
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Tree-Combined Trie: A Compressed Data
Structure for Fast IP Address Lookup
Muhammad Tahir

Department of Computer Engineering,
Sir Syed University of Engineering and Technology,

Karachi

Shakil Ahmed
Department of Computer Engineering,

Sir Syed University of Engineering and Technology,
Karachi

Abstract—For meeting the requirements of the high-speed
Internet and satisfying the Internet users, building fast routers
with high-speed IP address lookup engine is inevitable.
Regarding the unpredictable variations occurred in the
forwarding information during the time and space, the IP lookup
algorithm should be able to customize itself with temporal and
spatial conditions. This paper proposes a new dynamic data
structure for fast IP address lookup. This novel data structure is
a dynamic mixture of trees and tries which is called Tree-
Combined Trie or simply TC-Trie. Binary sorted trees are more
advantageous than tries for representing a sparse population
while multibit tries have better performance than trees when a
population is dense. TC-trie combines advantages of binary
sorted trees and multibit tries to achieve maximum compression
of the forwarding information. Dynamic reconfiguration of TC-
trie, made it capable of customizing itself along the time and
scaling to support more prefixes or longer IPv6 prefixes. TC-trie
provides a smooth transition from current large IPv4 databases
to the large IPv6 databases of the future Internet.

Keywords—IP address lookup; compression; dynamic data
structure; IPv6

I. INTRODUCTION
Improvement of Internet-base multimedia applications in

recent years drives new demands for high-speed Internet. It
seems that the demand for achieving higher bit-rates never
saturates. Having the fast optical fiber technology for data
transmission, data processing elements, i.e. routers, became
main bottleneck of the current Internet speed. Inside a router,
components that limit its speed are IP address lookup and
classification engines. The main role of router is to forward
millions of packets per second on each of its destination by
finding address of next-hop router or the egress port through
which packet should be forwarded. This forwarding decision
is limiting the speed as there are millions of addresses and
finding destination IP from millions of IPs is not an easy task.
There is a need to have an algorithm for efficient IP lookup.
Before we go to details, let’s see how IP addressing
architecture works and evolving. Reviewing it will help us to
understand the address lookup problem. IP addressing
architecture can be divided into two schemes; classful IP
addressing scheme and classless IP addressing scheme
Classful IP scheme has two main issues; first, large number of
IP addresses is wasted because of using IP address classes,
second, the routing tables become very large. The growth of
the forwarding tables resulted in higher lookup times and
higher memory requirements in the routers and threatened to

impact their forwarding capacity. In order to resolve two main
issues there are two possible solutions one is IPv6 IP
addressing scheme and second is Classless Inter-domain
Routing or CIDR.

Finding a high-speed, memory-efficient and scalable IP
address lookup method has been a great challenge especially
in the last decade (i.e. after introducing Classless Inter-
Domain Routing, CIDR, in 1994). In this paper, we will
discuss only CIDR. In addition to these desirable features,
reconfigurability is also of great importance; true because
different points of this huge heterogeneous structure of
Internet have different traffic shapes and network topology
changes along the time at each point as well.

This paper proposes a new cost-efficient data structure for
fast IP address lookup that dynamically reconfigures itself.
This novel data structure combines binary sorted trees with
variable-stride multibit tries and put advantages of them all
together in itself.

A. Paper Organization
Section 1 explains importance and related work. Section 2

explores the idea of TC-trie by examples and explains how to
build TC-trie from a binary trie. Section 3 shows the
experimental results of the TC-trie implementation and finally
Section 4 concludes the paper and reveals our future works.

B. IP Address Lookup & Forwarding Tables
IP address lookup is a special search problem in a database

of hundreds thousands of network addresses. Routers keep
network addresses in their forwarding tables. For each
incoming packet, the router finds a network address inside its
table that matches with the destination IP address of that
packet. Joint with each network address, there is a result field.
The result could be simply an egress port of the router that
packet should be exited from router via it to reach its
destination network. Actually more information than an out
port is required for forwarding a packet properly. This
information includes next-hop layer-2 address, next hop layer-
2 MTU (Maximum Transfer Unit), out port and so on. This
information is kept in another table. This table can be called
NHT (Next-Hop Table). Having the NHT, the result of the
lookup could be a short length pointer to an entry of NHT.
Fig. 1 shows an example of a forwarding table and an NHT.
As this figure depicts, the forwarding table holds an 8-bit
pointer corresponding to each network address.

168 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

A network address is a prefix of the 32-bit IP address.
After introduction of CIDR (Classless Inter-Domain Routing)
in 1994, network prefixes can be of any arbitrary length. In the
classless routing, more than one network prefix may match
with the destination IP address; in this case, the router must

choose the longest prefix that matches; so the IP lookup
problem is known as a Longest Prefix Match (LPM) problem.

C. Trees & Tries
During the last ten years, many solutions have been

proposed that issue the LPM problem. Simply, the IP

Fig. 1. simple forwarding table pointing to a Next-Hop Table (NHT)

lookup solutions can be categorized as trie-based and tree-
based methods. Fig. 2 shows trie and tree representations of a
forwarding table in a supposedly 4-bit address space. In trees,
information are hold explicitly in the nodes; so number of
nodes is equal to the number of the network prefixes. If the
binary tree to be balanced, its depth is ceiling [log2N] while N
is the number of prefixes. In the opposite case, in tries,
information are distributed on the edges. In a binary trie, each
edge implicitly holds one bit of information. Left edges mean
a zero bit and right edges mean a one bit. A path from the root
to each node is a bit-string that corresponds to a network
prefix. If this prefix exists in the table, the node should be
labeled with corresponding result. Depth of a trie is equal to
the length of the longest prefix that exists in the table.

Latency of a lookup algorithm typically measured in the
number of memory accesses that is equal to the depth of the
data structure. Since depth of binary trees is less than depth of

binary tries, they are faster than binary tries but they suffer
from rebalancing overhead.

Memory consumption of trees and tries can be calculated
by considering number of nodes in the data structure and size
of each node. Number of nodes in tries is more than it in trees,
because some nodes of the tries do not correspond to any valid
prefix while in trees each node exactly keeps one prefix. The
situation is different when considering the size of nodes. Since
in the trees, prefixes are explicitly kept in the nodes,tree nodes
are bigger than trie ones. Suppose that trie nodes are 32-bit
while tree nodes are 64-bit. In the example of Fig. 2, memory
consumption of the trie is 68 bytes while the memory
consumption of the tree is 48 bytes; this means that in this
example the tree is not only faster but also more compact than
the trie. Fig. 3 shows another example for comparing trees
with tries. In this example, the memory consumption of the
trie is less than the one of the tree.

Fig. 2. Trie and tree representations of a forwarding table. In this example, memory consumption of tree is less than trie

169 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 3. Trie and tree representations of a forwarding table. In this example, memory consumption of tree is more than trie

When number of nodes in a trie is less than twice of
number of tree nodes, trie consumes less memory than tree; in
the other case, tree is more memory-efficient. As a rule of
thumb, it can be concluded that trees are more compact than
tries for sparse population of prefixes while when the prefixes
are dense, tries are more compact.

D. Binary tries & Multibit Tries
Since a binary trie needs 32 memory accesses at the worst

case for each address lookup, many solutions use multibit trie
concept to accelerate the lookup search. In multibit tries,
degree of nodes may be more than two. It means that an edge
can hold more than one bit of information implicitly.
Obviously, depths of multibit tries are less than binary tries
and hence they are faster than binary tries. In fact, in multibit
tries, the IP address segments into some strides. For example,
the 32 bit IPv4 address can be segmented as 16-4-4-8. This
segmentation corresponds to a four strides (or four levels)
multibit trie with strides of length 16, 4, 4 and 8. The depth of
a multibit trie is equal to the number of its strides. The
memory consumption of a multibit trie depends to the number
of strides and the length of each stride. Fig. 4 shows tree
examples for comparing a tree, a binary trie and a one level
multibit trie in a 4-bit address space. In the first example, the
tree, in the second example, the trie, and in the third example,
the multibit trie is the most memory efficient data structure.
These examples demonstrate that the proper data structure
should be chosen regarding the sparseness and the distribution
shape of the prefixes in the address space. In general, it could
not be said that trees are always more compact than tries or
multibit tries consumes more memory than binary tries; the
memory consumptions of trees, tries and multibit tries vary
case by case. TC-trie is a dynamic mixture of trees, tries and
multibit tries. Suppose a large 32-bit IP address space in your
mind; in each part of this space, the TC-trie acts in a way that
the data structure reaches the maximum compression ratio. It
means that in a situation like

Fig. 4-A, the TC-trie would be a tree and in situations like
Fig. 4-B and 4-C, the TC-tire would be a trie and a multibit
trie respectively. Table 1 summarizes the results of the speed
and memory-consumption comparison between trees, binary
tries, and multibit tries of Fig. 4.

For a moment, forget combination of trees with tries and
just consider the combination of tries with different multibit
tries. This structure is a variable stride multibit trie. A variable
stride multibit trie is a multibit trie that the number of strides
and length of each stride vary in different paths from the root
to the nodes. It could be said that the TC-trie is a variable
stride multibit trie that its sparse parts are dynamically
represented by binary sorted tree structures.

E. Related Works
Several IP address lookup solutions have been proposed

previously which are based on tries. Some of them compress
the trie for decreasing the memory consumption and
improving the speed [1-2], [19-21]. Since a binary trie needs
lots of comparisons and memory accesses, many solutions use
multibit trie concept to accelerate the lookup search [3-13];
however, using a multi-bit trie instead of binary trie normally
increases the memory consumption. Some papers have
proposed compression methods for solving this problem [8]-
[13].Compression methods usually suffer from update
overhead. Besides methods that work based on trie, other
methods are also proposed that some of them use hash tables
[14] while some others use CAMs (Content Addressable
Memories) or TCAMs (Tertiary CAMs) for solving the LPM
problem [15-17]. Some of these methods are not fast enough
and some others consume lots of memory and those ones
which have good speed and memory consumption suffer from
heavy update overhead. A comparison between some of these
methods comes in [18]. It seems that finding a method that
meets all of the requirements of high-speed search, low
memory consumption, and high-speed update is an endless
challenge.

170 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 4. Comparing the memory consumption of trees, binary tries and multibit tries in a 4-bit address space. A. Tree consumes less memory than trie and multibit
trie. B. Binary trie consumes less memory than tree and multibit trie. C. Multibit trie consumes less memory than tree and binary trie

TABLE I. SPEED AND MEMORY CONSUMPTION COMPARISON BETWEEN TREES, BINARY TRIES AND MULTIBIT TRIES OF FIG. 4

171 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

II. TREE-COMBINED TRIE (TC-TRIE)
TC-trie is a flexible data structure that combines multibit

tries with trees. Fig. 5 shows a binary trie representing the
network prefixes in the 6-bit address space.We want to
convert this structure to the TC-trie of Fig. 6. This conversion
should be done in order to reduce the depth and memory
consumption.

In our implementation for 32-bit IPv4 address space, the
TC-trie starts with a stride of length 16-bit. Doing this, most
significant 16 bits of address are considered at the first step
and hence the depth of the structure never exceeds 17. Since
16 bits of each prefix are implicitly encoded in the first stride,
all tree nodes should keep just the remaining 16 bits for each
prefix. Therefore 16 bits from the prefix and 1 bit from the
prefix length field will be saved.

A. Trie & Tree Nodes
For measuring the memory consumption, size of trie and

tree nodes are required. Fig. 7 illustrates the trie and tree
nodes. As this figure demonstrates a tree node in our
architecture is exactly two times bigger than a trie node.

A trie node is composed of the following fields: Pointer: a
pointer to a table in the next level that contains its children

nodes. Len: a value between 0 and 15 that shows the length of
stride minus one. For a binary node, len equals to 0 and for a
node with degree 16 (a node at the head of a stride with length
4), len equals to 3.

Result: for the nodes that contain a valid prefix, result is a
pointer to the NHT (Next-Hop Table); for other nodes, it has
the reserved value of “11111111”2 that means no network
prefix exists for this node.

The following fields consist in a tree node: Trie Pointer /
Result: if a tree node to be at the head of a multibit trie cone,
this field is a pointer to a table in the next level that contains
its trie children. Otherwise, eight least significant bits of this
field compose a pointer to the NHT (Next-Hop Table) while
all the other bits are set to one. Len: if a tree node to be at the
head of a multibit trie cone, this field shows the length of
stride minus one. Tree Pointer: a pointer to a two-entry table
in the next level that contains its tree children nodes. Prefix:
the remaining least significant16 bits of the prefix that
corresponds to the tree node. Plen: length of the remaining
part of the prefix minus one.

The following sub-sections explain how to build TC-trie
from a binary trie and how to search it. The explanations about
the incremental update and IPv6 implementation are ignored
due to the lack of space.

Fig. 5. A binary trie representing the network prefixes in a 6-bit address space

Fig. 6. A TC-trie equivalent to the binary trie of Fig. 5

172 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 7. Trie and tree nodes

B. Building TC-trie
For building a TC-trie, the starting point is a binary trie

which is kept in the control unit of the router. The control unit
(sometimes called slow path) of a router usually is a GPP
(General Purpose Processor) that runs a routing protocol like
RIP, OSPF or BGP. The control unit is responsible for
updating the forwarding table of the lookup engine. Since CPE
(Controlled Prefix Expansion) [6] in multibit tries and many
compression techniques used in other IP lookup methods
removes parts of information, the control unit must have an
original copy of information inside itself to do the update
operation properly. The control unit uses DRAM and update
doesn’t occur very frequently, so the size and speed of the
original structure in the control unit is not critical. In our
implementation, the control unit keeps a binary trie that
contains the original non-scratched information. For building a
TC-trie at the first time or for incrementally updating it, the
control unit uses its binary trie structure.

To build a TC-trie from a binary trie, two main steps
should be followed. The first step is finding dense regions and
representing them with multibit tries. In the second step,
prefixes which are not covered by multibit tries must be
represented by binary sorted trees. When searching for dense
regions, two issues should be considered. The first issue is the
search resolution. Resolution equal to one means the
maximum resolution that yields the most accurate results.
Resolution equal to two means that searching the binary trie is
being done with step size two. So the resulting multibit tries
would be of depth 2, 4, 6 and etc. In general, if resolution
equals to r, the depth of all multibit tries which are obtained
would be a multiple of r.

The second issue is the threshold between denseness and
sparseness concepts. How many prefixes have to be in a
region of a trie to call it a dense region? To answer this
question both memory consumption and lookup speed should
be considered. Suppose that the resolution is four and we want
to find out whether a cone with depth four in the original
binary trie has the essential condition for being a stride of
depth four or not. A stride of depth four needs 16 trie nodes
that consumes 16*4=64 bytes of memory. On the other hand,
64 bytes is equal to 8 tree nodes. So, if the number of prefixes
is less than eight, tree representation is more compact;
otherwise, a stride of depth four is better. Therefore, by
considering only the memory constraint,it could be said that a
binary trie of depth d is dense if it contains at least 2 d-1
prefixes. We refer to this threshold as 50% threshold.

It’s clear that a single stride is faster than any tree
structures. So, if speed to be considered in addition to the
memory consumption, the threshold should be less than 50%.
Since compressing the higher parts of the trie improves the
lookup speed of more prefixes, it’s wise to apply different
threshold for different heights of the trie. In other words, it’s
reasonable to increase the threshold from top to the bottom of
the trie up to 50%.

C. Lookup Search
Fig. 8 illustrates an example of a lookup search on a TC-

trie in a 6-bit memory space. This TC-trie is the one that was
shown in Fig. 6. Notice how tree and trie nodes filled the
memory space. Each word of the memory can be filled with
one tree node or two trie nodes. Since each stride of multibit
trie always has even number of nodes, no part of the memory
space would be dissipated.

173 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 8. An example of a lookup search in the memory architecture of a TC-trie structure

TABLE II. MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM DEPTH OF FIVE DIFFERENT FORWARDING TABLES 1. THESE RESULTS ARE OBTAINED
WITH RESOLUTION 2 AND 50% THRESHOLD VALUE

Table
Name

Table
Size

Memory
Consumption
(Byte)

Maximum
Depth

Average
Depth

AS1221 156535 1303024 11 3.98

AS267 134024 1136144 8 3.50

AS286 134236 1137232 8 3.49

AS3333 139033 1170904 10 3.53

AS3549 133869 1135136 8 3.51

TABLE III. MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM
DEPTH OF AS1221 1 FOR RESOLUTIONS. THESE RESULTS ARE OBTAINED WITH

50% THRESHOLD VALUE

TABLE IV. MEMORY CONSUMPTION, AVERAGE DEPTH, AND MAXIMUM
DEPTH OF AS12211 FOR DIFFERENT THRESHOLD VALUES. THESE RESULTS

ARE OBTAINED WITH RESOLUTION 2

In this example, the query address is "010101". Fig. 6 shows
how trie and tree nodes must be traversed for searching this
address. In Fig. 8, nodes that must be read are highlighted.
The final result is the value p2.

III. EXPERIMENTAL RESULTS
Different experiments have been done based on different

forwarding tables, different resolutions, and different
threshold values. Table 2 shows the memory consumption,
average depth, and maximum depth of TC-trie structure
achieved for five forwarding tables. These forwarding tables
are obtained via potaroo website [22].

Table 3 shows the effect of changing the resolution in the
memory consumption and depth of the forwarding table 1
BGP routing table analysis reports: http://bgp.potaroo.net/,
retrieved on January 2000 & December 2014. AS1221 [22].

Table 3 shows the effect of changing the resolution in the
memory consumption and depth of the forwarding table
AS1221 [22].

In Table 4, the effects of changing the tree-trie threshold

Resolution
Step

Memory
Consumption
(Byte)

Maximum
Depth

Average
Depth

2 1303024 11 3.98

4 1357288 11 3.92

6 1392992 8 3.95

Threshold
value

Memory
Consumption
(Byte)

Maximum
Depth

Average
Depth

50% 1303024 11 3.98

25% 1969456 11 3.27

Variable 1890496 12 3.32

174 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

are illustrated. This table shows that higher threshold (up to 50
%) yields lower memory consumption, while lower threshold
yields smaller depth. In this table the last row stands for a
variable threshold. This variable threshold increases from the
root of the trie (original binary trie) to the leaves. The variable
threshold causes higher parts of the trie have more chance of
being compressed.

IV. CONCLUSION AND FUTURE WORKS
A new data structure for fast and memory-efficient IP

address lookup was presented. This structure, which is a
variable stride multibit trie combined with binary sorted tree
was called Tree-Combined Trie (TC-trie).TC-trie collects
benefits of multibit tries and binary sorted trees in itself.
Dynamic reconfigurability of TC-trie made it a very flexible
data structure that is scalable to the number of prefix, prefix
distribution and prefix length. The proposed data structure
prepares a smooth transition from IPv4 toward IPv6. Different
aspects of this new data structure were considered and the
building procedure and lookup search in this structure were
explained. Examples and experiments demonstrated that our
method consumes less memory than trie-based methods and is
faster than tree-based methods. The flexibility of TC-trie is
more than other methods and it better fulfills the requirements
of current unsteady Internet. Our future work can be outlines
as follows:

• Finding a better tree structure for combining with
multibit tries by considering the following issues:

i. Multiway trees

ii. The sorting mechanism of the tree nodes

• Doing more theoretical and experimental studies about
a threshold point between trees and tries.

i. Best static threshold conditions regarding the memory
consumption and speed

ii. Dynamic threshold conditions

• Adding more intelligent to the system during the TC-
trie build up.

i. How to assign priorities to the tree nodes to sort them
in a way that the average TC-trie depth to be minimum.

• Simulating a scenario of growing IPv6 tables in an
actual condition that may occur in the future.

ACKNOWLEDGMENTS
This work has been supported by the Saeed Shamshiri.

REFERENCES
[1] D. R. Morrison, “PATRICIA - Practical algorithm to retrieve

information coded in alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514–34,
Oct. 1968.

[2] K. Sklower, “A tree–based packet routing table for Berkeley UNIX,”
Proc.1991 Winter Usenix Conf., pp. 93–99, 1991.

[3] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” Proc. IEEE INFOCOM ’98, pp. 1240–47, Apr.
1998.

[4] Tomas Henriksson, Ingrid Verbauwhede, “Fast IP address lookup engine
for SOC integration,” Proc. of Design and Diganostics of Electronic
Cricuits and Systems, Brno, Czeck Republic, pp. 200-210, Apr 2002.

[5] Chen, W.E.; Tsai, C.J. “A fast and scalable IP lookup scheme for high-
speed networks,” Proc. IEEE ICON99, pp. 211-218, 1999.

[6] V. Srinivasan and G. Varghese. “Fast address lookups using controlled
prefix expansion,” ACM Transactions on Computer Systems, vol. 17,
no. 1, pp. 1-40, Feb. 1999.

[7] T. Chiueh and P. Pradhan, “High performance IP routing table lookup
using CPU caching,” Proc. IEEE INFOCOM'99, New York, NY, USA,
pp. 1421-1428, April 1999.

[8] KARI SEPPANEN, “Novel IP address lookup algorithm for inexpensive
hardware implementation”, WSEAS Transactions on Communications,
vol. 1, no. 1, pp. 76-84, 2002.

[9] Nen-Fu Huang, Shi-Ming Zhao, Jen-Yi Pan, and Chi-An Su, “A fast IP
routing lookup scheme for gigabit switching routers”, Proc. IEEE
INFOCOM, pp. 1429-1436, Mar. 1999.

[10] Stefan Nilsson, Gunnar Karlsson, “Fast address lookup for internet
routers”, Proc. IFIP 4th International Conference on Broadband
Communications, pp. 11-22, 1998.

[11] S. Nilsson and G. Karlsson “IP-address lookup using LC-tries,” IEEE
JSAC, vol. 17, no. 6, pp. 1083–92, June 1999.

[12] M. DegerMark, et al., “Small forwarding tables for fast routing
lookups,” Proc. ACM SIGCOMM 97, pp. 3-14, 1997.

[13] Derek Pao, Cutson Liu, Angus Wu, Lawrence Yeung and K. S. Chan,
“Efficient hardware architecture for fast IP address lookup,” IEE
Proceedings-Computers and Digital Techniques, vol. 150, no. 1, pp. 43-
52, Jan. 2003.

[14] M. Waldvogel, G. Varghese, J. Turner, B. Plattner, “Scalable high speed
IP routing lookups”, Proc. ACM SIGCOMM ’97, pp. 25–36, Sept. 1997.

[15] Huan Liu, “Routing table compaction in ternary CAM”, IEEE Micro,
vol. 22, no. 1, pp.58-64, January 2002.

[16] Francis Zane, Girija Narlikar, Anindya Basu, “CoolCAMs: power-
efficient TCAMs for forwarding engines”, IEEE INFOCOM, vol. 1, pp.
42-52, 2003.

[17] Anthony J. McAuley, Paul Francis, “Fast routing table lookup using
CAMs”, Proc. IEEE INFOCOM, pp. 1382-1391, March/April 1993.

[18] Miguel Á. Ruiz-Sánchez, Ernst W. Biersack and Walid Dabbous,
"Survey and taxonomy of IP address lookup algorithms," IEEE Network
Magazine, vol. 15 no. 2, pp. 8-23, March/April 2001.

[19] Yi-Mao Hsiao , Yuan-Sun Chu, Jeng-Farn Lee, Jinn-Shyan Wang, “A
high-throughput and high-capacity IPv6 routing lookup system” ,
Computer Networks, Elsevier, 2013.

[20] KunHuang , GaogangXie , YanbiaoLi , DafangZhang, “Memory-
efficient IP lookup using trie merging for scalable virtual routers”,
Computer Networks, Elsevier, 2014.

[21] Hyuntae Park, Hyejeong Hong, Sungho Kang, “An efficient IP address
lookup algorithm based on a small balanced tree using entry reduction”,
Computer Networks, Elsevier, 2012.

175 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	A. Paper Organization
	B. IP Address Lookup & Forwarding Tables
	C. Trees & Tries
	D. Binary tries & Multibit Tries
	E. Related Works

	II. Tree-Combined Trie (TC-Trie)
	A. Trie & Tree Nodes
	B. Building TC-trie
	C. Lookup Search

	III. Experimental Results
	IV. Conclusion and Future Works

