
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

196 | P a g e

www.ijacsa.thesai.org

Implementation of ADS Linked List Via Smart

Pointers

Ivaylo Donchev, Emilia Todorova

Department of Information Technologies, Faculty of Mathematics and Informatics

St Cyril and St Methodius University of Veliko Turnovo

Veliko Turnovo, Bulgaria

Abstract—Students traditionally have difficulties in

implementing abstract data structures (ADS) in C++. To a large

extent, these difficulties are due to language complexity in terms

of memory management with raw pointers – the programmer

must take care of too many details to provide reliable, efficient

and secure implementation. Since all these technical details

distract students from the essence of the studied algorithms, we

decided to use in the course in DSA (Data Structures and

Algorithms) an automated resource management, provided by

the C++ standard ISO/IEC 14882:2011. In this work we share

experience of using smart pointers to implement linked lists and

discuss pedagogical aspects and effectiveness of the new classes,

compared to the traditional library containers and

implementation via built-in pointers.

Keywords—abstract data structures; C++; smart pointers;

teaching

I. INTRODUCTION

From the C language we know that pointers are important
but are a source of trouble. One reason to use pointers is to
have reference semantics outside the usual boundaries of scope
[1]. However, it can be quite difficult to ensure that the life of
the pointer and the life of the object to which it points will
coincide, especially in cases where multiple pointers point to
the same object. Such a situation we have as if an object must
participate in multiple collections – each of them must provide
a pointer to this object. To make everything correct we need to
ensure:

 When destroying one of the pointers, take care that
there are no dangling pointers or multiple deletions of
the pointed object;

 When you destroying the last reference to an object, to
destroy the very object in order not to allow resource
leaks;

 Do not allow null-pointer dereference – a situation in
which a null pointer is used as if it points to a real
object.

We must have in mind such details if we want to
accomplish dynamic implementation of ADS and often the
time for this exceeds the time remaining to comment the
structures and operations on them. Moreover, there are rare
cases where we have a working implementation of a structure
with carefully designed interface and methods written
according to the best methodologies, but we identify gaps in
the management of memory only when the fall in non-trivial

situations such as copying large structures, transfer of items
from one structure to another, or destruction of a large
recursive structure. For each class representing ADS the
programmer must also provide characteristic operations as well
as correctly working copy and move semantics, exception
handling, construction and destruction. This requires both time
and expertise in programming at a lower level. The teacher will
have to choose between emphasizing on language-specific
features and quality of implementation or to compromise with
them and to spend more time on algorithms and data structures.
In an attempt to escape from this compromise, we decided to
change the content of our CS2 course in DSA, and include the
study of smart pointers for resource management and with their
help to simplify implementations of ADS, and avoid explicit
memory management which is widely recognized as error-
prone [2].

Our initial hypothesis was that a correct and effective
implementation is possible, which could relieve our work in
two directions:

 Operations with whole structures: not having to write
destructors, copy and move constructors and copy and
move assignment operators;

 Shorter and easier to understand implementation of
operations with elements of structures – include (insert
element), search, delete.

II. DEVELOPMENT OF LANGUAGE TOOLS FOR DYNAMIC

MEMORY MANAGEMENT

Before introducing of new and delete for work with
dynamic memory, inherited from the C language functions
malloc, calloc, realloc and free are used, which are still
available in C++ by including the header file <cstdlib>.

Data * d = (Data *) malloc(sizeof Data);
// ...
free(d);

Memory blocks allocated through these functions are not
necessarily compatible with those returned by new, so each
must be handled with its own set of functions or operations.
The problems here are related to unnecessary type conversions
and error-prone size calculations (with sizeof).

Introduction of new and delete operators simplifies the
syntax, but does not solve all problems. Especially in
applications that manipulate complicated linked data structures,
it may be difficult to identify the last use of an object. Mistakes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

197 | P a g e

www.ijacsa.thesai.org

lead to either duplicate de-allocations and possible security
holes, or memory leaks [2]. We illustrate this with an example:
Let p1, p2, p3 and p4 are pointers to objects of the class
Person.

vector<Person*> family { p1, p2, p3, p4 };
vector<Person*> kids { p3, p4 };
//...
delete p3;
print(family);//family contains dangling ptr
if (kids.empty()) return 0; //early return
//...
delete p1;
delete p2;
delete p3; // double deletion
delete p4;

The two vectors – family and kids contain pointers to
shared objects – p3 and p4. Deleting the object pointed to by
p3 leads to the emergence of "dangling" pointers in the two
vectors because they cannot "understand" that the referred
object is deleted. All the potential problems with locally
defined naked pointers include:

 Leaked objects: memory allocation with new can cause
(though rarely) an exception which is not handled. It is
also possible function execution to be terminated by
another raised exception and the allocated with new
memory to remain unreleased (it is not exceptions
safety). Avoiding such resource leak usually requires
that a function catches all exceptions. To handle the
deletion of the object properly in case of an exception,
the code becomes complicated and cluttered. This is a
bad programming style and should be avoided because
it is also error prone. Similar situation we have when
function execution is terminated by premature return
statement based on some condition (early return);

 Premature deletion: we delete an object that has some
other pointer to and later use that other pointer.

 Double deletion: we are not insured against an attempt
to re-delete an object (in the example with vectors the
one pointed by p3).

One way to circumvent these problems is to simply use a
local variable, instead of a pointer, but if we insist to use
pointer semantics, the usual approach to overcome such
problems is the use of "smart pointers". Their "intelligence" is
expressed in that they "know" whether they are the last
reference to the object and use this knowledge to destroy the
object only when its "ultimate owner" is to be destroyed. We
can consider that a "smart pointer" is RAII (Resource
Acquisition Is Initialization) modeled class that manages
dynamically allocated memory. It provides the same interfaces
that ordinary pointers do (*, ->). During its construction it
acquires ownership of a dynamic object in memory and
deallocates that memory when goes out of scope. In this way,
the programmer does not need to care himself for the
management of dynamic memory.

For the first time the standard C++98 introduces a single
type of smart pointer – auto_ptr which provides specific and
focused transfer-of-ownership semantics. auto_ptr is most

charitably characterized as a valiant attempt to create a
unique_ptr before C++ had move semantics. auto_ptr is
now deprecated, and should not be used in new code. It works
well in trivial situations:

int main(){
try {

auto_ptr<X> ap1(new X(1122));
// _div() throws exception
cout << _div(5, 0) << endl;
ap1->print();

}
catch (exception& e){

cerr << e.what() << endl;
}

}

Template auto_ptr holds a pointer to an object obtained
via new and deletes that object when it itself is destroyed (such
as when leaving block scope). Function _div() returns the
quotient of its arguments and causes an exception at zero
divisor. Thus, in main() an exception occurs and the operator
ap1->print() will not be executed, but still the memory that
ap1 manages will be properly released. This is due to the stack
unwinding, which occurs in exception processing – all local
objects defined in the try block are destroyed, the destruction
of ap1 releases the associated memory for the object of class X.
Here auto_ptr is "smart" enough, but it appears that the
problems entailed outweigh the benefit from it:

- copying and assignment among smart pointers transfers
ownership of the manipulated object as well. That is, by
default move assignment and move construction is carried out.
Such is the situation with passing of auto_ptr as a parameter
of the function:

void foo(auto_ptr<X> ap2){
 ap2->print();
}

int main(){
 auto_ptr<X> ap1(new X(1122));
 foo(ap1);
 ap1->print(); //oops! ap1 is empty
}

After completion of foo() the memory allocated in the
initialization of ap1 and then passed to ap2 will be released (at
the destruction of ap2) and will not be given back to ap1. This
will result in an error when trying to use the contents of ap1 (it
is already a dangling pointer).

We have a similar result in the following situations:

auto_ptr<X> ap3(ap1); //move construction
ap1->print(); //oops! ap1 is empty
auto_ptr<X> ap4;
ap4 = ap3; //move assignment
ap3->print(); //oops! ap3 is empty

In constructing ap3 it acquires the resource managed by
ap1. This is called copy elision. In some cases this is a very
useful technique (eg to avoid unnecessary copying when the
function returns local object by value – compilers do this
automatically).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

198 | P a g e

www.ijacsa.thesai.org

The auto_ptr provides a semantics of strict ownership.
auto_ptr owns the object it holds a pointer to. Copying an
auto_ptr copies the pointer and transfers ownership to the
destination. If more than one auto_ptr owns the same object
at the same time, the behavior of the program is undefined.

 auto_ptr can not be used for an array of objects. When
auto_ptr goes out of scope, delete runs on its
associated memory block. This works if we have a
single object, not an array of objects that must be
destroyed with delete [].

 because auto_ptr does not provide shared-ownership
semantics, it can not even be used with Standard
Library containers like vector, list, map.

Although auto_ptr is now officially deprecated by the
standard ISO/IEC, 2011 [4], in Visual Studio 2013 can have
declarations like:

auto_ptr<vector<int>> apv {new vector<int>{ 1
 2, 3, 4, 5 } };

vector<auto_ptr<int>> v;

The reason for this is the famous backward compatibility
feature of C ++.

Practice shows that to overcome (or at least limit) problems
as described above it is not sufficient to use only one "smart
pointer" class. Smart pointers can be smart in some aspects and
carry out various priorities, as they have to pay the price for
such intelligence [1], p. 76. Note that even now, with several
types of smart pointers their misuse is possible and
programming of wrong behavior.

In the standard (ISO/IEC, 2011) instead of auto_ptr
several different types of smart pointers are introduced (also
called Resource Management Pointers) [5], modeling different
aspects of resource management. The idea is not new – it
formally originates from [6] and was originally implemented in
the Boost library and only in 2011 became a part of the
Standard Library. The basic, top-level and general-purpose
smart pointers are unique_ptr and shared_ptr. They are
defined in the header the file <memory>.

Unfortunately, excessive use of new (and pointers and
references) seems to be an escalating problem. However, when
you really need pointer semantics, unique_ptr is a very
lightweight mechanism, with no additional costs compared to
the correct use of built-in pointer [5], p. 113. The class
unique_ptr is designed for pointers that implement the idea of
exclusive (strict) ownership, what was intended auto_ptr to
do. It ensures that at any given time only one smart pointer
may point to the object. As a result, an object gets destroyed
automatically when its unique_ptr gets destroyed. However,
transfer of ownership is permitted. This class is particularly
useful for avoiding leak of resources such as missed delete
calls for dynamic objects or when exception occurs while an
object is being created. It has much the same interface as an
ordinary pointer. Operator * dereferences the object to which it
points, whereas operator -> provides access to a member if the
object is an instance of a class or a structure. Unlike ordinary
pointers, smart pointer arithmetic is not possible, but specialists
consider this an advantage, because it is known that pointer

arithmetic is a source of trouble. unique_ptr uses include
passing free-store allocated objects in and out of functions (rely
on move semantics to make return simple and efficient):

// make Person object and give it to a
unique_ptr

unique_ptr<Person> make_Person(
const string & name, int year)

{
// ... check Person, etc. ...
return unique_ptr<Person>{new Person{name,
year}};

}
//

auto pp = make_Person("Ivaylo", 1971);
pp->print();

For such situations std::move() will be automatically
executed for the return value (under the new rules in C++11).
Copying or assignment between unique pointers is impossible
if we use the ordinary copy semantics. However, we can use
the move semantics. In that case, the constructor or assignment
operator transfers the ownership to another unique pointer.

The typical use of unique_ptr includes:

 ensuring safe use of dynamically allocated memory
through the mechanism of exceptions (exception
safety);

 transfer of ownership of dynamically allocated memory
to function (via parameter);

 returning dynamically allocated memory – the function
returns a pointer to the allocated memory (unique_ptr)
;

 storing pointers in a container.

A point of interest is the situation when unique_ptr is
passed as a parameter of а function by rvalue reference, created
by std::move(). In this case the parameter of the called
function acquires ownership of unique_ptr. If then this
function does not pass ownership again, the object will be
destroyed at its completion:

template <typename T>
void f(unique_ptr<T> x)
{

cout << *x << endl;
}
int main()
{
 unique_ptr<string> up{new string{"Ivaylo"}};
 f(move(up)); // up became empty
 if (up) cout << *up << endl;

else cout << "empty pointer" << endl;
}

Using a unique pointer, as a member of a class may also be
useful for avoiding leak of resources. By using unique_ptr,
instead of built-in pointer there is no need of a destructor
because the object will be destroyed while destroying the
member concerned. In addition unique_ptr prevents leak of
resources in case of exceptions which occur during
initialization of objects – we know that destructors are called

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

199 | P a g e

www.ijacsa.thesai.org

only if any construction has been completed. So, if an
exception occurs within the constructor, destructors will be
executed for objects that have been already fully constructed.
As a result we can get outflow of resources for classes with
multiple raw pointers, if the first construction with new is
successful, but the second fails.

Simultaneous access to an object from different points in
the program can be provided through ordinary pointers and
references, but we already commented on the problems
associated with their use. Often we have to make sure that
when the last reference to an object is deleted, the object itself
will be destroyed as well (which usually implies garbage
collection operations – to deallocate memory and other
resources).

The class shared_ptr implements the concept of shared
ownership. Many smart pointers can point to the same object,
and the object and its associated resources are released when
the last reference is destroyed. The last owner is responsible for
the destroying. To perform this task in more complex scenarios
auxiliary classes weak_ptr, bad_weak_ptr,
enable_shared_from_this are provided.

The class shared_ptr is similar to a pointer with counter
of the number of sharings (reference counter), which destroys
the pointed object when this counter becomes zero. Imagine
shared_ptr as a structure of two pointers – one to the object
and one to the counter of sharings.

Shared pointer can be used as an ordinary pointer – to
assign, copy and compare, to have access to the pointed object
via the operations * and ->. We have a full range of copy and
move constructions and assignments. Comparison operations
are applied to stored pointers (usually the address of the owned
object or nullptr if none). shared_ptr does not provide index
operation. For unique_ptr a partial specialization for arrays is
available that provides [] operator, along with * and ->. This
is due to the fact that unique_ptr is optimized for efficiency
and flexibility. Access to the elements of the owned by
shared_ptr array can be provided through the indices of the
internal stored pointer, encapsulated by shared_ptr (and
accessible through the member function get()).

We already discussed the problems with dangling pointers,
which arise while build-in pointers are stored in containers.
Now we will show how the use of shared_ptr avoids them.
Consider the same situation with vectors of Person objects –
family and kids:

In the function main() we have 4 shared pointers, to
manipulative dynamic objects of Person:

auto sp1=make_shared<Person>("Ivaylo", 1971);
auto sp2=make_shared<Person>("Doroteya", 1977);
auto sp3=make_shared<Person>("Victoria", 2002);
auto sp4=make_shared<Person>("Peter", 2009);
and two vectors of such pointers in which objects are

duplicated:

vector<shared_ptr<Person>> sp_family{sp1,
 sp2, sp3, sp4};
vector<shared_ptr<Person>> sp_kids{sp3, sp4};

There is a single copy of each object of Person. The
number of references to the children is 3 - one in each vector
and the one of sp3 (or sp4).

The name change

sp3->set_name("Victoria Doncheva");

immediately affects both vectors. Release of sp3 by
reset() does not lead to destruction of the object Person
{"Victoria", 2002}, in opposit to build-in pointers.

Of course, if you like, you can always make a mess. If you
initialize a build-in pointer with the owned by shared_ptr
internal pointer, and then deallocate memory by this raw
pointer:

Person* p = sp3.get();

delete p;

A problem with reference-counted smart pointers is that if
there is a ring, or cycle, of objects that have smart pointers to
each other, they keep each other "alive" – they will not get
deleted even if no other objects are pointing to them from
"outside" the ring. Such a situation often occurs in
implementations of recursive data structures. C++11 includes a
solution: "weak" smart pointers: these only "observe" an object
but do not influence its lifetime. A ring of objects can point to
each other with weak_ptrs, which point to the managed object
but do not keep it in existence. Like raw pointers, the weak
pointers do not keep the pointed-to object "alive". The cycle
problem is solved. However, unlike raw pointers, the weak
pointers "know" whether the pointed-to object is still there or
not and can be interrogated about it, making them much more
useful than a simple raw pointer would be.

In practice often happens a situation when we hesitate
which version of a smart pointer to use – unique_ptr or
shared_ptr. The advice is to prefer unique_ptr by default,
and we can always later move-convert to shared_ptr if
needed. There are three main reasons for this [7]:

 try to use the simplest semantics that are sufficient;

 a unique_ptr is more efficient than a shared_ptr. A
unique_ptr does not need to maintain reference count
information and a control block under the covers, and is
designed to be just about as cheap to move and use as a
raw pointer;

 starting with unique_ptr is more flexible and keeps
your options open.

In our case, however, we had from the very beginning to
start with shared_ptr, because being recursive by definition,
the data structures that we tried to implement with smart
pointers can not do without shared ownership.

III. IMPLEMENTATION OF LISTS

In the course in Data Structures and Algorithms (DSA) we
use dynamically implemented singly linked and doubly linked
lists and based on them specializations for other ADS – stack,
queue, deque. We develop a template class List with an
interface similar to the following:

//singly linked list with built-in pointers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

200 | P a g e

www.ijacsa.thesai.org

template <typename T>
class List {
private:

struct Node {
T key;
Node* next;
Node():key(),next(nullptr){}
Node(T x):key(x),next(nullptr){}

};
Node* front; //first element

public:
List():front(nullptr){} //default constructor
List(T x):front(new Node(x)){}
//initializer list constructor
List(initializer_list<T>);
~List(); //destructor
List(const List&); //copy constructor
List(List&&); //move constructor
//copy assignment
List& operator =(const List&);
List& operator =(List&&); //move assignment
bool push_front(T); //add to the top
bool push_back(T); //add to the bottom
T& operator [](int); //index operator
size_t size(); //the length of the list
bool find(T); //search for element;
Node* find_ref(T); //reference to element
bool empty(){ return front == nullptr; }
bool remove(T);

};

In addition, students develop on their own methods to insert
a node in any location; to search and insert an element in a way
to keep the list sorted; to exchange places of elements; to insert
an element before and after a node; to merge two lists and
more.

Since we count on the reliability, in the course we try to
follow the methodology for verification of object-oriented
programs as proposed in [3]. Correct implementation of all
methods requires multiple checks; catching any exceptions;
tracking the number of references to a node. Our current
practice shows that students encounter the greatest difficulties
in removing items from the list and the most common mistake
is to forget a delete operator in any branch of the algorithm.
So in fact an element is excluded from the list, but the occupied
memory is not released – a typical example of a memory leak.
Other typical logic errors are skipping a special case such as an
attempt to delete an item from an empty list or when the
element to be deleted is the first in the list.

In order to simplify the technical part and to focus on
algorithms, implementing the operations on lists from 2013-
2014, we went to implementation with smart pointers. Our
initial expectation was that it was possible to avoid all methods
of copy and move semantics, destructors for nodes and list,
release of memory when deleting nodes and exception
handling related to the construction of a list and its nodes. We
relied on simplified syntax in the implementation of operations.

We started with the realization of the template class with
the following interface:

template <typename T>
class List {

class Node {
public:

T key;
shared_ptr<Node> next;
Node():key(), next(){}
Node(T x):key(x), next(){}

};
shared_ptr<Node> top;
shared_ptr<Node> bottom;

public:
List():top(), bottom(make_shared<Node>()){}
List(T x):top(make_shared<Node>(x)),
 bottom(make_shared<Node>()){

top->next = bottom;}
List(initializer_list<T>);
bool push_front(T);
bool push_back(T);
operator bool(){return top!=nullptr;}
shared_ptr<Node> find(T)
bool remove(const T&);
T& operator[](size_t);

};
Unlike the interface of std::forward_list, we added a

feature inserting elements at the end (the method push_back)
and aiming a more effective implementation of this, we used a
fictitious node bottom as a sentinel.

We will show the advantage of using shared pointers
through the method remove to delete element with a key x:

template <typename T>

bool List<T>::remove(const T& x) {

if(!top) return false;

if(top->key == x) {

top = top->next;

return true;
}

for(auto p=top; p->next; p=p->next)

if(p->next->key == x) {

if(p->next == bottom)

bottom = p;

p->next = p->next->next;
}

return true;

}
It is seen that the code with shared pointers differs from

that with build-in pointers only by avoiding delete several
times to release occupied by the deleted node memory. The
code of the other methods is sufficiently clear and concise, for
example adding a new element to the beginning of the list
looks like this:

template <typename T>
bool List<T>::push_front(T x) {

auto p = make_shared<Node>(x);
if(!p) return false;
p->next = top ? top : bottom;
top = p;
return true;

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

201 | P a g e

www.ijacsa.thesai.org

With automatic type deduction and factory function
make_shared (row 2) we even avoid explicit type declaration
for smart pointer p and do not use new, instead:

shared_ptr<Node> p { new Node{ x } };
For educational purposes all operations with a single list

ran normally, but when we tested a larger list (100000 strings),
we got a "stack overflow" error during the automatic
destruction of the list at the end of the program. Because of the
recursive links a situation occurs where one node keeps "alive"
the whole structure. This on one hand requires a large stack,
and on the other – can lead to significant delays in the
demolition of the structure. So we decided to add a destructor,
instead of increasing the stack size from the settings of the
linker:

template<typename T>
List<T>::~List() {

while (top != bottom)
 top = top->next;
}

Here, again, we don't use delete to release the memory
occupied by each node, but instead just sequentially shift the
first element until we reach the end of the list. This causes
automatic execution of a destructor for each node, managed by
shared pointer, as there will be no more references to it.

Further, when working with two or more lists, we
encountered problems with copy assignment and copy
construction. Both operations performed shallow copying and
we had to add a copy constructor and copy assignment operator
to evoke correct actions for deep copying. Their code proved to
be with complexity equivalent to the version with naked
pointers, so in this case we could not save the students the
technical details.

The situation with move semantics proved to be analogous
– the lack of user-defined move constructor and move-
assignment operator results in that after the transfer of
ownership the pointer members of the object (list) on the right
are not reset to its initial state, so we implemented these
methods as well, but as seen from the code below, the
implementation is quite trivial and does not burden the
students:

template<typename T>
List<T>::List(List<T>&&other):

top(move(other.top)),
bottom(move(other.bottom)) {

 other.top = nullptr;

 other.bottom = nullptr;
}

The reason that compiler-generated move semantics
methods don't work is that the complex types, such as our list,
often define one or more of the special member functions
themselves, and this can prevent other special member
functions from being automatically generated. This problem
we solved in another way, without implementation of the
corresponding methods, but passed to compiler that supports
explicitly defaulted and deleted functions – Microsoft Visual
C++ Compiler Nov 2013 CTP (CTP_Nov2013).

Тhen the declarations

List(List&&) = default;
List& operator =(List&&) = default;

provided smooth operation of the automatically generated
move constructor and move-assignment operator.
Unfortunately we found that this approach does not work with
copy semantics.

Similar difficulties were encountered with the
implementation of Doubly Linked List. Here is a part of its
interface:

template <typename T> class List {
 class Node {
 public:
 T key;
 shared_ptr<Node> next;
 weak_ptr<Node> prev;
 Node():key(),next(), prev(){}
 Node(T x):key(x), next(), prev(){}
 };
 shared_ptr<Node> front;
 shared_ptr<Node> back;
public:
 List():front(), back(){}
 List(initializer_list<T>);
 bool push_front(T);
 bool push_back(T);
//...
};

As here are bidirectional links, in order not to duplicate
them and make the structure "indestructible", for those in the
opposite direction we use a weak pointer. And for this list we
can state that implementation of operations has the same or less
complexity than the version with built-in pointers.

We will comment on another issue, connected not so much
with the lists as with the syntax rules in C++11 and
implementation of initializer list constructor. If you try to
initialize a list with another using the syntax for uniform
initialization:

List <int> L2 {L1};
If we have templatized initializer list constructor, the

compiler will consider this as a call to this constructor with an
argument initializating list of one element of type List<int>,
not as a call to the copy constructor. That would cause
unexpected behavior. One option for dealing with the problem
is definition of specialization for initializer list constructor for
lists:

List(initializer_list<List<T>>);
The other option is simply to use function syntax:

List<int> L2(L1);

In conclusion we can assert that although our initial idea to
avoid implementation of all special member functions was not
completely accomplished, these methods, as well as all
operations with lists can be implemented more concisely and
clearly than their respective analogues in the build-in pointers
implementation. Furthermore, by using smart pointers we
implemented a complete ''no naked new '' policy, respecting the
recommendation of [5], p. 64 that avoiding naked new and
naked delete makes code far less error-prone and far easier to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

202 | P a g e

www.ijacsa.thesai.org

keep free of resource leaks. From this perspective, we consider
reasonable study of smart pointers in the course of DSA.

IV. PERFORMANCE EVALUATION

In order to evaluate the efficiency of smart pointers
implementation we carried out an experiment in which we
compare the times for typical operations with lists,
implemented with and without smart pointers.

Three implementations of Singly Linked Lists with library
std::forward_list and our realization of Doubly Linked List
with smart pointers with library equivalent std::list we
compared (Table 1). The same data is used in the experiment:
100’000 randomly generated unique strings of length of 20
stored in a text file. They are used to construct lists by adding
elements to the beginning for the one-directional linked
versions and at the end of bi-directional linked lists.

TABLE I. Test Results

Operations

List Implemantations

Singly Linked Lists Doubly
Linked Lists

C-style Row

Pointers

Smart

Pointers

std::forward_

list

Smart

Pointers

std::list

Add node 78 109 109 78 125 63

Traverse 14 078 14 703 30 578 19 829 31 829 14 546

Delete node 21 594 21 625 143 703 107 515 153 812 78 172

Note: Time in milliseconds

The first operation "Add element" reads all strings from the
file and stores them in the relevant list. For each list the text
file is opened and read again.

Traversing accomplishes 10000 searches for an element not
contained in the list: that is complete pass over all the nodes.

The test of deletion is deliberately made so as to require
multiple traverse – check if each element meets the set criterion
(comparison of strings) and if so, the key of this element is
passed as argument to the deleting function. This function each
time searches the element from the beginning of the list and
deletes only the first hit. 59 996 elements of all 100 000 are
deleted.

The results show a negligibly small difference in
performance between the implementation without classes (C-
style), and implementation using classes and raw pointers.
Only the "add element" operation is 28% slower. Time
difference between single linked lists and bi-directional linked
lists implemented with smart pointers is inessential. This was
expected because the test algorithms traverse lists only in one
direction. The advantage of bi-directional linked list is only
visible in comparison with library implementations. The library
template class forward_list is inferior in efficiency to our
raw pointer implementation for traverse operation by 26%, and
removing elements is nearly 5 times slower. Implementation of
smart pointers has significantly weaker results – traverse is 2
times slower, and removing elements – 6 times compared to
raw pointers. Adding elements shows no difference in
performances. Our version of bidirectional linked list with

smart pointers proved to be twice slower than library version
std::list for all operations.

V. CONCLUSION

Our initial hypothesis regarding the implementation of lists
with smart pointers was proven partially. We could not do
entirely without implementation of methods of copy and move
semantics, but their code turned out to be short, clear and easily
understandable for students. Moreover, move semantics in our
case can be provided by defaulted move constructors and
assignment operators. We consider the second part of the
hypothesis, namely the shorter and clearer implementation of
the basic operations with data structures for fully achieved. In
addition, smart pointer versions do not require user-defined
exception handling.

Since we do not have enough empirical data, we cannot
prove the advantage of this way of teaching DSA yet, but even
without conducting a strictly formal pedagogical experiment,
we can confirm that the results of students tests, homework and
exams are comparable to those demonstrated by their
colleagues trained in previous years under the old program.

The implementation of ADS with smart pointers is more
clear and concise, but requires spending time to study in
additionally templates and essential elements of the STL,
though not in detail. This could be facilitated by reorganizing
CS1 course Programming Fundamentals, where to underlie
learning C++11/14 and STL. Note that for our implementations
it is not needed even to know the full interface for work with
smart pointers. In most situations the interface of build-in
pointers is sufficient plus function make_shared and possibly
member function reset. In our work with the students during
the school year we met difficulties in debugging of programs
related to discovery of logical errors in memory management,
most often connected with its release. We found that it is
appropriate to add an intermediate output (operator cout) in
the destructors as of DSA, as of the elements held in them (if
they are of user-defined types). In this way it is easy to detect
situations where objects remain undestroyed.

Regarding the applicability of smart pointers in the actual
programming will mention the opinion of Stroustrup, that they
"are still conceptually pointers and therefore only my second
choice for resource management – after containers and other
types that manage their resources at a higher conceptual level"
[5], p. 114. The results of our comparative tests also show that
library containers are sufficiently effective and can join the
opinion of Stroustrup. Furthermore, anyway, to learn smart
pointers it is necessary to get into STL. On one hand it is better
to teach students how to use its efficient and reliable
containers. On the other hand though, we train professionals
and they must be able to independently implement such
containers – to develop creative thinking. It is therefore not a
bad idea to do so with smart pointers as well – one more
opportunity provided by the STL.

REFERENCES

[1] Josuttis, N. M. (2012). The C++ Standard Library: A Tutorial and
Reference. Addison-Wesley Professional; 2nd edition (April 9, 2012).

[2] Boehm, H. & Spertus, M. (2009). Garbage Collection in the Next C++
Standard. Proceedings of the 2009 international symposium on Memory

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

203 | P a g e

www.ijacsa.thesai.org

management, pp. 30-38. ACM New York.
doi>10.1145/1542431.1542437

[3] Todorova, M., Kanev, K. (2012). Educational framework for
verification of object-oriented programs, in Proceedings of the 2012
Joint International Conference on Human-Centered Computer
Environments, ACM, New York, pp. 23-27

[4] ISO/IEC. (2011). International Standard ISO/IEC 14882:2011(E)
Information technology – Programming languages – C++ (3rd ed.)

[5] Stroustrup, Bj. (2013). The C++ Programming Language, 4th Edition.
Addison-Wesley Professional; 4th edition (May 19, 2013)

[6] Dimov, P., Dawes, B. & Colvin, G. (2003). A Proposal to Add General
Purpose Smart Pointers to the Library Technical Report. C++ Standards
Committee Papers. Document number: N1450=03-0033
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1450.html

[7] Sutter, H. (2013). Sutter’s Mill. GotW #89 Solution: Smart Pointers.
http://herbsutter.com/2013/05/29/gotw-89-solution-smart-pointers/

