
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

24 | P a g e

www.ijacsa.thesai.org

Supporting Self-Organization with Logical-Clustering

Towards Autonomic Management of Internet-of-

Things

Hasibur Rahman
*
, Theo Kanter, Rahim Rahmani

Department of Computer and Systems Sciences (DSV)

Stockholm University

Nod Building, SE-164 55 Kista, Sweden

Abstract—One of the challenges for autonomic management

in Future Internet is to bring about self-organization in a rapidly

changing environment and enable participating nodes to be

aware and respond to changes. The massive number of

participating nodes in Internet-of-Things calls for a new

approach in regard of autonomic management with dynamic self-

organization and enabling awareness to context information

changes in the nodes themselves. To this end, we present new

algorithms to enable self-organization with logical-clustering, the

goal of which is to ensure that logical-clustering evolves correctly

in the dynamic environment. The focus of these algorithms is to

structure logical-clustering topology in an organized way with

minimal intervention from outside sources. The correctness of

the proposed algorithm is demonstrated on a scalable IoT

platform, MediaSense. Our algorithms sanction 10 nodes to

organize themselves per second and afford high accuracy of

nodes discovery. Finally, we outline future research challenges

towards autonomic management of IoT.

Keywords—autonomic management; Future Internet; Internet-

of-Things; self-organization; logical-clustering; MediaSense

I. INTRODUCTION

Research towards Future Internet mandates exploring new
challenges. Autonomic management has been around for over a
decade since IBM coined this concept [1]. One of the
requirements of autonomic management in Future Internet is to
bring about self-organization [2, 3]. Moreover, we are about to
see a paradigm shift from Internet-of-Things (IoT) to Internet-
of-Everything (IoE) [4, 5]. The goal of which is to integrate
people, process, data (context information) and things [5] in the
Connected Society. Autonomic management was not part of
early IoT, however, recently there is a shift in research
activities which aims to tie these two [4]. This corresponds to
massive participation of nodes in IoT, for example, 212 billion
things are expected to be connected to IoT by 2020 [5]. The
number of connected devices may even upsurge to 500 billion
[6]. This massive immersion within IoT networking mandates
to comprehend dynamism [7, 8]. One of the challenges in IoT
would be to adapt to fast varying environment and be aware of
any changes. The key to unravel these challenges is to organize
a system such that it can respond to changing environment and
stabilizes the system in situations uncalled for. For example,
network connectivity, bandwidth, insertion and deletion of
information, joining and leaving of a node/device, etc. are
some of the changes that are expected in IoT [5, 8]. Any

distributed system requires countering the changes in an
organized way; however, most of these changes are not
predictable. Therefore, it is imperative that the system
organizes itself in such cases. This infers that a system (part of
IoT) is desirable to be self-organized leaving outside sources
mostly out of the loop.

The self-organization phenomenon exists in wide range of
disciplines extending from physics to biology [9, 10]. It has
also attracted attention from computer science and is now a
very active research area [10]. Some case studies for self-
organization in computer science have been presented in [9]
which are inspired from the nature. This reflects the vision of
autonomic computing that was coined by IBM [1]. They
envisioned automatic computing as a grand challenge and
outlined four aspects to be the core of automatic computing
such as self-configuration, self-optimization, self-healing, and
self-protection [1]. The requirement of these self-* capabilities
in massively distributed systems have been further discussed in
[11]. The definition of self-organization varies in different
disciplines befitting the respective goals and criteria. In
general, self-organization can be considered as a system which
organizes itself automatically i.e. without any intervention
from outside sources [9, 12]. However, keeping outside source
completely out of the loop is still a research challenge. Even
the vision of autonomic computing states: “a system should
organize itself according to high-level objectives, and will
collect and aggregate information to support decisions by
human administrators” [1]. This has further been outlined as
“Put simply, the autonomic paradigm seeks to reduce the
requirement for human intervention in the management
process through the use of one or more control loops that
continuously reconfigure the system to keep its behavior within
desired bounds” [13].

Franco and Omer in “IEEE Transaction special issue: Self-
Organization in Distributed Systems Engineering” have further
stressed that self-organizing systems shall leave human mostly
out of the loop [14]. They have wisely used the word “mostly”,
because although it is desirable but currently it is impractical to
leave outside sources (e.g. human as an administrator- these
will be used interchangeably in rest of the paper) completely
out of the loop. This implies that a system should execute its
tasks even when there is minimal or no support at all from
outside source. But the system should be able to interact with
outside source and run a periodic algorithm to rectify errors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

25 | P a g e

www.ijacsa.thesai.org

and make system aware and learned about faults. Thus, the
system will be able to evolve itself next time it encounters
similar error and, thereby, reducing the outside intervention as
much as possible. Therefore, self-organization can be defined
as a system that “evolves correctly, adapts to dynamic
situations, stabilizes itself in unpredicted situations, and pre-
protects itself against probable attacks”.

In light of above, this paper aims to design and develop
new algorithms to empower self-organization. The algorithms
will be specifically targeted at logical-clustering approach.
Logical-clustering efficiently filters out similar context
information from distributed sources [15]. MediaSense, a
context sharing Internet-of-Things (IoT) platform [16], has
been employed to disseminate the clustering identity (context-
ID) as a PubSub model for logical-clustering [17]. Results
showed that MediaSense is viable for scalable context-ID
distribution. It has been further demonstrated in [8] that
MediaSense can counter the fast varying environment i.e.
dynamism efficiently as well. One of the focuses of this paper
is to address “how can logical-clustering organize itself and
evolves according to the requirement and manages in dynamic
unpredictable circumstances?”. This paper is particularly
interested in automatic and periodic insertion and deletion of
context-IDs; self-configuration (automatic seamless integration
of participating nodes) and self- healing of sinks (nodes and
sinks are used interchangeably throughout this paper); self-
optimization of both context-IDs and sinks etc. The correctness
of newly designed and developed algorithms will be proven on
MediaSense. As it has been already proven that MediaSense
can easily counter scalable distribution of context information
and it can support dynamism, therefore, it is worthy that we
develop self-organization algorithms using MediaSense. This
will also contribute in structuring logical-clustering topology in
an organized way.

The remainder of the paper is structured as follows: section
II presents the motivation, section III revisits the state of the art
autonomic computing, section IV demonstrates our approach
while section V demonstrates the evaluation of the work,
section VI outlines future research challenges, and finally
section VI concludes the paper.

II. MOTIVATION

The idea of autonomic computing has been around over a
decade now. Since then, there have been several proposals for
self-organizing systems. Our goals in this paper are: to support
self-organization with the logical-clustering and to propose
algorithms which should contribute towards an autonomic IoT
management architecture. The aim is to bring about self-
organization to the logical-clustering approach. The overall
objectives are to ensure that logical-clustering evolves
correctly in dynamic and unpredictable situations, and
structures itself in an organized manner. As logical-clustering
implies that context-ID (identification of cluster) is created as
soon as a cluster is formed and depending on the requirement

(policy) context-IDs should be deleted after a specific time.
The system needs to be aware of this i.e. self-optimized. Each
sink in logical-clustering needs to fetch context-IDs from other
sink(s). The system should be configured in such a way that
sink(s) can fetch CI from other sinks automatically and
periodically. This also implies that sink should discover other
available sinks and advertises itself so that seamless integration
to the system is ensured. This mandates establishing self-
configuration as outlined by autonomic computing vision. Sink
in logical-clustering topology is considered to be fixed. And
fixed sinks are considered not removable; however, sinks can
be down for example due to no Internet connectivity, power
failure, etc. Hence, it is imperative the system should re-
configure whenever it is up again. Re-configuration also
includes retrieving old data and synchronizing immediately
with other sinks automatically. This is branded as self-healing.
Therefore, our particular focus is limited to design and develop
algorithms for self-configuration, self-optimization and self-
healing. The algorithms will be evaluated on a proven,
scalable, and adaptable IoT platform MediaSense.

III. AUTONOMIC MANAGEMENT

This section briefly introduces the state of the art
autonomic computing and further reviews each of the
fundamental aspects of self-organization system.

A. Revisting the state-of-the-art

A self-organized system deemed to be dynamic and each
organized element constitutes overall system, thus, the
resulting overall system becomes complex and its behavior
becomes unpredictable [11]. According to many research
papers, as mentioned earlier, a self-organized system should
acquire its organized characteristics without intervention from
outside sources [9, 12]; however, some other researchers
mention that outside sources should be kept out of the loop as
much as possible [13, 14]. The vision of autonomic computing
would only be complete through acquired knowledge i.e.
awareness from each organized system [1, 13]. Therefore, the
overall system should evolve gradually and eventually keep
outside sources out of the loop mostly- if not completely.

Self-organized system can have several self-* capabilities
[11]. All these self-* capabilities can be summed into the four
aspects of autonomic computing i.e. self-configuration, self-
optimization, self-healing, and self-protection. Table I further
illustrates this [1].

These aspects need to be managed by a manager which will
enable interaction with other organized elements and/or outside
source (e.g. human administrator). Manager will enable
analyzing, planning and executing the high-level objectives
(policies) set by outside sources and it will further allow an
organized element to interact with another organized element
inside the system. Fig. 1 shows how a manager can achieve this
(the figure is redrawn from [1]).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

26 | P a g e

www.ijacsa.thesai.org

TABLE I. SELF-* ASPECTS

Aspects Capabilities

Self-

Configuration

A new node joins; advertises itself and discovers
other nodes

Adjusts and integrates automatically and

seamlessly according to the high-level policies

Self-Optimization

A node should be able to optimize the local

operation parameters according to global objectives
Learning and altering objectives adpated by others

Should be able to adjust in case of policy conflict

Self-Healing
Re-configurations of the nodes in case of failures

Healing for configuration and optimization

Self-Protection
A node should be able to protect itself from outside

and undesirable attack

Fig. 1. Structure of an autonomic element [1]

An element joins the system and the autonomic manager,
first of all, analyzes the element, then plans and finally
executes based on the objectives required by the overall
system. This behavior of joining and execution follows the
trend of a control loop (the red arrows correspond to this). That
means autonomic computing relates to a control loop which is
executed based on the specified policies. Fig. 2 further
demonstrates this. The policies (objectives) are responsible for
implementing the self-* capabilities. At the beginning, these
policies are integrated with the system; and as system evolves
and encounters new problems, new polices are added.
However, this requires learning i.e. awareness (through
acquiring knowledge) from each organized element.

Fig. 2. Life cycle of autonomic computing

IV. OUR APPROACH

Our focus in this paper is not to redefine the self-* aspects
outlined in previous section; rather we focus to design and
develop algorithms that would implement these aspects. A
limitation of this paper is that it will not explore the self-
protection aspect. In this section, we will explain the proposed
algorithms for other three self-* aspects targeted at logical-
clustering. Moreover, the correctness of the algorithms will be
demonstrated on a p2p based IoT platform- MediaSense.

MediaSense disseminates context information using
Distributed Context eXchange Protocol (DCXP) where each
entity is registered as Universal Context Identifier (UCI) and
other entities can resolve the UCI [16]. It utilizes rendezvous
host i.e. a bootstrapping node to initiate communication
between entities. Any entity plans to use MediaSense must use
the primitive functionalities defined in the MediaSense
Platform. Our proposal is to utilize MediaSense Platform as
controller i.e. autonomic manager and each of the designed
three self-* aspects has been added as extended primitive
functions for MediaSense. Fig. 3 shows how MediaSense
Platform can be utilized as an autonomic manager. In the
following sub-sections, we will describe how self-organization
can be supported in logical-clustering by employing the
autonomic computing concept. We have shown in [17], how
MediaSense can be utilized for logical-clustering concept.

A. Self-Organization Support for Logical-Clustering

Logical-clustering consists of logical-sinks [15] and sinks
are responsible for controlling (creation, insertion, deletion) the
clusters. However, sinks require discovering, co-operating with
other available sinks, and it should also maintain itself. In other
words, it should be organized and organization should be done
with minimum support from outside sources. Since logical-
clustering involves real-time communication, it is imperative
that it evolves correctly, automatically in real-time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

27 | P a g e

www.ijacsa.thesai.org

Fig. 3 shows how we want to employ autonomic computing
concept i.e. self-organization in logical-clustering. As in any
other system, a sink first needs to join which is the first
operation in the control loop.

An autonomic manager (i.e. MediaSense Platform in our
case) will analyze the policy associated with the join request.
During this operation, MediaSense platform will implement the
self-* algorithms. The sink will be adapted based on the
outcome of the algorithms after which sink would be ready for
execution. The platform should be aware all of these operations
as indicated in fig. 3. Actions showed in Fig. 3 can be summed
up as following:

 A sink joins

 Platform analyzes the policies i.e. evaluates the self-*
algorithms

 Platform further adapts the sink based on the policies’
outcome

 Sink is ready for execution (after this stage sink is said
to be an organized sink)

 Platform has the awareness of all these actions

Fig. 4 shows how the concept can contribute towards
autonomic management of IoT. An entity i.e. a thing in IoT
will be connected to the scalable MediaSense Platform and will
be managed by the self-* algorithms automatically.

Fig. 3. Supporting self-organization with logical-clustering

Fig. 4. Autonomic management of IoT

B. Self-Configuration

Self-configuration implies that whenever a new
element/node joins a system; it should be able to advertise
itself and discover other available nodes or let other discover
inside the system. The goal of this self-* aspect is to ensure
automatic and seamless integration to the joined system.

To achieve the aforementioned goal, we have employed
publish/subscribe (PubSub) model that was shown in [17].
MediaSense utilizes a bootstrapping node, as the case with
other distributed p2p systems, which needs to be initiated
before any communication can take place. Our idea is to define
a global publisher e.g. global_uci in MediaSense and each node
whenever tries to join the MediaSense Platform automatically
subscribes to the publisher without knowing which node holds
the global_uci. This newly joined node is added to the
global_uci and existing nodes are automatically discovered
after a certain time. Self-configuration involves several steps.
The steps are listed below:

 Sink join

 Configure global_uci (at beginning on MediaSense
bootstrap node)

 Sink configuration

 Check for self-healing i.e. reconfiguration

 Discover other sinks

Organized Sink

MediaSense Platform

Analyze Adapt

AwarenessJoin Execute

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

28 | P a g e

www.ijacsa.thesai.org

Each of the algorithms is depicted in the following figures.

Fig. 5. Algorithm for configuring a global_uci as publisher

Fig. 5 depicts the algorithm for configuring global_uci
which is exploited as a publisher. Whenever MediaSense is
bootstrapped, global_uci is either merged or renewed based on
the requirement (different situation might require different
policy). As for this approach, global_uci is renewed meaning
that a fresh copy of global_uci is guaranteed. Global_uci stores
all the available sinks as published items and each node - that
joins a MediaSense platform and invokes the MediaSense
Platform’s selfConfig primitive function (fig. 7)- is
automatically subscribes to the global_uci.

Fig. 6. Algorithm for sink joining

As mentioned earlier, each sink that joins the MediaSense
Platform is identified as UCI. Therefore, every time a new sink
joins, it fetches all the available UCIs i.e. sinks. Fig. 6 shows
the algorithm for sink joining. In this procedure, first a sink
must initiate the MedaSense Platform along with the network
settings to use its functionalities.

An identity for this sink is declared which is then used to
join the platform. When the joinUCI function is called- it first
checks if UCI already exists (i.e. registered with MediaSense)
with this particular sink- if that check returns true then sink is
reconfigured with previous configuration (see fig. 8), if that
check returns false meaning no identity duplication from this
sink then the UCI gets registered on MediaSense platform and
gets published on the global_uci which allows other sinks to
discover node. The joined sink then invokes the selfConfig
function of MediaSense Platform which enables automatic
discovery of other available nodes on MediaSense every T
seconds.

The interval is implementation dependent- by default set to
20 seconds. The interval is an open research issue for battery
powered devices, rechargeable devices; but not an issue for AC
powered sources. Discovery of sinks involves the idea that of
MediaSense’s subscription [17]. In this procedure, first the
global_uci is resolved based on MediaSense’s subscription
algorithm. When the global_uci is resolved, each of the stored
UCIs is read and current UCI is added to the global_uci. After
adding the current UCI, global_uci is updated. This implies
that global_uci is either merged or renewed based on the
configuration requirement. Subscription is matched whenever
this function- implementing this algorithm- is invoked.

Fig. 7. Algorithm for sink discovery

Algorithm registering global_uci

begin

 initiate bootstrap_MediaSense

 //the followings are added as extension

to current MediaSense

 if global_uci exists

 renew global_uci

 elseif

 register global_uci (based on PubSub’s

publisher algorithm)

 endif

 //the above is extension

 run bootstrap_MediaSense

 start P2P Communication on the bootstrap

IP address and bootport

end

Algorithm sink_discovery

begin

 resolve global_uci (based on PubSub’s

subscription algorithm)

 read the subscribeable UCIs

 store the UCI to the global_uci

 update global_uci

 merge or renew depending on the

configuration

 subscription is synchronized whenever this

method is invoked

end

Algorithm sink_join

begin

 create an instance of MediaSensePlatform

 initialize platform with network settings

(Bootstrap IP address, bootport, local port)

 while MediaSense is bootstrapped

 declare UCI (i.e. identity of the node)

 invoke MediaSensePlatform’s joinUCI

 if MediaSensePlatform’s selfHealing is

true

 if the UCI is not listed on global_uci

 publish on global_uci by invoking

MediaSensePlatform’s config method

 return the UCI’s current configuration

status

 endif

 elseif

 register the UCI on MediaSense platform

 publish on global_uci by invoking

MediaSensePlatform’s config function

 endif

 invoke MediaSensePlatform’s

selfConfiguration

 synchronizes with the existing UCIs after

every T seconds

 endwhile

end

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

29 | P a g e

www.ijacsa.thesai.org

Fig. 8. Algorithm for sink reconfiguration

C. Self-Healing

Self-healing refers to the reconfiguration of a node in case
of failure. This also corresponds to the healing for the other
two self-* algorithms. The self-healing function that is called
when a node joins checks if UCI is already exists. Moreover,
this algorithm should ensure when a sink is down for some
reason, it should be able to reconfigure with previous
configuration whenever it is up again. Fig. 8 shows the
algorithm. The first part of algorithm requires two parameters
i.e. the UCI and sink-ID; and returns a boolean value. Sink ID
is obtained by calling MediaSense Platform’s getHostID
function. This procedure begins by resolving the UCI and it
fetches the associated information with this UCI. If the host ID
is found in the fetched information then this function returns
true otherwise a false value is returned. Second part of self-
healing algorithm also requires resolving the UCI and its
associated information are fetched. After that, if UCI exists on
MediaSense then the algorithm reconfigures the sink with
previously existing data. But if the UCI is nonexistent then
UCI is registered on the Platform and selfConfiguration is
invoked so that the UCI being registered can execute the self-
configuration algorithm as discussed in previous sub-section.

Fig. 9. Algorithm for sink optimization

D. Self-Optimization

Self-optimization implies that a node should optimize itself
according to the policies set by manager (in our case
MediaSense Platform). This should further ensure that each
node performs to its best capability and efficiency. In this
paper, we looked into optimizing context-IDs associated with
logical-sink. The goal of this algorithm is to support autonomic
dynamism in logical-clustering. This means automatic
insertion, deletion of context-ID is made possible which
enables awareness in the sinks. Each sink creates new context-
ID in real-time; therefore, it is imperative that sink optimizes
itself by inserting new context-IDs with an interval of T
seconds. Each sink should also be able to delete context-IDs
automatically whenever needed. Moreover, each sink should be
aware if a particular context-ID is needed to be deleted after a
specified time. Fig. 9 depicts the algorithm. This algorithms
also has two main parts i.e. insertion and deletion of context-
IDs. In the first part of this procedure, the algorithm first
resolves the UCI and checks if there are any new context-IDs
to be inserted.

I. Algorithm sink_duplication_check

begin

 resolves the UCI

 fetches associated information

 if the sink id is found with the fetched

information

 returns true

 elseif

 returns false

 endif

end

II. Algorithm sink_reconfigure

begin

 resolves the UCI

 fetches associated information

 if uci exists in the current MediaSense

 reconfigure the node and fetch previously

existing data

 elseif

 start uci registration

 while register

 invoke selfConfiguration

 endwhile

 endif

end

Algorithm sink_optimization

I. Insert context-ID

begin

 resolves the UCI

 checks for new context-IDs

 if new context-IDs are found

 insert new context-IDs in the UCI and

adjusts seamlessly with existing context-IDs

 invoke Insert ContextID Policies

 endif

 end

II. Delete context-ID

begin

 resolves the UCI

 checks for context-IDs to be deleted

 if context-IDs need to deleted

 delete existing context-IDs in the UCI

and adjusts seamlessly with existing context-

IDs

 invoke Delete ContextID Policies

 if single context-ID with a TTL

 delete context-ID

 eleseif

 delete context-IDs

 endif

 endif

end

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

30 | P a g e

www.ijacsa.thesai.org

When there are next context-IDs found for insertion, the
class that implements the Insert ContextID Policies gets
invoked. Depending on the requirement, different policies may
be executed. In our case study i.e. logical-clustering, it
automatically and periodically inserts the new context-IDs,
integrates seamlessly with existing context-IDs and
synchronizes with other sinks. As for deleting context-IDs, the
procedure checks if a particular context-ID (with a timestamp
for time to live (TTL) is attached) is to be deleted or it should
delete context-IDs. The procedure executes these and
optimizes the sink.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of
supporting self-organization with logical-clustering. Self-*
capabilities algorithms have been developed on the
MediaSense platform. Each of the self-* aspects has been
developed and included as separate package, this can be found
under the new package called autonomic in current
MediaSense platform. We start first with reporting the effect of
incorporating self-organization on MediaSense Platform. Table
II and II report this. We have evaluated the performance of
joining node on two different networks with different Internet
speeds. Measurements are shown in logarithmic scale and in
milliseconds; the mean µ and standard deviation σ values are
depicted in tables. Results suggest that on both networks, we
get almost similar result. In terms of self-organization, we have
divided the evaluation into two. In the first part, we do not
consider time required for self-healing i.e. duplication check
and reconfiguration; and only time required for self-
configuration is considered, and the second part includes time
required for self-healing (see IV-B). MediaSense incurs a
delay if self-* algorithms are employed. This, however, is what
is expected of self-* algorithms, reason being a node goes
through the life cycle of autonomic computing (see fig. 2 & 3)
before completing the joining operation i.e. becoming
organized (a managed node). The algorithms demonstrated
almost identical performance on both networks.

TABLE II. NODE JOINING (NETWORK I)

MediaSense

(Current)

MediaSense

(Self-

Configuration)

MediaSense

(Self-

Organization)

µ 1.59 1.69 1.88

σ 0.0522 0.0459 0.0338

TABLE III. NODE JOINING (NETWORK II)

MediaSense

(current)

MediaSense

(Self-

Configuration)

MediaSense

(Self-

Organization)

µ 1.61 1.69 1.91

σ 0.0593 0.0261 0.0260

First operation in the self-organization starts with node(s)
joining the autonomic management platform. For this
particular evaluation, we consider that nodes are not competing
for MediaSense Platform’s resources. This means that nodes
are executed one after another. The issue of concurrent node(s)
joining leads to load-balancing and scheduling issue which is
not covered in this paper. Table VII elaborates the necessity for
load-balancing and scheduling. Fig. 10 shows the performance
of nodes joining the platform. X-axis represents the number of
nodes and y-axis represents the processing time. Processing
time is shown in logarithmic scale and in seconds here. If we
analyze the figure and the processing time in normal scale, we
find that each second 10 nodes can join the MediaSense
Platform. This could be a starting point for exploring the load-
balancing and scheduling issue. However, this result should not
be confused with table II and II. Table II and II only reported
the operation time require for a single sink joining operation,
these did not consider the inside mechanism requires for fully
organizing with other nodes (time was shown in logarithmic
scale there too).

Fig. 10. Processing time for nodes joining

Next we evaluate the self-organization algorithms in terms
of discovery of nodes and accuracy of discovery. Fig. 11 shows
the discovery of nodes. This implies the time required for a
node to discover i.e. synchronize with other nodes. This has
been evaluated for both dynamic and stable scenarios.
Dynamic means discovery of nodes measured while other
nodes are joining simultaneously and stable implies that
currently no more nodes are joining the system. This
measurement was done when evaluating fig. 10. This algorithm
is run after every 20 seconds. Table VI illustrates the algorithm
depicted in fig. 7. The stable scenario corresponds to this. The
results are different from dynamic scenario where each node
goes through the cycle of self-organization and competes for
resources; thus incurs delay. The result portrayed in table VI
suggest that discovery of nodes while system is stable is very
fast. This also corresponds to the MediaSense’s PubSub model
which also demonstrated fast and efficient result [17]. Hence,
we do not discuss this in detail in the paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

31 | P a g e

www.ijacsa.thesai.org

Fig. 11. Discovery of nodes

The above figure depicts nodes’ discovery for 5000 and
3000 nodes joining the platform. The mean µ for discovery is
197, 184; and most frequent number (F) is 205 and 202
respectively for 5000 and 3000 nodes. These values have been
calculated based on the differences of the vector elements
excluding the first and last element that makes the discovery
stable i.e. no more nodes are joining. This reflects that each
second (in normal scale) 10 nodes join the platform. Since the
interval period T was chosen to be 20 seconds, so the mean
values are justified. This could further be seen from the fig. 11
that node discovery became stable (all available nodes were
discovered) on the 15

th
(3000 nodes case) and 25

th
 (5000 nodes

case) attempt. However, 4990 and 2997 nodes out of 5000 and
3000 nodes could be discovered respectively. This gives a high
discovery accuracy of over 99 %. Discovery accuracy can
further be seen from table V. Also on the 4

th
, 5

th
 and 15

th

attempt (5000 nodes case- red arrows) and on 6
th
 attempt (3000

node case- orange arrow) of self-configuration, the algorithm
failed to discover any nodes. This could be because currently
the algorithm tries to renew (see fig. 7) the global_uci, this
means the old global_uci is deleted and a fresh copy of
global_uci is inserted on nodes. And, during the call and
renew, some UCIs might not have been synchronized. But the
system was able to fetch information immediately in next
attempts meaning stability is ensured (further discussed
below).

TABLE IV. NODE DISCOVERY (DYNAMIC)

5000 nodes 3000 nodes

µ 197 184

σ 29.79 14.8613

F 205 202

TABLE V. DISCOVERY ACCURACY (SEQUENTIAL)

5000 nodes 3000 nodes 1000 nodes

Nodes

discovered
4990 2997 1000

Accuracy 99.8 % 99.9 % 100 %

Table V indicates that discovery accuracy is very high and
near to 100 % for all three simulated cases, however, these
measurements were done when nodes were joining
sequentially. We did not consider concurrent nodes joining
where nodes would compete to access MediaSense Platform
resources. Table VII shows the discovery accuracy for 3000
and 2000 concurrent nodes joining. Arithmetic mean is 1699,
1195 and standard deviation is 110.4513, 97.4664; and the
discovery accuracy drops to 56.63 % and 59.75 % respectively.
This drop in discovery accuracy further highlights necessity for
designing and developing load-balancing and scheduling
algorithm.

TABLE VI. DISCOVERY DURATION (STABLE)

5000 nodes 3000 nodes

1000 nodes

µ 54.67 ms 47 ms

44 ms

σ 9.76 ms 9.18 ms

9.57 ms

TABLE VII. DISCOVERY ACCURACY (CONCURRENT)

µ σ Accuracy

3000 nodes 1699 110.4513 56.63 %

2000 nodes 1195 97.4664 59.75 %

Self-healing algorithm implies that each node should be
able to heal itself and compensate for failure. The developed
algorithms offer duplication check and compensate when a
failed (e.g. was down or offline) node rejoins the system. This
algorithm was evaluated with 2000 and 3000 already existing
nodes trying to rejoin the system concurrently (this was
evaluated while measuring for table VII) and each node was
successfully checked for duplication. This means duplication
check accuracy was 100 % for both cases. This was further
confirmed with 1000 existing nodes trying to join one after
another i.e. sequentially, this too offered 100 % success rate.

One of the goals of this paper was to make sure logical-
clustering evolves correctly and automatically i.e. optimize
itself.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

32 | P a g e

www.ijacsa.thesai.org

Optimization still needs improvement (should be developed
upon more policies being explored); as of now this algorithm
(along with other two algorithms) allows us to structure the
logical-clustering topology. A sink in logical-sink requires
synchronizing with other sink(s). Thus far, this was done
manually as shown in [8, 17]. Now it is possible to synchronize
the logical-sink automatically and periodically. According to
the experiments done, the algorithm has successfully achieved
automatic dynamism (insertion, deletion) of context-IDs.

A self-organized system is considered complex and its
outcome is often unpredictable [11]. Results demonstrated in
this paper also reflect this. This can be easily perceived from
the fig. 11, table IV, V and VI. Discovery nodes per attempt
are not always same (see fig. 11); even the µ and σ do not
exhibit similarity for both 3000 and 5000 nodes. However, by
perceiving the standard deviation, the deviations are not too
fluctuated and remain within reasonable limit.

Network stability and resilience are two of the main
components of a system. Our self-organized algorithms were
able to structure the logical-clustering topology and the
topology was able to evolve correctly without any central point
of failure. We have observed in fig. 11 that node failed to
discover nodes in few cases, but it was able to stabilize itself
immediately. Since global_uci holds the information about
each existing sink and this information is accessible to each
node subscribed to this global_uci. This makes the system
resilient to failure i.e. no central point of failure. When a sink
failed or left the network and attempted to rejoin the system, all
previous information was fetched immediately. Fig. 11 further
confirms this when after failing to discover in few cases, it was
able to fetch old and new information simultaneously. Self-
healing’s 100 % success rate also reflects to such claim of
stability and resilience.

VI. FUTURE RESEARCH CHALLENGES

The idea of logical-clustering was proposed in [15] and the
research reported in this paper is a step forward to fulfilling the
based vision. However, the vision of fully functional self-
organized logical-clustering still requires some considerable
research work. So far, we have not discussed the policies in
organizing logical-clustering. In this paper, we have presented
a template for achieving self-organization. A fully self-
optimized system requires adapting new policies, and
optimizing the system accordingly. Moreover, autonomic
management of IoT would only be possible through exploring
further policies. This mandates exploring the policies that
would enable autonomic management of IoT and thereby IoE.
Furthermore, integrating polices into the manager mandates a
more flexible and concrete manager. This could be achieved by
deploying Software-Defined Networking (SDN) concept. The
intelligence of SDN would enable to counter the challenges of
efficient traffic management, and data and services delivery.

Another fundamental aspect of self-organization i.e. self-
protection also need to explored and implemented. Each node
should be protected against possible attacks and from getting
removed by other node(s). Protections of context-IDs also need
to be ensured.

Our focus in this paper was limited to designing and
developing a template for self-* aspects, and these self-*
aspects need to be adapted based on awareness. This awareness
should come from all the stages as depicted in fig. 3. Learning
plays an integral part in building the awareness. The managers
should be able to learn new policies and create awareness of
the learned policies to other nodes. However, we have not
addressed the issue of learning in this paper. An approach for
learned-manager is still an open issue which can be
implemented along with SDN and learned-management
system.

Unique identification of each node is another important
research issue needs to be addressed. However, uniquely
identifying billions nodes is not something easy to implement.
Moreover, these identifications should also be easy for humans
to remember. For example, context-IDs in logical-clustering
should be unique and human should be able to access these
context-IDs easily. Therefore, it mandates to define a naming
scheme which will ensure unique identification of node in IoT
landscape.

Load-balancing and scheduling of autonomic manager is
another feature that needs attention.

Heterogeneous interoperability of the system also remains a
challenge. IoT heavily involves cross-platform communication,
therefore, it is mandated that we look into cross-platform
behavior of the system too.

VII. CONCLUSION

The contribution of this paper by and large lies with
designing and developing the self-* aspect capabilities inspired
by the autonomic computing concept. In particular, self-
configuration, self-optimization and self-healing algorithms
were designed and developed; and correctness of these
algorithms was proven on a scalable and versatile IoT platform
MediaSense. MediaSense Platform was employed as what is
autonomic manager to autonomic computing. This new
algorithms enable logical-clustering to organize automatically
and periodically. Each sink in logical-sink now said to be
organized and it evolves correctly.

The algorithms sanction 10 nodes to self-organize
themselves in each second on the MediaSense Platform, and
discovery accuracy is over 99 % when there is no competition
for MediaSense Platform’s resources. While nodes compete for
MediaSense Platform’s resources, discovery accuracy is
around 60 %. Stable system allows discovering nodes very
fast; and duplication check always succeeded. This enables
logical-clustering topology to evolve correctly and structure
itself. There is no central point of failure, even if bootstrap
node fails, other node takes over and stabilizes the system.

Our next step is to explore the challenges mentioned in the
future research challenges. SDN would, perhaps, enable us to
see fully operational autonomic management of IoT.
Autonomic management itself is a grand challenge and it will
go through many transitions. IoT would also need to see-off
many transitions and finally embrace an operational autonomic
IoT- thereby IoE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 2, 2015

33 | P a g e

www.ijacsa.thesai.org

We hope that the algorithms depicted in this paper are step
forward towards the autonomic management of IoT and could
be used as template for further development.

ACKNOWLEDGMENT

The work is partially supported by funding from the
European Union FP7 MobiS project. We would also like to
thank our colleagues at Immersive Networking Research
Group for their feedback that helped in finalizing paper.

REFERENCES

[1] J. 0. Kephart and D. M. Chess, “The vision of autonomic computing”,

IEEE Computer Society, 36(1):41-52, 2003.

[2] J. Strassner, S.S. Kim, J. Won-Ki Hong, “The Design of an Autonomic
Communication Element to Manage Future Internet Services”,
Management Enabling the Future Internet for Changing Business and
New Computing Services Lecture Notes in Computer Science Volume
5787, 2009, pp 122-132

[3] Siekkinen et al., “Beyond the Future Internet – Requirements of
Autonomic Networking Architectures to Address Long Term Future
Networking Challenges”, IEEE computer society

[4] Wikipedia, “Internet of Things”
http://en.wikipedia.org/wiki/Internet_of_Things [Last Accessed: 04-
February-2015]

[5] Ruthbea Yesner Clarke, “Smart Cities and the Internet of Everything:
The Foundation for Delivering Next-Generation Citizen Services”, white
paper sponsored by Cisco, October 2013

[6] Ericsson White Paper, “5G Radio Access: Research and Vision”, 2014

[7] A. Zaslavsky, “Adaptibility and Interfaces: Key to Efficient Pervasive
Computing”, NSF Workshop series on Context-AwareMobile Database
Management, Brown University, Providence, 24-25 January, 2002

[8] H. Rahman , R. Rahmani, and T. Kanter, “Realising Dynamism in
MediaSense Publish/Subscribe Model for Logical-Clustering in
Crowdsourcing”, International Journal of Advanced Research in
Artificial Intelligence (IJARAI), Vol. 3, No. 11, pp. 49-59, 2014

[9] M. Mamei, R. Menzes, R. Tolksdorf, F. Zambonelli, ” Case studies for
self-organization in computer science”, Journal of System Architecture,
pp. 443-460, Vol. 52 (2006), Issues 8-9, Elsevier

[10] Wikipedia, “Self-Organization”, http://en.wikipedia.org/wiki/Self-
organization [Last Accessed: February 2015]

[11] F. Dressler, “Self-Organization in Massively Distributed Systems –
Methods and Techniques”

[12] M. A. Razzaque, S. Dobson, and P. Nixon, “Enhancement of Self-
organization in Wireless Networking through a Cross-layer Approach,”
First Int’l Conf. ADHOCNETS, 2009.

[13] Kephart, J. O. (2005, May). Research challenges of autonomic
computing. In Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on (pp. 15-22). IEEE.

[14] F. Zambonelli, O.F. Rana, “Self-Organization in Distributed Systems
Engineering: Introduction to Special Issue”, IEEE Transactions on
Systems, Man, and Cybernetics,Vol. 35, No. 3, 2005

[15] R. Rahmani, H. Rahman, and T. Kanter, “Context-Based Logical
Clustering of Flow-Sensors - Exploiting HyperFlow and Hierarchical
DHTs”, In Proceeding(s) of 4th International Conference on Next
Generation Information Technology, 2013 ICNIT, June 2013

[16] T. Kanter et al., “MediaSense | The Internet of Things Platform”,
http://www.mediasense.se/ [Last Accessed: 08-February-2014]

[17] H. Rahman , R. Rahmani, and T. Kanter, “Enabling Scalable
Publish/Subscribe for Logical-Clustering in Crowdsourcing via
MediaSense”, IEEE Science and Information Conference 2014, August
27-29, 2014, London, UK

http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Self-organization
http://en.wikipedia.org/wiki/Self-organization
http://www.mediasense.se/

