been a great challenge especially 
in the last decade (i.e. after introducing Classless Inter-
Domain Routing, CIDR, in 1994). In this paper, we will 
discuss only CIDR. In addition to these desirable features, 
reconfigurability is also of great importance; true because 
different points of this huge heterogeneous structure of 
Internet have different traffic shapes and network topology 
changes along the time at each point as well. 

This paper proposes a new cost-efficient data structure for 
fast IP address lookup that dynamically reconfigures itself. 
This novel data structure combines binary sorted trees with 
variable-stride multibit tries and put advantages of them all 
together in itself. 

A. Paper Organization 
Section 1 explains importance and related work. Section 2 

explores the idea of TC-trie by examples and explains how to 
build TC-trie from a binary trie. Section 3 shows the 
experimental results of the TC-trie implementation and finally 
Section 4 concludes the paper and reveals our future works. 

B. IP Address Lookup & Forwarding Tables 
IP address lookup is a special search problem in a database 

of hundreds thousands of network addresses. Routers keep 
network addresses in their forwarding tables. For each 
incoming packet, the router finds a network address inside its 
table that matches with the destination IP address of that 
packet. Joint with each network address, there is a result field. 
The result could be simply an egress port of the router that 
packet should be exited from router via it to reach its 
destination network. Actually more information than an out 
port is required for forwarding a packet properly. This 
information includes next-hop layer-2 address, next hop layer-
2 MTU (Maximum Transfer Unit), out port and so on. This 
information is kept in another table. This table can be called 
NHT (Next-Hop Table). Having the NHT, the result of the 
lookup could be a short length pointer to an entry of NHT. 
Fig. 1 shows an example of a forwarding table and an NHT. 
As this figure depicts, the forwarding table holds an 8-bit 
pointer corresponding to each network address. 
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A network address is a prefix of the 32-bit IP address. 
After introduction of CIDR (Classless Inter-Domain Routing) 
in 1994, network prefixes can be of any arbitrary length. In the 
classless routing, more than one network prefix may match 
with the destination IP address; in this case, the router must 

choose the longest prefix that matches; so the IP lookup 
problem is known as a Longest Prefix Match (LPM) problem. 

C. Trees & Tries 
During the last ten years, many solutions have been 

proposed that issue the LPM problem. Simply, the IP 

Fig. 1. simple forwarding table pointing to a Next-Hop Table (NHT) 

lookup solutions can be categorized as trie-based and tree-
based methods. Fig. 2 shows trie and tree representations of a 
forwarding table in a supposedly 4-bit address space. In trees, 
information are hold explicitly in the nodes; so number of 
nodes is equal to the number of the network prefixes. If the 
binary tree to be balanced, its depth is ceiling [log2N] while N 
is the number of prefixes. In the opposite case, in tries, 
information are distributed on the edges. In a binary trie, each 
edge implicitly holds one bit of information. Left edges mean 
a zero bit and right edges mean a one bit. A path from the root 
to each node is a bit-string that corresponds to a network 
prefix. If this prefix exists in the table, the node should be 
labeled with corresponding result. Depth of a trie is equal to 
the length of the longest prefix that exists in the table. 

Latency of a lookup algorithm typically measured in the 
number of memory accesses that is equal to the depth of the 
data structure. Since depth of binary trees is less than depth of 

binary tries, they are faster than binary tries but they suffer 
from rebalancing overhead. 

Memory consumption of trees and tries can be calculated 
by considering number of nodes in the data structure and size 
of each node. Number of nodes in tries is more than it in trees, 
because some nodes of the tries do not correspond to any valid 
prefix while in trees each node exactly keeps one prefix. The 
situation is different when considering the size of nodes. Since 
in the trees, prefixes are explicitly kept in the nodes,tree nodes 
are bigger than trie ones. Suppose that trie nodes are 32-bit 
while tree nodes are 64-bit. In the example of Fig. 2, memory 
consumption of the trie is 68 bytes while the memory 
consumption of the tree is 48 bytes; this means that in this 
example the tree is not only faster but also more compact than 
the trie. Fig. 3 shows another example for comparing trees 
with tries. In this example, the memory consumption of the 
trie is less than the one of the tree. 

Fig. 2. Trie and tree representations of a forwarding table. In this example, memory consumption of tree is less than trie 
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Fig. 3. Trie and tree representations of a forwarding table. In this example, memory consumption of tree is more than trie 

When number of nodes in a trie is less than twice of 
number of tree nodes, trie consumes less memory than tree; in 
the other case, tree is more memory-efficient. As a rule of 
thumb, it can be concluded that trees are more compact than 
tries for sparse population of prefixes while when the prefixes 
are dense, tries are more compact. 

D. Binary tries & Multibit Tries 
Since a binary trie needs 32 memory accesses at the worst 

case for each address lookup, many solutions use multibit trie 
concept to accelerate the lookup search. In multibit tries, 
degree of nodes may be more than two. It means that an edge 
can hold more than one bit of information implicitly. 
Obviously, depths of multibit tries are less than binary tries 
and hence they are faster than binary tries. In fact, in multibit 
tries, the IP address segments into some strides. For example, 
the 32 bit IPv4 address can be segmented as 16-4-4-8. This 
segmentation corresponds to a four strides (or four levels) 
multibit trie with strides of length 16, 4, 4 and 8. The depth of 
a multibit trie is equal to the number of its strides. The 
memory consumption of a multibit trie depends to the number 
of strides and the length of each stride. Fig. 4 shows tree 
examples for comparing a tree, a binary trie and a one level 
multibit trie in a 4-bit address space. In the first example, the 
tree, in the second example, the trie, and in the third example, 
the multibit  trie is the most memory efficient data structure. 
These examples demonstrate that the proper data structure 
should be chosen regarding the sparseness and the distribution 
shape of the prefixes in the address space. In general, it could 
not be said that trees are always more compact than tries or 
multibit tries consumes more memory than binary tries; the 
memory consumptions of trees, tries and multibit tries vary 
case by case. TC-trie is a dynamic mixture of trees, tries and 
multibit tries. Suppose a large 32-bit IP address space in your 
mind; in each part of this space, the TC-trie acts in a way that 
the data structure reaches the maximum compression ratio. It 
means that in a situation like  

Fig. 4-A, the TC-trie would be a tree and in situations like 
Fig. 4-B and 4-C, the TC-tire would be a trie and a multibit 
trie respectively. Table 1 summarizes the results of the speed 
and memory-consumption comparison between trees, binary 
tries, and multibit tries of Fig. 4. 

For a moment, forget combination of trees with tries and 
just consider the combination of tries with different multibit 
tries. This structure is a variable stride multibit trie. A variable 
stride multibit trie is a multibit trie that the number of strides 
and length of each stride vary in different paths from the root 
to the nodes. It could be said that the TC-trie is a variable 
stride multibit trie that its sparse parts are dynamically 
represented by binary sorted tree structures. 

E. Related Works 
Several IP address lookup solutions have been proposed 

previously which are based on tries. Some of them compress 
the trie for decreasing the memory consumption and 
improving the speed [1-2], [19-21]. Since a binary trie needs 
lots of comparisons and memory accesses, many solutions use 
multibit trie concept to accelerate the lookup search [3-13]; 
however, using a multi-bit trie instead of binary trie normally 
increases the memory consumption. Some papers have 
proposed compression methods for solving this problem [8]-
[13].Compression methods usually suffer from update 
overhead. Besides methods that work based on trie, other 
methods are also proposed that some of them use hash tables 
[14] while some others use CAMs (Content Addressable 
Memories) or TCAMs (Tertiary CAMs) for solving the LPM 
problem [15-17]. Some of these methods are not fast enough 
and some others consume lots of memory and those ones 
which have good speed and memory consumption suffer from 
heavy update overhead. A comparison between some of these 
methods comes in [18]. It seems that finding a method that 
meets all of the requirements of high-speed search, low 
memory consumption, and high-speed update is an endless 
challenge.
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Fig. 4. Comparing the memory consumption of trees, binary tries and multibit tries in a 4-bit address space. A. Tree consumes less memory than trie and multibit 
trie. B. Binary trie consumes less memory than tree and multibit trie. C. Multibit trie consumes less memory than tree and binary trie 

TABLE I.  SPEED AND MEMORY CONSUMPTION COMPARISON BETWEEN TREES, BINARY TRIES AND MULTIBIT TRIES OF FIG. 4

171 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 6, No. 12, 2015 

II. TREE-COMBINED TRIE (TC-TRIE) 
TC-trie is a flexible data structure that combines multibit 

tries with trees. Fig. 5 shows a binary trie representing the 
network prefixes in the 6-bit address space.We want to 
convert this structure to the TC-trie of Fig. 6. This conversion 
should be done in order to reduce the depth and memory 
consumption. 

In our implementation for 32-bit IPv4 address space, the 
TC-trie starts with a stride of length 16-bit. Doing this, most 
significant 16 bits of address are considered at the first step 
and hence the depth of the structure never exceeds 17. Since 
16 bits of each prefix are implicitly encoded in the first stride, 
all tree nodes should keep just the remaining 16 bits for each 
prefix. Therefore 16 bits from the prefix and 1 bit from the 
prefix length field will be saved. 

A. Trie & Tree Nodes 
For measuring the memory consumption, size of trie and 

tree nodes are required. Fig. 7 illustrates the trie and tree 
nodes. As this figure demonstrates a tree node in our 
architecture is exactly two times bigger than a trie node. 

A trie node is composed of the following fields: Pointer: a 
pointer to a table in the next level that contains its children 

nodes. Len: a value between 0 and 15 that shows the length of 
stride minus one. For a binary node, len equals to 0 and for a 
node with degree 16 (a node at the head of a stride with length 
4), len equals to 3. 

Result: for the nodes that contain a valid prefix, result is a 
pointer to the NHT (Next-Hop Table); for other nodes, it has 
the reserved value of “11111111”2 that means no network 
prefix exists for this node. 

The following fields consist in a tree node: Trie Pointer / 
Result: if a tree node to be at the head of a multibit trie cone, 
this field is a pointer to a table in the next level that contains 
its trie children. Otherwise, eight least significant bits of this 
field compose a pointer to the NHT (Next-Hop Table) while 
all the other bits are set to one.  Len: if a tree node to be at the 
head of a multibit trie cone, this field shows the length of 
stride minus one. Tree Pointer:  a pointer to a two-entry table 
in the next level that contains its tree children nodes.  Prefix: 
the remaining least significant16 bits of the prefix that 
corresponds to the tree node.  Plen: length of the remaining 
part of the prefix minus one. 

The following sub-sections explain how to build TC-trie 
from a binary trie and how to search it. The explanations about 
the incremental update and IPv6 implementation are ignored 
due to the lack of space. 

Fig. 5. A binary trie representing the network prefixes in a 6-bit address space 

 
Fig. 6. A TC-trie equivalent to the binary trie of Fig. 5 
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Fig. 7. Trie and tree nodes 

B. Building TC-trie 
For building a TC-trie, the starting point is a binary trie 

which is kept in the control unit of the router. The control unit 
(sometimes called slow path) of a router usually is a GPP 
(General Purpose Processor) that runs a routing protocol like 
RIP, OSPF or BGP. The control unit is responsible for 
updating the forwarding table of the lookup engine. Since CPE 
(Controlled Prefix Expansion) [6] in multibit tries and many 
compression techniques used in other IP lookup methods 
removes parts of information, the control unit must have an 
original copy of information inside itself to do the update 
operation properly. The control unit uses DRAM and update 
doesn’t occur very frequently, so the size and speed of the 
original structure in the control unit is not critical. In our 
implementation, the control unit keeps a binary trie that 
contains the original non-scratched information. For building a 
TC-trie at the first time or for incrementally updating it, the 
control unit uses its binary trie structure. 

To build a TC-trie from a binary trie, two main steps 
should be followed. The first step is finding dense regions and 
representing them with multibit tries. In the second step, 
prefixes which are not covered by multibit tries must be 
represented by binary sorted trees. When searching for dense 
regions, two issues should be considered. The first issue is the 
search resolution. Resolution equal to one means the 
maximum resolution that yields the most accurate results. 
Resolution equal to two means that searching the binary trie is 
being done with step size two. So the resulting multibit tries 
would be of depth 2, 4, 6 and etc. In general, if resolution 
equals to r, the depth of all multibit tries which are obtained 
would be a multiple of r. 

The second issue is the threshold between denseness and 
sparseness concepts. How many prefixes have to be in a 
region of a trie to call it a dense region? To answer this 
question both memory consumption and lookup speed should 
be considered. Suppose that the resolution is four and we want 
to find out whether a cone with depth four in the original 
binary trie has the essential condition for being a stride of 
depth four or not. A stride of depth four needs 16 trie nodes 
that consumes 16*4=64 bytes of memory. On the other hand, 
64 bytes is equal to 8 tree nodes. So, if the number of prefixes 
is less than eight, tree representation is more compact; 
otherwise, a stride of depth four is better. Therefore, by 
considering only the memory constraint,it could be said that a 
binary trie of depth d is dense if it contains at least 2 d-1 
prefixes. We refer to this threshold as 50% threshold. 

It’s clear that a single stride is faster than any tree 
structures. So, if speed to be considered in addition to the 
memory consumption, the threshold should be less than 50%. 
Since compressing the higher parts of the trie improves the 
lookup speed of more prefixes, it’s wise to apply different 
threshold for different heights of the trie. In other words, it’s 
reasonable to increase the threshold from top to the bottom of 
the trie up to 50%. 

C. Lookup Search 
Fig. 8 illustrates an example of a lookup search on a TC-

trie in a 6-bit memory space. This TC-trie is the one that was 
shown in Fig. 6. Notice how tree and trie nodes filled the 
memory space. Each word of the memory can be filled with 
one tree node or two trie nodes. Since each stride of multibit 
trie always has even number of nodes, no part of the memory 
space would be dissipated. 
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Fig. 8. An example of a lookup search in the memory architecture of a TC-trie structure 

TABLE II.  MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM DEPTH OF FIVE DIFFERENT FORWARDING TABLES 1.  THESE RESULTS ARE OBTAINED 
WITH RESOLUTION 2  AND 50% THRESHOLD VALUE

Table  
Name 

Table 
Size 

Memory  
Consumption 
(Byte) 

Maximum 
Depth 

Average 
Depth 

AS1221 156535 1303024 11 3.98 

AS267 134024 1136144 8 3.50 

AS286 134236 1137232 8 3.49 

AS3333 139033 1170904 10 3.53 

AS3549 133869 1135136 8 3.51 

TABLE III.  MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM 
DEPTH OF AS1221 1 FOR RESOLUTIONS. THESE RESULTS ARE  OBTAINED WITH 

50% THRESHOLD  VALUE 

TABLE IV.  MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM 
DEPTH OF AS12211 FOR DIFFERENT THRESHOLD VALUES.  THESE   RESULTS 

ARE OBTAINED  WITH  RESOLUTION 2 

In this example, the query address is "010101". Fig. 6 shows 
how trie and tree nodes must be traversed for searching this 
address. In Fig. 8, nodes that must be read are highlighted. 
The final result is the value p2. 

III. EXPERIMENTAL RESULTS 
Different experiments have been done based on different 

forwarding tables, different resolutions, and different 
threshold values. Table 2 shows the memory consumption, 
average depth, and maximum depth of TC-trie structure 
achieved for five forwarding tables. These forwarding tables 
are obtained via potaroo website [22]. 

Table 3 shows the effect of changing the resolution in the 
memory consumption and depth of the forwarding table 1 
BGP routing table analysis reports: http://bgp.potaroo.net/, 
retrieved on January 2000 & December 2014. AS1221 [22].  

Table 3 shows the effect of changing the resolution in the 
memory consumption and depth of the forwarding table 
AS1221 [22]. 

In Table 4, the effects of changing the tree-trie threshold 

Resolution  
Step 

Memory  
Consumption 
(Byte) 

Maximum  
Depth 

Average 
Depth 

2 1303024 11 3.98 

4 1357288 11 3.92 

6 1392992 8 3.95 

Threshold 
value 

Memory 
Consumption 
(Byte) 

Maximum 
Depth 

Average 
Depth 

50% 1303024 11 3.98 

25% 1969456 11 3.27 

Variable 1890496 12 3.32 
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are illustrated. This table shows that higher threshold (up to 50 
%) yields lower memory consumption, while lower threshold 
yields smaller depth. In this table the last row stands for a 
variable threshold. This variable threshold increases from the 
root of the trie (original binary trie) to the leaves. The variable 
threshold causes higher parts of the trie have more chance of 
being compressed. 

IV. CONCLUSION AND FUTURE WORKS 
A new data structure for fast and memory-efficient IP 

address lookup was presented. This structure, which  is a 
variable stride multibit trie combined with binary sorted tree 
was called Tree-Combined Trie (TC-trie).TC-trie collects 
benefits of multibit tries and binary sorted trees in itself. 
Dynamic reconfigurability of TC-trie made it a very flexible 
data structure that is scalable to the number of prefix, prefix 
distribution and prefix length. The proposed data structure 
prepares a smooth transition from IPv4 toward IPv6. Different 
aspects of this new data structure were considered and the 
building procedure and lookup search in this structure were 
explained. Examples and experiments demonstrated that our 
method consumes less memory than trie-based methods and is 
faster than tree-based methods. The flexibility of TC-trie is 
more than other methods and it better fulfills the requirements 
of current unsteady Internet. Our future work can be outlines 
as follows: 

• Finding a better tree structure for combining with 
multibit tries by considering the following issues: 

i. Multiway trees 

ii. The sorting mechanism of the tree nodes 

• Doing more theoretical and experimental studies about 
a threshold point between trees and tries. 

i. Best static threshold conditions regarding the memory 
consumption and speed 

ii. Dynamic threshold conditions 

• Adding more intelligent to the system during the TC-
trie build up. 

i. How to assign priorities to the tree nodes to sort them 
in a way that the average TC-trie depth to be minimum. 

• Simulating a scenario of growing IPv6 tables in an 
actual condition that may occur in the future. 
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