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Abstract—Students traditionally have difficulties in 

implementing abstract data structures (ADS) in C++. To a large 

extent, these difficulties are due to language complexity in terms 

of memory management with raw pointers – the programmer 

must take care of too many details to provide reliable, efficient 

and secure implementation. Since all these technical details 

distract students from the essence of the studied algorithms, we 

decided to use in the course in DSA (Data Structures and 

Algorithms) an automated resource management, provided by 

the C++ standard ISO/IEC 14882:2011. In this work we share 

experience of using smart pointers to implement linked lists and 

discuss pedagogical aspects and effectiveness of the new classes, 

compared to the traditional library containers and 

implementation via built-in pointers. 
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I. INTRODUCTION 

From the C language we know that pointers are important 
but are a source of trouble. One reason to use pointers is to 
have reference semantics outside the usual boundaries of scope 
[1]. However, it can be quite difficult to ensure that the life of 
the pointer and the life of the object to which it points will 
coincide, especially in cases where multiple pointers point to 
the same object. Such a situation we have as if an object must 
participate in multiple collections – each of them must provide 
a pointer to this object. To make everything correct we need to 
ensure: 

 When destroying one of the pointers, take care that 
there are no dangling pointers or multiple deletions of 
the pointed object; 

 When you destroying the last reference to an object, to 
destroy the very object in order not to allow resource 
leaks;  

 Do not allow null-pointer dereference – a situation in 
which a null pointer is used as if it points to a real 
object. 

We must have in mind such details if we want to 
accomplish dynamic implementation of ADS and often the 
time for this exceeds the time remaining to comment the 
structures and operations on them. Moreover, there are rare 
cases where we have a working implementation of a structure 
with carefully designed interface and methods written 
according to the  best methodologies, but we identify gaps in 
the management of memory only when the fall in non-trivial 

situations such as copying large structures, transfer of items 
from one structure to another, or destruction of a large 
recursive structure. For each class representing ADS the 
programmer must also provide characteristic operations as well 
as correctly working copy and move semantics, exception 
handling, construction and destruction. This requires both time 
and expertise in programming at a lower level. The teacher will 
have to choose between emphasizing on language-specific 
features and quality of implementation or to compromise with 
them and to spend more time on algorithms and data structures. 
In an attempt to escape from this compromise, we decided to 
change the content of our CS2 course in DSA, and include the 
study of smart pointers for resource management and with their 
help to simplify implementations of ADS, and avoid explicit 
memory management which is widely recognized as error-
prone [2]. 

Our initial hypothesis was that a correct and effective 
implementation is possible, which could relieve our work in 
two directions: 

 Operations with whole structures: not having to write 
destructors, copy and move constructors and copy and 
move assignment operators; 

 Shorter and easier to understand implementation of 
operations with elements of structures – include (insert 
element), search, delete. 

II. DEVELOPMENT OF LANGUAGE TOOLS FOR DYNAMIC 

MEMORY MANAGEMENT 

Before introducing of new and delete for work with 
dynamic memory, inherited from the C language functions  
malloc, calloc, realloc and free  are used, which are still 
available in C++ by including the header file <cstdlib>. 

Data * d = (Data *)  malloc(sizeof Data); 
// ... 
free(d); 

Memory blocks allocated through these functions are not 
necessarily compatible with those returned by new, so each 
must be handled with its own set of functions or operations. 
The problems here are related to unnecessary type conversions 
and error-prone size calculations (with sizeof). 

Introduction of new and delete operators simplifies the 
syntax, but does not solve all problems. Especially in 
applications that manipulate complicated linked data structures, 
it may be difficult to identify the last use of an object. Mistakes 
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lead to either duplicate de-allocations and possible security 
holes, or memory leaks [2]. We illustrate this with an example: 
Let p1, p2, p3 and p4 are pointers to objects of the class 
Person. 

vector<Person*> family { p1, p2, p3, p4 }; 
vector<Person*> kids { p3, p4 }; 
//... 
delete p3; 
print(family);//family contains dangling ptr 
if (kids.empty()) return 0; //early return 
//... 
delete p1; 
delete p2; 
delete p3;  // double deletion 
delete p4;  

The two vectors – family and kids contain pointers to 
shared objects – p3 and p4. Deleting the object pointed to by 
p3 leads to the emergence of "dangling" pointers in the two 
vectors because they cannot "understand" that the referred 
object is deleted. All the potential problems with locally 
defined naked pointers include:  

 Leaked objects: memory allocation with new can cause 
(though rarely) an exception which is not handled. It is 
also possible function execution to be terminated by 
another raised exception and the allocated with new 
memory to remain unreleased (it is not exceptions 
safety). Avoiding such resource leak usually requires 
that a function catches all exceptions. To handle the 
deletion of the object properly in case of an exception, 
the code becomes complicated and cluttered. This is a 
bad programming style and should be avoided because 
it is also error prone. Similar situation we have when 
function execution is terminated by premature return 
statement based on some condition (early return); 

 Premature deletion: we delete an object that has some 
other pointer to and later use that other pointer. 

 Double deletion: we are not insured against an attempt 
to re-delete an object (in the example with vectors the 
one pointed by p3). 

One way to circumvent these problems is to simply use a 
local variable, instead of a pointer, but if we insist to use 
pointer semantics, the usual approach to overcome such 
problems is the use of "smart pointers". Their "intelligence" is 
expressed in that they "know" whether they are the last 
reference to the object and use this knowledge to destroy the 
object only when its "ultimate owner" is to be destroyed. We 
can consider that a "smart pointer" is RAII (Resource 
Acquisition Is Initialization) modeled class that manages 
dynamically allocated memory. It provides the same interfaces 
that ordinary pointers do (*, ->). During its construction it 
acquires ownership of a dynamic object in memory and 
deallocates that memory when goes out of scope. In this way, 
the programmer does not need to care himself for the 
management of dynamic memory. 

For the first time the standard C++98 introduces a single 
type of smart pointer –  auto_ptr  which provides specific and 
focused transfer-of-ownership semantics. auto_ptr is most 

charitably characterized as a valiant attempt to create a 
unique_ptr before C++ had move semantics. auto_ptr is 
now deprecated, and should not be used in new code. It works 
well in trivial situations:  

int main(){ 
try { 

auto_ptr<X> ap1(new X(1122)); 
// _div() throws exception 
cout << _div(5, 0) << endl; 
ap1->print(); 

} 
catch (exception& e){ 

cerr << e.what() << endl; 
} 

} 

Template auto_ptr holds a pointer to an object obtained 
via new and deletes that object when it itself is destroyed (such 
as when leaving block scope). Function _div() returns the 
quotient of its arguments and causes an exception at zero 
divisor. Thus, in main() an exception occurs and the operator 
ap1->print() will not be executed, but still the memory that 
ap1 manages will be properly released. This is due to the stack 
unwinding, which occurs in exception processing – all local 
objects defined in the try block are destroyed, the destruction 
of ap1 releases the associated memory for the object of class X. 
Here auto_ptr is "smart" enough, but it appears that the 
problems entailed outweigh the benefit from it: 

- copying and assignment among smart pointers transfers 
ownership of the manipulated object as well. That is, by 
default move assignment and move construction is carried out. 
Such is the situation with passing of auto_ptr as a parameter 
of the function: 

void foo(auto_ptr<X> ap2){ 
 ap2->print(); 
} 

int main(){ 
 auto_ptr<X> ap1(new X(1122)); 
 foo(ap1); 
 ap1->print(); //oops! ap1 is empty 
} 

After completion of foo() the memory allocated in the 
initialization of ap1 and then passed to ap2 will be released (at 
the destruction of ap2) and will not be given back to ap1. This 
will result in an error when trying to use the contents of ap1 (it 
is already a dangling pointer). 

We have a similar result in the following situations: 

auto_ptr<X> ap3(ap1); //move construction 
ap1->print();  //oops! ap1 is empty 
auto_ptr<X> ap4; 
ap4 = ap3;   //move assignment 
ap3->print();  //oops! ap3 is empty 

In constructing ap3 it acquires the resource managed by 
ap1. This is called copy elision. In some cases this is a very 
useful technique (eg to avoid unnecessary copying when the 
function returns local object by value – compilers do this 
automatically).  
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The auto_ptr provides a semantics of strict ownership. 
auto_ptr owns the object it holds a pointer to. Copying an 
auto_ptr copies the pointer and transfers ownership to the 
destination. If more than one auto_ptr owns the same object 
at the same time, the behavior of the program is undefined.  

 auto_ptr can not be used for an array of objects. When 
auto_ptr goes out of scope, delete runs on its 
associated memory block. This works if we have a 
single object, not an array of objects that must be 
destroyed with delete []. 

 because auto_ptr does not provide shared-ownership 
semantics, it can not even be used with Standard 
Library containers like vector, list, map.  

Although auto_ptr is now officially deprecated by the 
standard ISO/IEC, 2011 [4], in Visual Studio 2013 can have 
declarations like: 

auto_ptr<vector<int>> apv {new vector<int>{ 1 
 2, 3, 4, 5 } }; 

vector<auto_ptr<int>> v; 

The reason for this is the famous backward compatibility 
feature of C ++. 

Practice shows that to overcome (or at least limit) problems 
as described above it is not sufficient to use only one "smart 
pointer" class. Smart pointers can be smart in some aspects and 
carry out various priorities, as they have to pay the price for 
such intelligence [1], p. 76. Note that even now, with several 
types of smart pointers their misuse is possible and 
programming of wrong behavior.  

In the standard (ISO/IEC, 2011) instead of auto_ptr 
several different types of smart pointers are introduced (also 
called Resource Management Pointers) [5], modeling different 
aspects of resource management. The idea is not new – it 
formally originates from [6] and was originally implemented in 
the Boost library and only in 2011 became a part of the 
Standard Library. The basic, top-level and general-purpose 
smart pointers are unique_ptr and shared_ptr. They are 
defined in the header the file <memory>.  

Unfortunately, excessive use of new (and pointers and 
references) seems to be an escalating problem. However, when 
you really need pointer semantics, unique_ptr is a very 
lightweight mechanism, with no additional costs compared to 
the correct use of built-in pointer [5], p. 113. The class 
unique_ptr is designed for pointers that implement the idea of 
exclusive (strict) ownership, what was intended auto_ptr to 
do. It ensures that at any given time only one smart pointer 
may point to the object. As a result, an object gets destroyed 
automatically when its unique_ptr gets destroyed. However, 
transfer of ownership is permitted. This class is particularly 
useful for avoiding leak of resources such as missed delete 
calls for dynamic objects or when exception occurs while an 
object is being created. It has much the same interface as an 
ordinary pointer. Operator * dereferences the object to which it 
points, whereas operator -> provides access to a member if the 
object is an instance of a class or a structure. Unlike ordinary 
pointers, smart pointer arithmetic is not possible, but specialists 
consider this an advantage, because it is known that pointer 

arithmetic is a source of trouble. unique_ptr uses include 
passing free-store allocated objects in and out of functions (rely 
on move semantics to make return simple and efficient): 

// make Person object and give it to a 
unique_ptr 

unique_ptr<Person> make_Person( 
const string & name, int year)  

{ 
// ... check Person, etc. ... 
return unique_ptr<Person>{new Person{name, 
year}}; 

} 
// .................. 

auto pp = make_Person("Ivaylo", 1971); 
pp->print(); 

For such situations std::move() will be automatically 
executed for the return value (under the new rules in C++11). 
Copying or assignment between unique pointers is impossible 
if we use the ordinary copy semantics. However, we can use 
the move semantics. In that case, the constructor or assignment 
operator transfers the ownership to another unique pointer. 

The typical use of unique_ptr includes: 

 ensuring safe use of dynamically allocated memory 
through the mechanism of exceptions (exception 
safety);  

 transfer of ownership of dynamically allocated memory 
to function (via parameter);  

 returning dynamically allocated memory – the function 
returns a pointer to the allocated memory (unique_ptr) 
;  

 storing pointers in a container.  

A point of interest is the situation when unique_ptr is 
passed as a parameter of а function by rvalue reference, created 
by std::move(). In this case the parameter of the called 
function acquires ownership of unique_ptr. If then this 
function does not pass ownership again, the object will be 
destroyed at its completion: 

template <typename T> 
void f(unique_ptr<T> x) 
{ 

cout << *x << endl; 
} 
int main() 
{ 
 unique_ptr<string> up{new string{"Ivaylo"}}; 
 f(move(up)); // up became empty 
 if (up) cout << *up << endl; 

else cout << "empty pointer" << endl; 
} 

Using a unique pointer, as a member of a class may also be 
useful for avoiding leak of resources. By using unique_ptr, 
instead of built-in pointer there is no need of a destructor 
because the object will be destroyed while destroying the 
member concerned. In addition unique_ptr prevents leak of 
resources in case of exceptions which occur during 
initialization of objects – we know that destructors are called 
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only if any construction has been completed. So, if an 
exception occurs within the constructor, destructors will be 
executed for objects that have been already fully constructed. 
As a result we can get outflow of resources for classes with 
multiple raw pointers, if the first construction with new is 
successful, but the second fails.  

Simultaneous access to an object from different points in 
the program can be provided through ordinary pointers and 
references, but we already commented on the problems 
associated with their use. Often we have to make sure that 
when the last reference to an object is deleted, the object itself 
will be destroyed as well (which usually implies garbage 
collection operations – to deallocate memory and other 
resources). 

The class shared_ptr implements the concept of shared 
ownership. Many smart pointers can point to the same object, 
and the object and its associated resources are released when 
the last reference is destroyed. The last owner is responsible for 
the destroying. To perform this task in more complex scenarios 
auxiliary classes weak_ptr, bad_weak_ptr, 
enable_shared_from_this are provided. 

The class shared_ptr is similar to a pointer with counter 
of the number of sharings (reference counter), which destroys 
the pointed object when this counter becomes zero. Imagine 
shared_ptr as a structure of two pointers – one to the object 
and one to the counter of sharings.  

Shared pointer can be used as an ordinary pointer – to 
assign, copy and compare, to have access to the pointed object 
via the operations * and ->. We have a full range of copy and 
move constructions and assignments. Comparison operations 
are applied to stored pointers (usually the address of the owned 
object or nullptr if none). shared_ptr does not provide index 
operation. For unique_ptr a partial specialization for arrays is 
available that provides [] operator, along with * and ->. This 
is due to the fact that unique_ptr is optimized for efficiency 
and flexibility. Access to the elements of the owned by 
shared_ptr array can be provided through the indices of the 
internal stored pointer, encapsulated by shared_ptr (and 
accessible through the member function get()).  

We already discussed the problems with dangling pointers, 
which arise while build-in pointers are stored in containers. 
Now we will show how the use of shared_ptr avoids them. 
Consider the same situation with vectors of Person objects –  
family and kids:  

In the function main() we have 4 shared pointers, to 
manipulative dynamic objects of Person: 

auto sp1=make_shared<Person>("Ivaylo", 1971); 
auto sp2=make_shared<Person>("Doroteya", 1977); 
auto sp3=make_shared<Person>("Victoria", 2002); 
auto sp4=make_shared<Person>("Peter", 2009);  
and two vectors of such pointers in which objects are 

duplicated: 

vector<shared_ptr<Person>> sp_family{sp1, 
   sp2, sp3, sp4}; 
vector<shared_ptr<Person>> sp_kids{sp3, sp4}; 

There is a single copy of each object of Person. The 
number of references to the children is 3 - one in each vector 
and the one  of sp3 (or sp4).  

The name change 

sp3->set_name("Victoria Doncheva"); 

immediately affects both vectors. Release of sp3 by 
reset() does not lead to destruction of the object Person 
{"Victoria", 2002}, in opposit to build-in pointers. 

Of course, if you like, you can always make a mess. If you 
initialize a build-in pointer with the owned by shared_ptr 
internal pointer, and then deallocate memory by this raw 
pointer: 

Person* p = sp3.get(); 

delete p; 

A problem with reference-counted smart pointers is that if 
there is a ring, or cycle, of objects that have smart pointers to 
each other, they keep each other "alive" – they will not get 
deleted even if no other objects are pointing to them from 
"outside" the ring. Such a situation often occurs in 
implementations of recursive data structures. C++11 includes a 
solution: "weak" smart pointers: these only "observe" an object 
but do not influence its lifetime. A ring of objects can point to 
each other with weak_ptrs, which point to the managed object 
but do not keep it in existence. Like raw pointers, the weak 
pointers do not keep the pointed-to object "alive". The cycle 
problem is solved. However, unlike raw pointers, the weak 
pointers "know" whether the pointed-to object is still there or 
not and can be interrogated about it, making them much more 
useful than a simple raw pointer would be. 

In practice often happens a situation when we hesitate 
which version of a smart pointer to use – unique_ptr or 
shared_ptr. The advice is to prefer unique_ptr by default, 
and we can always later move-convert to shared_ptr if 
needed. There are three main reasons for this [7]:  

 try to use the simplest semantics that are sufficient;  

 a unique_ptr is more efficient than a shared_ptr. A 
unique_ptr does not need to maintain reference count 
information and a control block under the covers, and is 
designed to be just about as cheap to move and use as a 
raw pointer; 

 starting with unique_ptr is more flexible and keeps 
your options open.  

In our case, however, we had from the very beginning to 
start with shared_ptr, because being recursive by definition, 
the data structures that we tried to implement with smart 
pointers can not do without shared ownership. 

III. IMPLEMENTATION OF LISTS 

In the course in Data Structures and Algorithms (DSA) we 
use dynamically implemented singly linked and doubly linked 
lists and based on them specializations for other ADS – stack, 
queue, deque. We develop a template class List with an 
interface similar to the following: 

//singly linked list with built-in pointers 
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template <typename T> 
class List {  
private: 

struct Node { 
T key; 
Node* next; 
Node():key(),next(nullptr){} 
Node(T x):key(x),next(nullptr){} 

}; 
Node* front; //first element 

public: 
List():front(nullptr){} //default constructor 
List(T x):front(new Node(x)){} 
//initializer list constructor 
List(initializer_list<T>);     
~List();  //destructor 
List(const List&); //copy constructor 
List(List&&); //move constructor 
//copy assignment 
List& operator =(const List&); 
List& operator =(List&&); //move assignment 
bool push_front(T); //add to the top 
bool push_back(T);  //add to the bottom 
T& operator [](int); //index operator 
size_t size(); //the length of the list 
bool find(T); //search for element; 
Node* find_ref(T); //reference to element 
bool empty(){ return front == nullptr; } 
bool remove(T); 

}; 

In addition, students develop on their own methods to insert 
a node in any location; to search and insert an element in a way 
to keep the list sorted; to exchange places of elements; to insert 
an element before and after a node; to merge two lists and 
more. 

Since we count on the reliability, in the course we try to 
follow the methodology for verification of object-oriented 
programs as proposed in [3]. Correct implementation of all 
methods requires multiple checks; catching any exceptions; 
tracking the number of references to a node. Our current 
practice shows that students encounter the greatest difficulties 
in removing items from the list and the most common mistake 
is to forget a delete operator in any branch of the algorithm. 
So in fact an element is excluded from the list, but the occupied 
memory is not released – a typical example of a memory leak. 
Other typical logic errors are skipping a special case such as an 
attempt to delete an item from an empty list or when the 
element to be deleted is the first in the list. 

In order to simplify the technical part and to focus on 
algorithms, implementing the operations on lists from 2013-
2014, we went to implementation with smart pointers. Our 
initial expectation was that it was possible to avoid all methods 
of copy and move semantics, destructors for nodes and list, 
release of memory when deleting nodes and exception 
handling related to the construction of a list and its nodes. We 
relied on simplified syntax in the implementation of operations.  

We started with the realization of the template class with 
the following interface: 

template <typename T> 
class List { 

class  Node { 
public: 

T key; 
shared_ptr<Node> next; 
Node():key(), next(){} 
Node(T x):key(x), next(){} 

}; 
shared_ptr<Node> top; 
shared_ptr<Node> bottom; 

public: 
List():top(), bottom(make_shared<Node>()){} 
List(T x):top(make_shared<Node>(x)), 
          bottom(make_shared<Node>()){ 

top->next = bottom;} 
List(initializer_list<T>); 
bool push_front(T); 
bool push_back(T); 
operator bool(){return top!=nullptr;} 
shared_ptr<Node> find(T) 
bool remove(const T&); 
T& operator[](size_t); 

}; 
Unlike the interface of std::forward_list, we added a 

feature inserting elements at the end (the method push_back) 
and aiming a more effective implementation of this, we used a 
fictitious node bottom as a sentinel. 

We will show the advantage of using shared pointers 
through the method remove to delete element with a key x: 

template <typename T> 

bool List<T>::remove(const T& x) { 

if(!top) return false; 

if(top->key == x) { 

top = top->next; 

return true; 
} 

for(auto p=top; p->next; p=p->next) 

if(p->next->key == x) { 

if(p->next == bottom) 

bottom = p; 

p->next = p->next->next; 
} 

return true; 

} 
It is seen that the code with shared pointers differs from 

that with build-in pointers only by avoiding delete several 
times to release occupied by the deleted node memory. The 
code of the other methods is sufficiently clear and concise, for 
example adding a new element to the beginning of the list 
looks like this: 

template <typename T> 
bool List<T>::push_front(T x) { 

auto p = make_shared<Node>(x); 
if(!p) return false; 
p->next = top ? top : bottom; 
top = p; 
return true; 

} 
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With automatic type deduction and factory function 
make_shared (row 2) we even avoid explicit type declaration 
for smart pointer p and do not use new, instead: 

shared_ptr<Node> p { new Node{ x } };  
For educational purposes all operations with a single list 

ran normally, but when we tested a larger list (100000 strings), 
we got a "stack overflow" error during the automatic 
destruction of the list at the end of the program. Because of the 
recursive links a situation occurs where one node keeps "alive" 
the whole structure. This on one hand requires a large stack, 
and on the other – can lead to significant delays in the 
demolition of the structure. So we decided to add a destructor, 
instead of increasing the stack size from the settings of the 
linker: 

template<typename T> 
List<T>::~List() { 

while (top != bottom) 
      top = top->next; 
} 

Here, again, we don't use delete to release the memory 
occupied by each node, but instead just sequentially shift the 
first element until we reach the end of the list. This causes 
automatic execution of a destructor for each node, managed by 
shared pointer, as there will be no more references to it. 

Further, when working with two or more lists, we 
encountered problems with copy assignment and copy 
construction. Both operations performed shallow copying and 
we had to add a copy constructor and copy assignment operator 
to evoke correct actions for deep copying. Their code proved to 
be with complexity equivalent to the version with naked 
pointers, so in this case we could not save the students the 
technical details.  

The situation with move semantics proved to be analogous 
– the lack of user-defined move constructor and move-
assignment operator results in that after the transfer of 
ownership the pointer members of the object (list) on the right 
are not reset to its initial state, so we implemented these 
methods as well, but as seen from the code below, the 
implementation is quite trivial and does not burden the 
students: 

template<typename T> 
List<T>::List(List<T>&&other): 

top(move(other.top)), 
bottom(move(other.bottom)) { 

  other.top = nullptr; 

 other.bottom = nullptr; 
}  

The reason that compiler-generated move semantics 
methods don't work is that the complex types, such as our list, 
often define one or more of the special member functions 
themselves, and this can prevent other special member 
functions from being automatically generated. This problem 
we solved in another way, without implementation of the 
corresponding methods, but passed to compiler that supports 
explicitly defaulted and deleted functions – Microsoft Visual 
C++ Compiler Nov 2013 CTP (CTP_Nov2013). 

Тhen the declarations 

List(List&&) = default;  
List& operator =(List&&) = default;  

provided smooth operation of the automatically generated 
move constructor and move-assignment operator. 
Unfortunately we found that this approach does not work with 
copy semantics. 

Similar difficulties were encountered with the 
implementation of Doubly Linked List. Here is a part of its 
interface: 

template <typename T> class List { 
 class Node { 
 public: 
  T key; 
  shared_ptr<Node> next; 
  weak_ptr<Node> prev; 
  Node():key(),next(), prev(){} 
  Node(T x):key(x), next(), prev(){} 
 }; 
 shared_ptr<Node> front; 
 shared_ptr<Node> back; 
public: 
 List():front(), back(){} 
 List(initializer_list<T>); 
 bool push_front(T); 
 bool push_back(T); 
//... 
}; 

As here are bidirectional links, in order not to duplicate 
them and make the structure "indestructible", for those in the 
opposite direction we use a weak pointer. And for this list we 
can state that implementation of operations has the same or less 
complexity than the version with built-in pointers.  

We will comment on another issue, connected not so much 
with the lists as with the syntax rules in C++11 and 
implementation of initializer list constructor. If you try to 
initialize a list with another using the syntax for uniform 
initialization: 

List <int> L2 {L1};  
If we have templatized initializer list constructor, the 

compiler will consider this as a call to this constructor with an 
argument initializating list of one element of type List<int>, 
not as a call to the copy constructor. That would cause 
unexpected behavior. One option for dealing with the problem 
is definition of specialization for initializer list constructor for 
lists: 

List(initializer_list<List<T>>); 
The other option is simply to use function syntax: 

List<int> L2(L1); 

In conclusion we can assert that although our initial idea to 
avoid  implementation of all special member functions was not 
completely accomplished, these methods, as well as all 
operations with lists can be implemented more concisely and 
clearly than their respective analogues in the build-in pointers 
implementation. Furthermore, by using smart pointers we 
implemented a complete ''no naked new '' policy, respecting the 
recommendation of [5], p. 64 that avoiding naked new and 
naked delete makes code far less error-prone and far easier to 
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keep free of resource leaks. From this perspective, we consider 
reasonable study of smart pointers in the course of DSA. 

IV. PERFORMANCE EVALUATION 

In order to evaluate the efficiency of smart pointers 
implementation we carried out an experiment in which we 
compare the times for typical operations with lists, 
implemented with and without smart pointers. 

Three implementations of Singly Linked Lists with library 
std::forward_list and our realization of Doubly Linked List 
with smart pointers with library equivalent std::list we 
compared (Table 1). The same data is used in the experiment: 
100’000 randomly generated unique strings of length of 20 
stored in a text file. They are used to construct lists by adding 
elements to the beginning for the one-directional linked 
versions and at the end of bi-directional linked lists. 

TABLE I.  Test Results 

 

 

Operations 

List Implemantations 

Singly Linked Lists Doubly 
Linked Lists 

C-style Row  

Pointers 

Smart 

Pointers 

std::forward_

list 

Smart 

Pointers 

std::list 

Add node 78 109 109 78 125 63 

Traverse 14 078 14 703 30 578 19 829 31 829 14 546 

Delete node 21 594 21 625 143 703 107 515 153 812 78 172 

Note: Time in milliseconds 

The first operation "Add element" reads all strings from the 
file and stores them in the relevant list. For each list the text 
file is opened and read again. 

Traversing accomplishes 10000 searches for an element not 
contained in the list: that is complete pass over all the nodes.  

The test of deletion is deliberately made so as to require 
multiple traverse – check if each element meets the set criterion 
(comparison of strings) and if so, the key of this element is 
passed as argument to the deleting function. This function each 
time searches the element from the beginning of the list and 
deletes only the first hit. 59 996 elements of all 100 000 are 
deleted. 

The results show a negligibly small difference in 
performance between the implementation without classes (C-
style), and implementation using classes and raw pointers. 
Only the "add element" operation is 28% slower. Time 
difference between single linked lists and bi-directional linked 
lists implemented with smart pointers is inessential. This was 
expected because the test algorithms traverse lists only in one 
direction. The advantage of bi-directional linked list is only 
visible in comparison with library implementations. The library 
template class forward_list is inferior in efficiency to our 
raw pointer implementation for traverse operation by 26%, and 
removing elements is nearly 5 times slower. Implementation of 
smart pointers has significantly weaker results – traverse is 2 
times slower, and removing elements – 6 times compared to 
raw pointers. Adding elements shows no difference in 
performances. Our version of bidirectional linked list with 

smart pointers proved to be twice slower than library version 
std::list for all operations. 

V. CONCLUSION 

Our initial hypothesis regarding the implementation of lists 
with smart pointers was proven partially. We could not do 
entirely without implementation of methods of copy and move 
semantics, but their code turned out to be short, clear and easily 
understandable for students. Moreover, move semantics in our 
case can be provided by defaulted move constructors and 
assignment operators. We consider the second part of the 
hypothesis, namely the shorter and clearer implementation of 
the basic operations with data structures for fully achieved. In 
addition, smart pointer versions do not require user-defined 
exception handling. 

Since we do not have enough empirical data, we cannot 
prove the advantage of this way of teaching DSA yet, but even 
without conducting a strictly formal pedagogical experiment, 
we can confirm that the results of students tests, homework and 
exams are comparable to those demonstrated by their 
colleagues trained in previous years under the old program. 

The implementation of ADS with smart pointers is more 
clear and concise, but requires spending time to study in 
additionally templates and essential elements of the STL, 
though not in detail. This could be facilitated by reorganizing 
CS1 course Programming Fundamentals, where to underlie 
learning C++11/14 and STL. Note that for our implementations 
it is not needed even to know the full interface for work with 
smart pointers. In most situations the interface of build-in 
pointers is sufficient plus function make_shared and possibly 
member function reset. In our work with the students during 
the school year we met difficulties in debugging of programs 
related to discovery of logical errors in memory management, 
most often connected with its release. We found that it is 
appropriate to add an intermediate output (operator cout) in 
the destructors as of DSA, as of the elements held in them (if 
they are of user-defined types). In this way it is easy to detect 
situations where objects remain undestroyed. 

Regarding the applicability of smart pointers in the actual 
programming will mention the opinion of Stroustrup, that they 
"are still conceptually pointers and therefore only my second 
choice for resource management – after containers and other 
types that manage their resources at a higher conceptual level" 
[5], p. 114. The results of our comparative tests also show that 
library containers are sufficiently effective and can join the 
opinion of Stroustrup. Furthermore, anyway, to learn smart 
pointers it is necessary to get into STL. On one hand it is better 
to teach students how to use its efficient and reliable 
containers. On the other hand though, we train professionals 
and they must be able to independently implement such 
containers – to develop creative thinking. It is therefore not a 
bad idea to do so with smart pointers as well – one more 
opportunity provided by the STL. 
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