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Abstract—One of the challenges for autonomic management 

in Future Internet is to bring about self-organization in a rapidly 

changing environment and enable participating nodes to be 

aware and respond to changes. The massive number of 

participating nodes in Internet-of-Things calls for a new 

approach in regard of autonomic management with dynamic self-

organization and enabling awareness to context information 

changes in the nodes themselves. To this end, we present new 

algorithms to enable self-organization with logical-clustering, the 

goal of which is to ensure that logical-clustering evolves correctly 

in the dynamic environment. The focus of these algorithms is to 

structure logical-clustering topology in an organized way with 

minimal intervention from outside sources. The correctness of 

the proposed algorithm is demonstrated on a scalable IoT 

platform, MediaSense. Our algorithms sanction 10 nodes to 

organize themselves per second and afford high accuracy of 

nodes discovery. Finally, we outline future research challenges 

towards autonomic management of IoT. 

Keywords—autonomic management; Future Internet; Internet-

of-Things; self-organization; logical-clustering; MediaSense 

I. INTRODUCTION 

Research towards Future Internet mandates exploring new 
challenges. Autonomic management has been around for over a 
decade since IBM coined this concept [1]. One of the 
requirements of autonomic management in Future Internet is to 
bring about self-organization [2, 3]. Moreover, we are about to 
see a paradigm shift from Internet-of-Things (IoT) to Internet-
of-Everything (IoE) [4, 5]. The goal of which is to integrate 
people, process, data (context information) and things [5] in the 
Connected Society. Autonomic management was not part of 
early IoT, however, recently there is a shift in research 
activities which aims to tie these two [4]. This corresponds to 
massive participation of nodes in IoT, for example, 212 billion 
things are expected to be connected to IoT by 2020 [5]. The 
number of connected devices may even upsurge to 500 billion 
[6]. This massive immersion within IoT networking mandates 
to comprehend dynamism [7, 8]. One of the challenges in IoT 
would be to adapt to fast varying environment and be aware of 
any changes. The key to unravel these challenges is to organize 
a system such that it can respond to changing environment and 
stabilizes the system in situations uncalled for. For example, 
network connectivity, bandwidth, insertion and deletion of 
information, joining and leaving of a node/device, etc. are 
some of the changes that are expected in IoT [5, 8]. Any 

distributed system requires countering the changes in an 
organized way; however, most of these changes are not 
predictable. Therefore, it is imperative that the system 
organizes itself in such cases. This infers that a system (part of 
IoT) is desirable to be self-organized leaving outside sources 
mostly out of the loop. 

The self-organization phenomenon exists in wide range of 
disciplines extending from physics to biology [9, 10].  It has 
also attracted attention from computer science and is now a 
very active research area [10]. Some case studies for self-
organization in computer science have been presented in [9] 
which are inspired from the nature. This reflects the vision of 
autonomic computing that was coined by IBM [1]. They 
envisioned automatic computing as a grand challenge and 
outlined four aspects to be the core of automatic computing 
such as self-configuration, self-optimization, self-healing, and 
self-protection [1]. The requirement of these self-* capabilities 
in massively distributed systems have been further discussed in 
[11]. The definition of self-organization varies in different 
disciplines befitting the respective goals and criteria. In 
general, self-organization can be considered as a system which 
organizes itself automatically i.e. without any intervention 
from outside sources [9, 12]. However, keeping outside source 
completely out of the loop is still a research challenge. Even 
the vision of autonomic computing states: “a system should 
organize itself according to high-level objectives, and will 
collect and aggregate information to support decisions by 
human administrators” [1]. This has further been outlined as  
“Put simply, the autonomic paradigm seeks to reduce the 
requirement for human intervention in the management 
process through the use of one or more control loops that 
continuously reconfigure the system to keep its behavior within 
desired bounds” [13].  

Franco and Omer in “IEEE Transaction special issue: Self-
Organization in Distributed Systems Engineering” have further 
stressed that self-organizing systems shall leave human mostly 
out of the loop [14]. They have wisely used the word “mostly”, 
because although it is desirable but currently it is impractical to 
leave outside sources (e.g. human as an administrator- these 
will be used interchangeably in rest of the paper) completely 
out of the loop. This implies that a system should execute its 
tasks even when there is minimal or no support at all from 
outside source. But the system should be able to interact with 
outside source and run a periodic algorithm to rectify errors 
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and make system aware and learned about faults. Thus, the 
system will be able to evolve itself next time it encounters 
similar error and, thereby, reducing the outside intervention as 
much as possible. Therefore, self-organization can be defined 
as a system that “evolves correctly, adapts to dynamic 
situations, stabilizes itself in unpredicted situations, and pre-
protects itself against probable attacks”.  

In light of above, this paper aims to design and develop 
new algorithms to empower self-organization. The algorithms 
will be specifically targeted at logical-clustering approach. 
Logical-clustering efficiently filters out similar context 
information from distributed sources [15]. MediaSense, a 
context sharing Internet-of-Things (IoT) platform [16], has 
been employed to disseminate the clustering identity (context-
ID) as a PubSub model for logical-clustering [17]. Results 
showed that MediaSense is viable for scalable context-ID 
distribution. It has been further demonstrated in [8] that 
MediaSense can counter the fast varying environment i.e. 
dynamism efficiently as well. One of the focuses of this paper 
is to address “how can logical-clustering organize itself and 
evolves according to the requirement and manages in dynamic 
unpredictable circumstances?”. This paper is particularly 
interested in automatic and periodic insertion and deletion of 
context-IDs; self-configuration (automatic seamless integration 
of participating nodes) and self- healing of sinks (nodes and 
sinks are used interchangeably throughout this paper); self-
optimization of both context-IDs and sinks etc. The correctness 
of newly designed and developed algorithms will be proven on 
MediaSense. As it has been already proven that MediaSense 
can easily counter scalable distribution of context information 
and it can support dynamism, therefore, it is worthy that we 
develop self-organization algorithms using MediaSense. This 
will also contribute in structuring logical-clustering topology in 
an organized way. 

The remainder of the paper is structured as follows: section 
II presents the motivation, section III revisits the state of the art 
autonomic computing, section IV demonstrates our approach 
while section V demonstrates the evaluation of the work, 
section VI outlines future research challenges, and finally 
section VI concludes the paper. 

II. MOTIVATION 

The idea of autonomic computing has been around over a 
decade now. Since then, there have been several proposals for 
self-organizing systems. Our goals in this paper are: to support 
self-organization with the logical-clustering and to propose 
algorithms which should contribute towards an autonomic IoT 
management architecture. The aim is to bring about self-
organization to the logical-clustering approach. The overall 
objectives are to ensure that logical-clustering evolves 
correctly in dynamic and unpredictable situations, and 
structures itself in an organized manner. As logical-clustering 
implies that context-ID (identification of cluster) is created as 
soon as a cluster is formed and depending on the requirement 

(policy) context-IDs should be deleted after a specific time. 
The system needs to be aware of this i.e. self-optimized. Each 
sink in logical-clustering needs to fetch context-IDs from other 
sink(s). The system should be configured in such a way that 
sink(s) can fetch CI from other sinks automatically and 
periodically. This also implies that sink should discover other 
available sinks and advertises itself so that seamless integration 
to the system is ensured. This mandates establishing self-
configuration as outlined by autonomic computing vision. Sink 
in logical-clustering topology is considered to be fixed. And 
fixed sinks are considered not removable; however, sinks can 
be down for example due to no Internet connectivity, power 
failure, etc. Hence, it is imperative the system should re-
configure whenever it is up again. Re-configuration also 
includes retrieving old data and synchronizing immediately 
with other sinks automatically. This is branded as self-healing. 
Therefore, our particular focus is limited to design and develop 
algorithms for self-configuration, self-optimization and self-
healing. The algorithms will be evaluated on a proven, 
scalable, and adaptable IoT platform MediaSense. 

III. AUTONOMIC MANAGEMENT 

This section briefly introduces the state of the art 
autonomic computing and further reviews each of the 
fundamental aspects of self-organization system. 

A. Revisting the state-of-the-art 

A self-organized system deemed to be dynamic and each 
organized element constitutes overall system, thus, the 
resulting overall system becomes complex and its behavior 
becomes unpredictable [11]. According to many research 
papers, as mentioned earlier, a self-organized system should 
acquire its organized characteristics without intervention from 
outside sources [9, 12]; however, some other researchers 
mention that outside sources should be kept out of the loop as 
much as possible [13, 14]. The vision of autonomic computing 
would only be complete through acquired knowledge i.e. 
awareness from each organized system [1, 13].  Therefore, the 
overall system should evolve gradually and eventually keep 
outside sources out of the loop mostly- if not completely. 

Self-organized system can have several self-* capabilities 
[11]. All these self-* capabilities can be summed into the four 
aspects of autonomic computing i.e. self-configuration, self-
optimization, self-healing, and self-protection. Table I further 
illustrates this [1]. 

These aspects need to be managed by a manager which will 
enable interaction with other organized elements and/or outside 
source (e.g. human administrator). Manager will enable 
analyzing, planning and executing the high-level objectives 
(policies) set by outside sources and it will further allow an 
organized element to interact with another organized element 
inside the system. Fig. 1 shows how a manager can achieve this 
(the figure is redrawn from [1]). 
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TABLE I.  SELF-* ASPECTS 

Aspects Capabilities 

Self-

Configuration 

A new node joins; advertises itself and discovers 
other nodes 

Adjusts and integrates automatically and 

seamlessly according to the high-level policies 

Self-Optimization 

A node should be able to optimize the local 

operation parameters according to global objectives 
Learning and altering objectives adpated by others 

Should be able to adjust in case of policy conflict 

Self-Healing 
Re-configurations of the nodes in case of failures 

Healing for configuration and optimization 

Self-Protection 
A node should be able to protect itself from outside 

and undesirable attack 

 

  

Fig. 1. Structure of an autonomic element [1] 

An element joins the system and the autonomic manager, 
first of all, analyzes the element, then plans and finally 
executes based on the objectives required by the overall 
system. This behavior of joining and execution follows the 
trend of a control loop (the red arrows correspond to this). That 
means autonomic computing relates to a control loop which is 
executed based on the specified policies. Fig. 2 further 
demonstrates this. The policies (objectives) are responsible for 
implementing the self-* capabilities. At the beginning, these 
policies are integrated with the system; and as system evolves 
and encounters new problems, new polices are added. 
However, this requires learning i.e. awareness (through 
acquiring knowledge) from each organized element. 

 

Fig. 2. Life cycle of autonomic computing 

IV. OUR APPROACH 

Our focus in this paper is not to redefine the self-* aspects 
outlined in previous section; rather we focus to design and 
develop algorithms that would implement these aspects. A 
limitation of this paper is that it will not explore the self-
protection aspect. In this section, we will explain the proposed 
algorithms for other three self-* aspects targeted at logical-
clustering. Moreover, the correctness of the algorithms will be 
demonstrated on a p2p based IoT platform- MediaSense. 

MediaSense disseminates context information using 
Distributed Context eXchange Protocol (DCXP) where each 
entity is registered as Universal Context Identifier (UCI) and 
other entities can resolve the UCI [16]. It utilizes rendezvous 
host i.e. a bootstrapping node to initiate communication 
between entities. Any entity plans to use MediaSense must use 
the primitive functionalities defined in the MediaSense 
Platform. Our proposal is to utilize MediaSense Platform as 
controller i.e. autonomic manager and each of the designed 
three self-* aspects has been added as extended primitive 
functions for MediaSense. Fig. 3 shows how MediaSense 
Platform can be utilized as an autonomic manager.  In the 
following sub-sections, we will describe how self-organization 
can be supported in logical-clustering by employing the 
autonomic computing concept. We have shown in [17], how 
MediaSense can be utilized for logical-clustering concept. 

A. Self-Organization Support for Logical-Clustering 

Logical-clustering consists of logical-sinks [15] and sinks 
are responsible for controlling (creation, insertion, deletion) the 
clusters. However, sinks require discovering, co-operating with 
other available sinks, and it should also maintain itself. In other 
words, it should be organized and organization should be done 
with minimum support from outside sources. Since logical-
clustering involves real-time communication, it is imperative 
that it evolves correctly, automatically in real-time.  
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Fig. 3 shows how we want to employ autonomic computing 
concept i.e. self-organization in logical-clustering. As in any 
other system, a sink first needs to join which is the first 
operation in the control loop.  

An autonomic manager (i.e. MediaSense Platform in our 
case) will analyze the policy associated with the join request. 
During this operation, MediaSense platform will implement the 
self-* algorithms. The sink will be adapted based on the 
outcome of the algorithms after which sink would be ready for 
execution. The platform should be aware all of these operations 
as indicated in fig. 3. Actions showed in Fig. 3 can be summed 
up as following: 

 A sink joins 

 Platform analyzes the policies i.e. evaluates the self-* 
algorithms 

 Platform further adapts the sink based on the policies’ 
outcome 

 Sink is ready for execution (after this stage sink is said 
to be an organized sink) 

 Platform has the awareness of all these actions 

Fig. 4 shows how the concept can contribute towards 
autonomic management of IoT. An entity i.e. a thing in IoT 
will be connected to the scalable MediaSense Platform and will 
be managed by the self-* algorithms automatically. 

 

Fig. 3. Supporting self-organization with logical-clustering 

 

Fig. 4. Autonomic management of IoT 

B. Self-Configuration 

Self-configuration implies that whenever a new 
element/node joins a system; it should be able to advertise 
itself and discover other available nodes or let other discover 
inside the system. The goal of this self-* aspect is to ensure 
automatic and seamless integration to the joined system. 

To achieve the aforementioned goal, we have employed 
publish/subscribe (PubSub) model that was shown in [17]. 
MediaSense utilizes a bootstrapping node, as the case with 
other distributed p2p systems, which needs to be initiated 
before any communication can take place. Our idea is to define 
a global publisher e.g. global_uci in MediaSense and each node 
whenever tries to join the MediaSense Platform automatically 
subscribes to the publisher without knowing which node holds 
the global_uci. This newly joined node is added to the 
global_uci and existing nodes are automatically discovered 
after a certain time. Self-configuration involves several steps. 
The steps are listed below: 

 Sink join 

 Configure global_uci (at beginning on MediaSense 
bootstrap node) 

 Sink configuration 

 Check for self-healing i.e. reconfiguration 

 Discover other sinks 

  

Organized Sink

MediaSense Platform

Analyze Adapt

AwarenessJoin Execute
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Each of the algorithms is depicted in the following figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Algorithm for configuring a global_uci as publisher 

Fig. 5 depicts the algorithm for configuring global_uci 
which is exploited as a publisher. Whenever MediaSense is 
bootstrapped, global_uci is either merged or renewed based on 
the requirement (different situation might require different 
policy). As for this approach, global_uci is renewed meaning 
that a fresh copy of global_uci is guaranteed. Global_uci stores 
all the available sinks as published items and each node - that 
joins a MediaSense platform and invokes the MediaSense 
Platform’s selfConfig primitive function (fig. 7)- is 
automatically subscribes to the global_uci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Algorithm for sink joining 

As mentioned earlier, each sink that joins the MediaSense 
Platform is identified as UCI. Therefore, every time a new sink 
joins, it fetches all the available UCIs i.e. sinks. Fig. 6 shows 
the algorithm for sink joining. In this procedure, first a sink 
must initiate the MedaSense Platform along with the network 
settings to use its functionalities.  

An identity for this sink is declared which is then used to 
join the platform. When the joinUCI function is called- it first 
checks if UCI already exists (i.e. registered with MediaSense) 
with this particular sink- if that check returns true then sink is 
reconfigured with previous configuration (see fig. 8), if that 
check returns false meaning no identity duplication from this 
sink then the UCI gets registered on MediaSense platform and 
gets published on the global_uci which allows other sinks to 
discover node. The joined sink then invokes the selfConfig 
function of MediaSense Platform which enables automatic 
discovery of other available nodes on MediaSense every T 
seconds.  

The interval is implementation dependent- by default set to 
20 seconds. The interval is an open research issue for battery 
powered devices, rechargeable devices; but not an issue for AC 
powered sources. Discovery of sinks involves the idea that of 
MediaSense’s subscription [17]. In this procedure, first the 
global_uci is resolved based on MediaSense’s subscription 
algorithm. When the global_uci is resolved, each of the stored 
UCIs is read and current UCI is added to the global_uci. After 
adding the current UCI, global_uci is updated. This implies 
that global_uci is either merged or renewed based on the 
configuration requirement. Subscription is matched whenever 
this function- implementing this algorithm- is invoked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Algorithm for sink discovery 

  

Algorithm registering global_uci 

 

begin 

  initiate bootstrap_MediaSense 

  //the followings are added as extension 

to current MediaSense 

  if global_uci exists 

    renew global_uci 

  elseif 

    register global_uci (based on PubSub’s 

publisher algorithm) 

  endif 

  //the above is extension 

  run bootstrap_MediaSense 

  start P2P Communication on the bootstrap 

IP address and bootport 

end 

Algorithm sink_discovery 

 

begin 

   resolve global_uci (based on PubSub’s 

subscription algorithm) 

   read the subscribeable UCIs 

   store the UCI to the global_uci 

   update global_uci 

   merge or renew depending on the 

configuration 

    subscription is synchronized whenever this 

method is invoked 

end 

 

Algorithm sink_join 

 

begin 

  create an instance of MediaSensePlatform 

  initialize platform with network settings 

(Bootstrap IP address, bootport, local port) 

  while MediaSense is bootstrapped 

    declare UCI (i.e. identity of the node) 

    invoke MediaSensePlatform’s joinUCI 

     if MediaSensePlatform’s selfHealing is 

true 

      if the UCI is not listed on global_uci 

       publish on global_uci by invoking       

MediaSensePlatform’s config method 

       return the UCI’s current configuration 

status 

      endif 

     elseif 

      register the UCI on MediaSense platform 

      publish on global_uci by invoking 

MediaSensePlatform’s config function 

     endif 

    invoke MediaSensePlatform’s 

selfConfiguration 

    synchronizes with the existing UCIs after 

every T seconds 

  endwhile  

end 
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Fig. 8. Algorithm for sink reconfiguration 

C. Self-Healing 

Self-healing refers to the reconfiguration of a node in case 
of failure. This also corresponds to the healing for the other 
two self-* algorithms. The self-healing function that is called 
when a node joins checks if UCI is already exists. Moreover, 
this algorithm should ensure when a sink is down for some 
reason, it should be able to reconfigure with previous 
configuration whenever it is up again. Fig. 8 shows the 
algorithm. The first part of algorithm requires two parameters 
i.e. the UCI and sink-ID; and returns a boolean value. Sink ID 
is obtained by calling MediaSense Platform’s getHostID 
function. This procedure begins by resolving the UCI and it 
fetches the associated information with this UCI. If the host ID 
is found in the fetched information then this function returns 
true otherwise a false value is returned.  Second part of self-
healing algorithm also requires resolving the UCI and its 
associated information are fetched. After that, if UCI exists on 
MediaSense then the algorithm reconfigures the sink with 
previously existing data. But if the UCI is nonexistent then 
UCI is registered on the Platform and selfConfiguration is 
invoked so that the UCI being registered can execute the self-
configuration algorithm as discussed in previous sub-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Algorithm for sink optimization 

D. Self-Optimization 

Self-optimization implies that a node should optimize itself 
according to the policies set by manager (in our case 
MediaSense Platform). This should further ensure that each 
node performs to its best capability and efficiency. In this 
paper, we looked into optimizing context-IDs associated with 
logical-sink. The goal of this algorithm is to support autonomic 
dynamism in logical-clustering. This means automatic 
insertion, deletion of context-ID is made possible which 
enables awareness in the sinks. Each sink creates new context-
ID in real-time; therefore, it is imperative that sink optimizes 
itself by inserting new context-IDs with an interval of T 
seconds. Each sink should also be able to delete context-IDs 
automatically whenever needed. Moreover, each sink should be 
aware if a particular context-ID is needed to be deleted after a 
specified time. Fig. 9 depicts the algorithm. This algorithms 
also has two main parts i.e. insertion and deletion of context-
IDs. In the first part of this procedure, the algorithm first 
resolves the UCI and checks if there are any new context-IDs 
to be inserted.  

  

I. Algorithm sink_duplication_check 

 

begin 

  resolves the UCI 

  fetches associated information 

  if the sink id is found with the fetched 

information 

   returns true   

  elseif 

   returns false 

  endif 

end 

  

 

II. Algorithm sink_reconfigure 

 

begin 

  resolves the UCI 

  fetches associated information 

  if uci exists in the current MediaSense 

   reconfigure the node and fetch previously 

existing data 

  elseif 

   start uci registration 

   while register 

     invoke selfConfiguration 

   endwhile  

  endif 

end 

 

Algorithm sink_optimization 

 

I. Insert context-ID 

 

begin 

  resolves the UCI 

  checks for new context-IDs 

  if new context-IDs are found 

    insert new context-IDs in the UCI and 

adjusts seamlessly with existing context-IDs 

    invoke Insert ContextID Policies  

  endif 

 end 

 

II. Delete context-ID 

 

begin 

  resolves the UCI 

  checks for context-IDs to be deleted 

  if context-IDs need to deleted 

    delete existing context-IDs in the UCI 

and adjusts seamlessly with existing context-

IDs 

    invoke Delete ContextID Policies 

     if single context-ID with a TTL 

      delete context-ID 

     eleseif 

 delete context-IDs 

     endif 

  endif 

end 
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When there are next context-IDs found for insertion, the 
class that implements the Insert ContextID Policies gets 
invoked. Depending on the requirement, different policies may 
be executed. In our case study i.e. logical-clustering, it 
automatically and periodically inserts the new context-IDs, 
integrates seamlessly with existing context-IDs and 
synchronizes with other sinks. As for deleting context-IDs, the 
procedure checks if a particular context-ID (with a timestamp 
for time to live (TTL) is attached) is to be deleted or it should 
delete context-IDs. The procedure executes these and 
optimizes the sink. 

V. PERFORMANCE EVALUATION 

This section presents the performance evaluation of 
supporting self-organization with logical-clustering. Self-* 
capabilities algorithms have been developed on the 
MediaSense platform. Each of the self-* aspects has been 
developed and included as separate package, this can be found 
under the new package called autonomic in current 
MediaSense platform. We start first with reporting the effect of 
incorporating self-organization on MediaSense Platform. Table 
II and II report this. We have evaluated the performance of 
joining node on two different networks with different Internet 
speeds. Measurements are shown in logarithmic scale and in 
milliseconds; the mean µ and standard deviation σ values are 
depicted in tables. Results suggest that on both networks, we 
get almost similar result. In terms of self-organization, we have 
divided the evaluation into two. In the first part, we do not 
consider time required for self-healing i.e. duplication check 
and reconfiguration; and only time required for self-
configuration is considered, and the second part includes time 
required for self-healing (see IV-B).  MediaSense incurs a 
delay if self-* algorithms are employed. This, however, is what 
is expected of self-* algorithms, reason being a node goes 
through the life cycle of autonomic computing (see fig. 2 & 3) 
before completing the joining operation i.e. becoming 
organized (a managed node). The algorithms demonstrated 
almost identical performance on both networks. 

TABLE II.  NODE JOINING (NETWORK I) 

  

MediaSense 

(Current) 

MediaSense 

(Self-

Configuration) 

MediaSense 

(Self-

Organization) 

µ 1.59 1.69 1.88 

σ 0.0522 0.0459 0.0338 

TABLE III.  NODE JOINING (NETWORK II) 

  

MediaSense 

(current) 

MediaSense 

(Self-

Configuration) 

MediaSense 

(Self-

Organization) 

µ 1.61 1.69 1.91 

σ 0.0593 0.0261 0.0260 

First operation in the self-organization starts with node(s) 
joining the autonomic management platform. For this 
particular evaluation, we consider that nodes are not competing 
for MediaSense Platform’s resources. This means that nodes 
are executed one after another. The issue of concurrent node(s) 
joining leads to load-balancing and scheduling issue which is 
not covered in this paper. Table VII elaborates the necessity for 
load-balancing and scheduling. Fig. 10 shows the performance 
of nodes joining the platform. X-axis represents the number of 
nodes and y-axis represents the processing time. Processing 
time is shown in logarithmic scale and in seconds here. If we 
analyze the figure and the processing time in normal scale, we 
find that each second 10 nodes can join the MediaSense 
Platform. This could be a starting point for exploring the load-
balancing and scheduling issue. However, this result should not 
be confused with table II and II. Table II and II only reported 
the operation time require for a single sink joining operation, 
these did not consider the inside mechanism requires for fully 
organizing with other nodes (time was shown in logarithmic 
scale there too). 

 

Fig. 10. Processing time for nodes joining 

Next we evaluate the self-organization algorithms in terms 
of discovery of nodes and accuracy of discovery. Fig. 11 shows 
the discovery of nodes. This implies the time required for a 
node to discover i.e. synchronize with other nodes. This has 
been evaluated for both dynamic and stable scenarios. 
Dynamic means discovery of nodes measured while other 
nodes are joining simultaneously and stable implies that 
currently no more nodes are joining the system. This 
measurement was done when evaluating fig. 10. This algorithm 
is run after every 20 seconds. Table VI illustrates the algorithm 
depicted in fig. 7. The stable scenario corresponds to this. The 
results are different from dynamic scenario where each node 
goes through the cycle of self-organization and competes for 
resources; thus incurs delay. The result portrayed in table VI 
suggest that discovery of nodes while system is stable is very 
fast. This also corresponds to the MediaSense’s PubSub model 
which also demonstrated fast and efficient result [17]. Hence, 
we do not discuss this in detail in the paper. 
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Fig. 11. Discovery of nodes 

The above figure depicts nodes’ discovery for 5000 and 
3000 nodes joining the platform. The mean µ for discovery is 
197, 184; and most frequent number (F) is 205 and 202 
respectively for 5000 and 3000 nodes. These values have been 
calculated based on the differences of the vector elements 
excluding the first and last element that makes the discovery 
stable i.e. no more nodes are joining. This reflects that each 
second (in normal scale) 10 nodes join the platform. Since the 
interval period T was chosen to be 20 seconds, so the mean 
values are justified. This could further be seen from the fig. 11 
that node discovery became stable (all available nodes were 
discovered) on the 15

th 
(3000 nodes case) and 25

th
 (5000 nodes 

case) attempt. However, 4990 and 2997 nodes out of 5000 and 
3000 nodes could be discovered respectively. This gives a high 
discovery accuracy of over 99 %. Discovery accuracy can 
further be seen from table V. Also on the 4

th
, 5

th
 and 15

th
 

attempt (5000 nodes case- red arrows) and on 6
th
 attempt (3000 

node case- orange arrow) of self-configuration, the algorithm 
failed to discover any nodes. This could be because currently 
the algorithm tries to renew (see fig. 7) the global_uci, this 
means the old global_uci is deleted and a fresh copy of 
global_uci is inserted on nodes. And, during the call and 
renew, some UCIs might not have been synchronized. But the 
system was able to fetch information immediately in next 
attempts meaning stability is ensured (further discussed 
below). 

TABLE IV.  NODE DISCOVERY (DYNAMIC) 

  

5000 nodes 3000 nodes 

µ 197 184 

σ 29.79 14.8613 

F 205 202 

 

TABLE V.  DISCOVERY ACCURACY (SEQUENTIAL) 

 

 

 

5000 nodes 3000 nodes 1000 nodes 

Nodes 

discovered 
4990 2997 1000 

Accuracy 99.8 % 99.9 % 100 % 

Table V indicates that discovery accuracy is very high and 
near to 100 % for all three simulated cases, however, these 
measurements were done when nodes were joining 
sequentially. We did not consider concurrent nodes joining 
where nodes would compete to access MediaSense Platform 
resources. Table VII shows the discovery accuracy for 3000 
and 2000 concurrent nodes joining. Arithmetic mean is 1699, 
1195 and standard deviation is 110.4513, 97.4664; and the 
discovery accuracy drops to 56.63 % and 59.75 % respectively. 
This drop in discovery accuracy further highlights necessity for 
designing and developing load-balancing and scheduling 
algorithm.  

TABLE VI.  DISCOVERY DURATION (STABLE) 

 

 

 

5000 nodes 3000 nodes 

 

1000 nodes 

µ 54.67 ms 47 ms 

 

44 ms 

σ 9.76 ms 9.18 ms 

 

9.57 ms 

TABLE VII.  DISCOVERY ACCURACY (CONCURRENT) 

 

 

 
µ σ Accuracy 

3000 nodes 1699 110.4513 56.63 % 

2000 nodes 1195 97.4664 59.75 % 

Self-healing algorithm implies that each node should be 
able to heal itself and compensate for failure. The developed 
algorithms offer duplication check and compensate when a 
failed (e.g. was down or offline) node rejoins the system. This 
algorithm was evaluated with 2000 and 3000 already existing 
nodes trying to rejoin the system concurrently (this was 
evaluated while measuring for table VII) and each node was 
successfully checked for duplication. This means duplication 
check accuracy was 100 % for both cases. This was further 
confirmed with 1000 existing nodes trying to join one after 
another i.e. sequentially, this too offered 100 % success rate. 

One of the goals of this paper was to make sure logical-
clustering evolves correctly and automatically i.e. optimize 
itself.  
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Optimization still needs improvement (should be developed 
upon more policies being explored); as of now this algorithm 
(along with other two algorithms) allows us to structure the 
logical-clustering topology. A sink in logical-sink requires 
synchronizing with other sink(s). Thus far, this was done 
manually as shown in [8, 17]. Now it is possible to synchronize 
the logical-sink automatically and periodically. According to 
the experiments done, the algorithm has successfully achieved 
automatic dynamism (insertion, deletion) of context-IDs. 

A self-organized system is considered complex and its 
outcome is often unpredictable [11]. Results demonstrated in 
this paper also reflect this. This can be easily perceived from 
the fig. 11, table IV, V and VI. Discovery nodes per attempt 
are not always same (see fig. 11); even the µ and σ do not 
exhibit similarity for both 3000 and 5000 nodes. However, by 
perceiving the standard deviation, the deviations are not too 
fluctuated and remain within reasonable limit. 

Network stability and resilience are two of the main 
components of a system. Our self-organized algorithms were 
able to structure the logical-clustering topology and the 
topology was able to evolve correctly without any central point 
of failure. We have observed in fig. 11 that node failed to 
discover nodes in few cases, but it was able to stabilize itself 
immediately. Since global_uci holds the information about 
each existing sink and this information is accessible to each 
node subscribed to this global_uci. This makes the system 
resilient to failure i.e. no central point of failure. When a sink 
failed or left the network and attempted to rejoin the system, all 
previous information was fetched immediately. Fig. 11 further 
confirms this when after failing to discover in few cases, it was 
able to fetch old and new information simultaneously. Self-
healing’s 100 % success rate also reflects to such claim of 
stability and resilience. 

VI. FUTURE RESEARCH CHALLENGES 

The idea of logical-clustering was proposed in [15] and the 
research reported in this paper is a step forward to fulfilling the 
based vision. However, the vision of fully functional self-
organized logical-clustering still requires some considerable 
research work. So far, we have not discussed the policies in 
organizing logical-clustering. In this paper, we have presented 
a template for achieving self-organization. A fully self-
optimized system requires adapting new policies, and 
optimizing the system accordingly. Moreover, autonomic 
management of IoT would only be possible through exploring 
further policies. This mandates exploring the policies that 
would enable autonomic management of IoT and thereby IoE. 
Furthermore, integrating polices into the manager mandates a 
more flexible and concrete manager. This could be achieved by 
deploying Software-Defined Networking (SDN) concept. The 
intelligence of SDN would enable to counter the challenges of 
efficient traffic management, and data and services delivery. 

Another fundamental aspect of self-organization i.e. self-
protection also need to explored and implemented. Each node 
should be protected against possible attacks and from getting 
removed by other node(s). Protections of context-IDs also need 
to be ensured. 

Our focus in this paper was limited to designing and 
developing a template for self-* aspects, and these self-* 
aspects need to be adapted based on awareness. This awareness 
should come from all the stages as depicted in fig. 3. Learning 
plays an integral part in building the awareness. The managers 
should be able to learn new policies and create awareness of 
the learned policies to other nodes. However, we have not 
addressed the issue of learning in this paper. An approach for 
learned-manager is still an open issue which can be 
implemented along with SDN and learned-management 
system. 

Unique identification of each node is another important 
research issue needs to be addressed. However, uniquely 
identifying billions nodes is not something easy to implement. 
Moreover, these identifications should also be easy for humans 
to remember. For example, context-IDs in logical-clustering 
should be unique and human should be able to access these 
context-IDs easily. Therefore, it mandates to define a naming 
scheme which will ensure unique identification of node in IoT 
landscape. 

Load-balancing and scheduling of autonomic manager is 
another feature that needs attention. 

Heterogeneous interoperability of the system also remains a 
challenge. IoT heavily involves cross-platform communication, 
therefore, it is mandated that we look into cross-platform 
behavior of the system too. 

VII. CONCLUSION 

The contribution of this paper by and large lies with 
designing and developing the self-* aspect capabilities inspired 
by the autonomic computing concept. In particular, self-
configuration, self-optimization and self-healing algorithms 
were designed and developed; and correctness of these 
algorithms was proven on a scalable and versatile IoT platform 
MediaSense. MediaSense Platform was employed as what is 
autonomic manager to autonomic computing. This new 
algorithms enable logical-clustering to organize automatically 
and periodically. Each sink in logical-sink now said to be 
organized and it evolves correctly. 

The algorithms sanction 10 nodes to self-organize 
themselves in each second on the MediaSense Platform, and 
discovery accuracy is over 99 % when there is no competition 
for MediaSense Platform’s resources. While nodes compete for 
MediaSense Platform’s resources, discovery accuracy is 
around 60 %. Stable system allows discovering nodes very 
fast; and duplication check always succeeded. This enables 
logical-clustering topology to evolve correctly and structure 
itself. There is no central point of failure, even if bootstrap 
node fails, other node takes over and stabilizes the system. 

Our next step is to explore the challenges mentioned in the 
future research challenges. SDN would, perhaps, enable us to 
see fully operational autonomic management of IoT. 
Autonomic management itself is a grand challenge and it will 
go through many transitions. IoT would also need to see-off 
many transitions and finally embrace an operational autonomic 
IoT- thereby IoE.  
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We hope that the algorithms depicted in this paper are step 
forward towards the autonomic management of IoT and could 
be used as template for further development. 
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