
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

11 | P a g e

www.ijacsa.thesai.org

Android Application to Assess Smartphone

Accelerometers and Bluetooth for Real-Time Control

M.A. Nugent

Faculty of Engineering and Computing

Dublin City University, Dublin 9, Ireland

Dr. Harold Esmonde

Faculty of Engineering and Computing

Dublin City University, Dublin 9, Ireland

Abstract—Modern smart phones have evolved into

sophisticated embedded systems, incorporating hardware and

software features that make the devices potentially useful for

real-time control operations. An object-oriented Android

application was developed to quantify the performance of the

smartphone’s on-board linear accelerometers and bluetooth

wireless module with a view to potentially transmitting

accelerometer data wirelessly between bluetooth-enabled devices.

A portable bluetooth library was developed which runs the

bluetooth functionality of the application as an independent

background service. The performance of bluetooth was tested by

pinging data between 2 smartphones, measuring round-trip-time

and round-trip-time variation (jitter) against variations in data

size, transmission distance and sources of interference. The

accelerometers were tested for sampling frequency and sampling

frequency jitter.

Keywords—Android; Bluetooth; control; real-time; sensors;

smartphone

I. INTRODUCTION

Smartphones evolved from the PDAs of the late 1990s.
PDAs were handheld computers essentially used for organising
information. They were equipped with small keyboards that the
user could utilise to input information. IBM Simon was the
first PDA with mobile phone functionality and can be
considered the first smartphone. In 2007 Apple Inc. introduced
the iPhone which incorporated a large multi-touch screen for
direct finger touch input as its main method of interaction.

Mass-produced ARM based microprocessor technology
delivers high speed multi-processing on an inexpensive, battery
powered platform, that only a decade ago, industrial computers
would have been envious of. Smartphones have a myriad of
onboard sensors, such as motion sensors including
accelerometers and gyroscopes, environmental sensors that can
measure pressure, light, temperature and humidity as well as
position sensors such as orientation sensors, magnetometers
and GPS locators. The original purpose of the smartphone was
for communication and smartphones have expanded their
capabilities here also including bluetooth and infrared.

Smartphones comprise 2 operating systems, a low-level
operating system that handles the drivers for the hardware and
a higher level user-interfacing operating system. The most
common operating system installed worldwide is Google Inc.‟s
Android operating system which is built on top of a Linux
kernel.

Android was first established in 2003 with the aim of
developing a more user oriented operating system than
Symbian and Microsoft. The main advantages of Android over
its rivals are its flexibility and upgradability. Android has
grown in popularity among consumers and developers alike to
the point where an industry survey [1] in 2013 shows that 71%
of all mobile development is for the Android operating system.

Since its inception there have been many evolutions of the
Android operating system dashboard, from the original „Froyo‟
through to „KitKat‟ shipped with new smartphones. Table 1
displays the various distributions of Android dashboards.

TABLE I. ANDROID DASHBOARDS AND DISTRIBUTION LEVELS

Version Codename API Distribution

Froyo 2.2 8 0.7%

 GingerBread 2.3.3 – 2.3.7 10 13.6%

Ice Cream Sandwich 4.0.3 – 4.0.4 15 10.6%

JellyBean 4.1.x 16 26.5%

JellyBean 4.2.x 17 19.8%

JellyBean 4.3. 18 7.9%

KitKat 4.4 19 20.9%

Developing an application that is compatible with API 10
and higher will guarantee coverage of 99.3% of the Android
market, but older APIs are not compatible with newer android
features. Some features are only available with more recent
APIs due to continuous developments by Google. Developers
need to be aware of the features available with each version
and the size of the market associated with that version. The
bluetooth application on which this paper is based is
compatible with all dashboards from Froyo to KitKat.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

12 | P a g e

www.ijacsa.thesai.org

The Android accelerometers are primarily intended for
screen orientation and game play. Android [2] describes the
accelerometer sampling periods in terms of data delays in
sending sensor readings to the application, ranging from
200,000 microseconds for the „Normal‟ sampling rate to 0
microsecond delay for the „Fastest‟ sampling rate. The delay is
only a suggested delay and the Android system and other
applications can change it.

Bluetooth is a wireless communication protocol invented
by Ericsson in 1994 as a wireless replacement for serial port
communications between mobile phones and headsets [3, 4].
Management of the specification passed to the Bluetooth
Special Interest Group (BSIG) in 1998 and Bluetooth 1.0 was
released in 1999 with a data rate of 721 kbit/s. Bluetooth 2.0
Enhanced Data Rate (EDR) was adopted in 2004, providing a
data rate of 1 Mbit/s without EDR and 3 Mbit/s with EDR, and
coinciding with the landmark of 3 million product shipments
per week mark. In 2009 Bluetooth 3.0 High Speed (HS) was
adopted with a data rate of up to 24 Mbit/s and Bluetooth 4.0
Low Energy was adopted in 2012 when annual product
shipments exceeded 2 billion. Current specification
development is in the area of IP connectivity preparing
bluetooth for the Internet of Things revolution.

Bluetooth is a low energy, short-range, short wavelength
radio transmission protocol operating within the unlicensed
ISM radio frequency band from 2.4 – 2.485 GHz. A bluetooth
radio can have a range from 1 meter up to 100 metres,
depending on the class of device with smartphones typically
ranging up to 10 metres. Once connected, a small network
called a piconet is dynamically created which allows a master
device to connect with up to 7 slave devices [5]. Each device
can be connected to multiple piconets simultaneously allowing
for complex, wide-ranging connectivity. One of the main
advantages of bluetooth networks is their ease of set up. Two
devices can connect with the push of a button with little
configuration required from the user.

Research [6, 7] has been carried out into the performance of
bluetooth over varying distances, data sizes and sources of
interference, but the data sizes tested were large (11 kB - 5000
kB) in comparison to the 4 bytes typical for sensor readings.
There is an exponential correlation between data size and
transmission times with data size having negligible effect for
smaller data sizes and a much greater effect at large data sizes.
There is also a direct correlation between distance and
transmission times for large data sizes with negligible effect of
distance for smaller data. This paper specifically assesses the
effect of distance and data size when sending small data
packets consistent with the transmission of sensor data in real
time control applications.

Other conclusions from [6] are that concrete walls and
metal barriers reduce the effective range of bluetooth to 3
metres, and that transmitting large data, and direct sunlight
reduces the effective range to 4-7 metres. Interestingly, wi-fi
had no effect on transmission times for data sizes less than 100
kB. Delay variation was measured in [7] and found to be
greater than 16% which is less than the industry recommended
maximum of 20%. No difference was found in transmitting
between mobile phones, pcs or computers.

Some testing [8] was carried out into streaming of MIDI
music files via bluetooth with message lengths of between 1
and 6 bytes, with particular emphasis on comparing delays
when master and slave device transmit. The result is that the
master transmits with mean delay of 30 mS and standard
deviation of 10 mS compared to the slave transmitting with
mean delay of 20 mS and standard deviation of 20 mS. The
discrepancy is occurring because of the different permissions
of the master and slave devices in when they can transmit.

II. ANDROID SOFTWARE STACK

The Android architecture is a software stack comprising
applications, a Linux operating system, a runtime environment
and various services and libraries. Each layer in the stack and
each component in each layer are tightly knitted together to
provide a very effective application development and execution
platform, as depicted in Fig. 1.

At the bottom of the stack is the Linux 2.6 kernel. Its role is
to abstract the hardware into low level software that the higher
layers can interact with. It achieves this through hardware
device drivers and low level power, process and memory
management. Linux is an open source operating system that
has been around for decades with widespread application in
servers, embedded systems and robotics due to its reliability,
efficiency and modularisation of hardware drivers that can be
loaded and unloaded while the system is operating.

Fig. 1. Android operating system architecture

Each application running on Android is executed on an
instance of the Dalvik Virtual Machine. Each application is
effectively isolated from every other application, from the
operating system and from the hardware device drivers. So
each application is developed to run on the Dalvik VM rather
than a particular hardware platform. The operation of Dalvik
VM is similar to Java VM but more efficient in terms of
memory usage and processing power requirements and thus
more suitable for smart phones.

The application framework provides already developed
support tools for the application while it is running and the
basic resources required for an application to run, enabling the
developer to program at a higher level. Low level tasks are
automated such as the construction, management and end-of-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

13 | P a g e

www.ijacsa.thesai.org

life clean-up of an activity, the package file structure of an
application, and access to common resources. It contains the
graphical views that the user would use for the GUI and
content providers to share data between processes.

III. BLUETOOTH PROTOCOL

The industrial, scientific and medical (ISM) bands are
ranges of radio frequencies reserved internationally for devices
that generate electromagnetic emissions that have the potential
to cause interference with telecommunication equipment.
Devices that can generate electromagnetic emissions, such as
microwave ovens, RF heaters and medical diathermy
machines, are required to limit their power emissions in these
frequency bands. Telecommunication equipment sensitive to
electromagnetic interference should avoid these frequencies.
However ISM bands have become popular for short-range
radio frequency communications like Bluetooth and Wi-fi
LAN networks where the potential for interference is limited
by their short broadcasting ranges.

The bluetooth channel is a pseudo-random frequency
hopping pattern of 79 channels, each with a bandwidth of 1
MHz, within the 2.4 GHz. ISM band, operating between 2.402
– 2.78GHz. The hopping pattern is determined by an algorithm
using the address and clock of the master device, to which all
devices in the piconet are connected and synchronized. A
packet of data will be transmitted on a channel and then each
device will switch to the next channel in the frequency hopping
pattern before another packet is sent.

Bluetooth incorporates some features to make it more
resilient to interference and data loss. Adaptive Frequency
Hopping Spectrum is employed to dynamically alter
transmission frequencies to avoid frequencies where there is
interference. Operating within the ISM band, interference can
be expected from other bluetooth devices, IEEE 802.11 WLAN
and microwave ovens. The frequency hopping pattern
determined by the master device‟s address and clock can be
changed dynamically to avoid frequencies where poor
performance due to interference has been detected.

Communication over the channel is serial in nature but
parallel communication is achieved by creating time slots to
share transmission time, called time-division-duplex (TDD).
Each time slot is 625μs in length giving a nominal hopping rate
of 1600 hops/sec. Master and slave devices take turns to
transmit; the master device transmits in even-numbered time
slots and the slave device transmits in odd-numbered time
slots. The hop frequency remains constant for the duration of
the transmission. When the transmission has completed the
channel changes frequency to the next hop frequency in the
pattern and the other device transmits.

Large data files will be broken down into packets small
enough to be transmitted in one time slot. Each packet consists
of a header and payload. The header contains information for
channel maintenance and error detection codes and the payload
contains user data being transmitted. However packet
construction is dynamic where size and composition can be
adapted to the conditions. Table II gives a breakdown of the
various data packets that can be used. DM1 refers to a small
packet designed to be transmitted in one time slot with error

detection (FEC) overhead in the header. DH5 refers to a large
packet designed to be transmitted in 5 consecutive time slots
with no FEC overhead in the header.

TABLE II. PACKET TYPES

Type
Header
(Bytes)

Payload (Bytes) FEC CRC

DM1 1 0-17 2/3 YES

DH1 1 0-27 NO YES

DM3 2 0-121 2/3 YES

DH3 2 0-183 NO YES

DM5 2 0-224 2/3 YES

DH5 2 0-339 NO YES

AUX1 1 0-29 2/3 NO

Bluetooth employs 3 error detection techniques. FEC1/3
(forward error correction) simply repeats each bit in the header
of the packet 3 times. Errors in the header can be easily
detected if the bits are not in triplicate and corrected by
majority vote. FEC2/3 is a shortened type of Hamming code
implemented by appending 5 parity bits to the end of each 10
bit word, making it a 15 bit word. It can correct all single errors
and detect all double errors. CRC code (cyclic redundancy
check) is used on the data payload in the packet to check it‟s
integrity by referencing the remainder of a polynomial division
calculation on the bits in the payload. ARQ (automatic
retransmission request) ensures packets will be re-transmitted
until an acknowledgement is received from the intended
recipient device of a successful, error-free transmission. Error
checking overhead can add to transmission delays therefore
there is a trade-off between the dual objectives of transmission
speed and transmission reliability when using bluetooth.

IV. APPLICATION DESIGN

The application assesses the Android accelerometers and
bluetooth module independent of each other. By assessing
them independently, their individual contribution to the
collective performance when transmitting real-time sensor
data wirelessly could be quantified.

Although Android provides the BluetoothAdapter class as
an abstraction of the bluetooth hardware, the process of
working with bluetooth programmatically is still quite
complicated. Because this application was built to assess
bluetooth for real world applications, it was decided to build
the bluetooth component as a reusable library that could be
imported into any future project requiring bluetooth
connectivity. Bluetooth operations are effectively simplified to
creating an object of BluetoothLibrary and making the correct
method calls and interface implementations.

Taking these points into consideration, the application has 3
components;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

14 | P a g e

www.ijacsa.thesai.org

 An activity to measure the performance of the
accelerometers

 An importable BluetoothLibrary to manage the
bluetooth connection

 A set of activities to conduct the bluetooth performance
assessment

A. Sensor sampling period testing

Within the main activity the user can select the sensor
testing activity. There are 4 programmable sampling periods
for the linear accelerometers. These correspond to the delay in
Android sending the sensor data to the application. „Fastest‟
corresponds to no imposed delay in sending the reading to the
application, „Game‟ corresponds to an imposed delay of 20
mS, „UI‟ corresponds to an imposed delay of 70 mS and
„Normal‟ corresponds to an imposed delay of 200 mS. The user
can select the sampling period via the radio buttons, Fig.2. By
pressing on the „Begin Test‟ button the application begins
polling the accelerometers. When the test is complete the mean
sampling period and standard deviation of the sampling period
are posted to the screen. The user can choose to save the results
to a csv file in the smartphone‟s primary memory location.

Fig. 2. Sensor sampling period testing activity

Fig.3 is a graphical representation of the operation of the
test. Sensor data is received from the onSensorChanged call-
back method on the main UI thread and the current time of that
event is recorded. The sensor value itself is unimportant for
testing, just its timestamp. The timestamp is sent to a parallel
thread where all calculations and screen updates are processed
in parallel to avoid blocking the callback method in the main
thread. This is particularly important when the sampling period
is set to „Fastest‟ or „Game‟ where the GUI can hang due to
blocking of the sensor callback. The timestamps from the
sensor readings are buffered to avoid overwhelming the run

method of the thread. Within the thread calculations are
performed to determine the sampling period and a running
average of the sampling period is displayed on the screen. Also
within the thread the sensor timestamp and period are inserted
into a SQLite database for temporary storage and can be saved
to the phones memory card for further analysis if the user so
wishes. Upon completion of the test the standard deviation of
the sampling period (jitter) is calculated by iterating through
the SQLite database and displayed on the screen.

Fig. 3. Operation of the sensor testing activity

B. Bluetooth Library

All of the bluetooth related operations that are valid for
Android API 8 and that were required for this project are
contained within the bluetooth library. This library enables
turning bluetooth on and off, making the device discoverable,
enabling discovery of other devices, connecting with up to 7
other devices and establishing the input and output streams of a
bluetooth connection. Within the bluetooth library is a class,
BluetoothLibrary, which contains all of the public methods
required for the bluetooth operations. The bluetooth library can
be imported into any Android application requiring bluetooth
functionality. The structure of the library is shown in Fig. 4.

The connectivity part of the library is contained within its
own service. A service in Android is independent of the
lifecycle of any activity of the application or the application
itself with the advantage that it will allow the established
connections to be maintained between activities. Otherwise if
the user switches between activities, the activity that
established the connection would be paused or destroyed and
the connection would be lost.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

15 | P a g e

www.ijacsa.thesai.org

Fig. 4. Structure of the portable library – „BluetoothLibrary‟

The service contains 3 threads, a listening thread which
listens for a connection attempt and blocks on the accept
method, a connect thread which tries to connect and blocks on
the connect method and the connected thread which sets up the
input and output streams and blocks on the read method. A
typical server operation will listen for a device on the listening
thread before switching to the connected thread when it accepts
a connection whereas the typical client operation will try to
connect on the connect thread before switching to the
connected thread to manage the connection.

If a programmer using the library wishes to do anything
bluetooth related, they should create an object of
BluetoothLibrary within the activity and then call its public
methods. If they wish to perform a connection related
operation such as checking if a thread is running they will need
to bind to the service by calling the bindToService method in
the onResume method and unBindFromService method in the
onPause method. The call to bindToService is asynchronous
which means that the next line of code will be executed before
the activity is bound to the service, potentially crashing the
application. The programmer can avoid this problem by
implementing the onBindListener interface that provides a
callback when the activity is bound to the service. Other
interfaces are available for turning bluetooth on/off,
discovering new devices and receiving data on the input
stream.

C. Bluetooth performance testing

The main activity of the application allows all of the
normal bluetooth operations to be performed – turning the
bluetooth radio on/off, making the device discoverable by other
devices, scanning for other devices and initiating a connection.
These can be achieved by using the imported bluetooth library.
Once two devices are connected, the bluetooth testing activity
can begin.

Fig.5 shows the operation of the bluetooth testing activity.
One smartphone takes on the role of client and the other
smartphone takes on the role of server. The client device sends
data to the server device who then returns the data to the client.
The client device then calculates the round-trip-time (rtt) for
the transmission. This procedure is repeated for 30 seconds
until the testing automatically stops.

Fig. 5. Operation of the bluetooth performance test

When the transmission of data begins the current timestamp
is retrieved from the client system clock. A timestamp is of
type long (8 bytes) and it is the timestamp that will be
transmitted in the experiment. Depending on the size of data
under test, a long array is constructed consisting of the
timestamp and filler material, with the exception of the 4 byte
data payload size which is tested differently. The data payload
is constructed at the beginning of the experiment and sent from
client to server and back again in a 30 second loop. Each time
the payload is transmitted by the client the current timestamp is
retrieved from the client‟s system clock and inserted into the
start of the long array.

Upon receipt of the payload the client retrieves the
timestamp and sends it to a thread to perform some
calculations, screen updates and data storage while it resends
the packet with the new current timestamp. Within parallel
threads the round-trip-time is calculated, a running average of
the round-trip-time is updated on the screen and the new data is
inserted into the SQLite database for storage. The data rate is
calculated from the round-trip-time and packet size. Just like in
the sensor sampling period test, the network jitter statistic is
determined by iterating through the database and calculating
the standard deviation of the round-trip-time. The results
screen from this part of the application is illustrated in Fig. 6.
Multi-threading is used to avoid blocking the main UI thread
and slowing the performance of the transmission.

Fig. 6. Client results screen

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

16 | P a g e

www.ijacsa.thesai.org

In the case of the 4 byte test, the long array payload
containing the timestamp when the payload was sent is not an
option. If the user selects the 4 byte test the payload sent is an
auto-incrementing integer which identifies the payload. The
timestamp for when the 4 byte payload was sent is recorded in
a long variable elsewhere. Apart from that difference, the
remainder of the 4 byte test is the same as for the rest of the
payload sizes.

V. TESTING

The smartphones used in testing were a Samsung S3
running JellyBean and a TCL V860 running GingerBread.

A. Sensor Sampling Period Testing

The procedure for testing the sensor sampling period is
straightforward. The user can select one of 4 options for the
Android based sampling period. When the test is started a
running average of the sampling period is displayed on the
screen and upon completion of the test, the standard deviation
(jitter) of the sampling period is determined. During tests the
running average of the sampling period converges on a value
and further testing is not required as the running average will
not change significantly from this value. The data stored in the
SQLite database is the timestamp of the sensor reading, the
period since the previous reading for each sample, a mean
sample period and the mean jitter for the experiment as a
whole.

B. Bluetooth Testing

The testing of the bluetooth medium was carried out
indoors where it is envisaged bluetooth will be used most of
the time. When testing bluetooth‟s performance the factors
examined are distance, data payload size and sources of
interference. The maximum distance that class 2 bluetooth
devices are operable at is 10 meters. Distance between the 2
devices is varied at intervals of 1, 3, 5, 7, and 9 metres. Payload
size is varied at intervals of 4, 8, 64, 256, 1024, and 2048
bytes. 4 bytes is the typical size of a sensor reading float value
or an integer value and 8 bytes is the size of a long value such
as the timestamp.

Testing is carried out in the presence of no interference, an
802.11 wi-fi wireless router and a microwave oven. The testing
is carried out for each payload size, at each distance and each
source of interference.

VI. RESULTS AND ANALYSIS

A. Sensor sampling period testing

The sensor sampling period was tested as outlined in the
previous section. The sampling period for all sensor events was
stored in the database and graphed for the 4 programmable
sampling periods in Android. The mean sampling period was
calculated in real time and the jitter was calculated from the
sampling periods in the database. The results of testing the
„Normal‟ (200 mS, 5 Hz) sampling rate are presented in Fig.7.

Fig. 7. Performance of „Normal‟ sensor sampling rate

„Normal‟ represents the lowest sampling frequency and
longest sampling period which is programmable in Android, 5
Hz and 200 mS respectively. It therefore puts the lowest strain
on both the hardware and software. There were approximately
90 readings taken and the performance was consistent for all
samples. Jitter was measured at 0 mS in this test. Although the
jitter performance of the accelerometer was excellent in this
test, there is limited use for such low frequency sampling.
Possible uses are measuring the movement of large structures,
recording seismic activity and tall building reactions to seismic
activity and wind conditions.

Fig.8 presents the results of the „UI‟ sensor sampling rate.
UI aims to sample the accelerometers every 70 mS (14.3 Hz)
which is almost 3 times faster than the „Normal‟ sampling rate.
From the graph the performance of Android at „UI‟ is very
good and consistent for the most part. There were 176 sensor
samples taken and there were 2 inconsistencies at around
sample no. 65 and no. 175.

Fig. 8. Performance of „UI‟ sensor sampling rate

Sample no. 65 was polled 85 mS after sample no. 64 which
is 15 mS late. Also sample no.66 was polled 55 mS after
sample no. 65 and 140 mS after sample no.64. This result
demonstrates that Android schedules to sample the sensors at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

17 | P a g e

www.ijacsa.thesai.org

regular time intervals from an initial setpoint, likely to be when
the sensorManager is initialized, rather than the previous
sensor sample. A similar result is observed at sample no. 175.
Android cannot maintain regular sampling of the accelerometer
at 14.3 Hz possibly caused by software running in the
background using the hardware and operating system
resources. It can be deduced that the accelerometers are not
given priority by Android when under load. The mean
sampling period was 70 mS with a jitter statistic was 0.85 mS
in this test.

Understanding this result will aid in understanding the
results from testing the „Game‟ and „Fastest‟ sampling rates in
Fig.8. Android claims that „Game‟ samples at 20 mS or 50 Hz
and that „Fastest‟ is limited only by the operating system with
no imposed delay. The results in Fig.9 demonstrate the
measured performance at these sampling rates.

Fig. 9. Performance of „Game‟ and „Fastest‟ sensor sampling rates

In the case of „Game‟, the mean sampling period is
calculated to be 20.6 mS, very similar to the nominal value, but
with a jitter of 7.8 mS. Sampling periods of 50 mS are not
uncommon. Similarly, in the case of „Fastest‟, the mean
sampling period is calculated to be 5.06 mS with a jitter of 4
mS. Sampling periods of 20 mS are not uncommon followed
by 2 or 3 samples taken within a couple of mS of each other.
This sampling pattern is repeated throughout this particular

test. Sampling period consistency is very poor at the higher
sampling rates. The Android operating system and other
applications have priority over system resources and interfere
with sensor sampling.

B. Bluetooth Performance

The performance of bluetooth was tested as outlined in
section V. The round-trip-times (rtt) from each experiment
were saved in a csv file for analysis and graphing along with a
calculation of the mean round-trip-time and standard deviation
(jitter).

The effect of distance has on rtt is shown in Fig. 10. It can
be seen that, for small data payload sizes, distance has no
discernible effect on rtt when tested in an environment with no
interference. However in the case of the two larger payload
sizes, there is a step change of 10-14 mS in rtt performance
improvement between 3 and 5 metres. At the application level
it is not immediately obvious what low level bluetooth changes
occurred to cause this step change. However bluetooth is a
dynamic wireless transmission protocol, continuously changing
frequencies, packet size and error correction overhead to
improve performance. It is possible that in the case of data
greater than 1 kb transmitted over distances greater than 3
metres that larger data packets were used, perhaps a 5 slot
packet rather than a 3 slot packet used for smaller data sizes.

Fig. 10. Effect of distance on round-trip-time

Fig.11 shows the effect of payload size on rtt where it is
apparent there is a strong correlation between payload size and
rtt. Note the 7 metre curve is partially obscured by the 9 metre
curve. Unexpectedly, the rtt performance of bluetooth is poorer
at 1 and 3 metres for data payload sizes greater than 1 kb. The
relationship appears to be non-linear but there is not a
sufficient range of payload sizes to fully model the trend. The
overhead induced by increasing payload appears more
profound over the shorter distances. Larger data payloads
require a greater number of packet transmissions. This effect is
non-linear due to the dynamic nature of bluetooth packet
assignment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

18 | P a g e

www.ijacsa.thesai.org

Fig. 11. Effect of data payload size on round-trip-time

One important result from Fig.11 is the offset on the rtt
axis. Given that payloads of 4 and 8 bytes were tested, which
are almost the smallest payload possible (only char is smaller at
2 bytes in size), there appears to be a minimum payload rtt
overhead of approximately 10 mS per payload at the Android
application level regardless of payload size. At the Android
application level it will take the operating system a minimum
of 10 mS to process the outgoing data and the incoming data
for each payload in a round-trip scenario. The consequence of
this result is that, in the case of round trips, the maximum
payload frequency is limited to 100 Hz and an estimated 200
Hz in the case of a one-way transmission. This result suggests
that Android is more suitable for single large data file
transmission rather than multiple small packets.

From calculations of data rate, with payload size of 2048
bytes the data rate is in the region of 30-35 kB/s whereas for
the 4 byte payload the data rate is approximately 800 bytes/s.
Bluetooth is rated at 2.1 Mb/s and that may be possible when
transmitting a single very large data payload. From Android‟s
perspective most bluetooth users would be using bluetooth for
transmitting large data files rather than bursty data of small
size. This effect can also be seen in using bluetooth to stream
audio where a noticeable latency can be detected.

The effects of wi-fi and microwave interference on rtt and
jitter are shown in Fig.12. IEEE 802.11 Wi-Fi and microwave
ovens operate within the same ISM band as bluetooth and have
been identified as potential sources of interference. Microwave
ovens operate at a fixed frequency of 2.45 GHz. IEEE 802.11
operates between 2.4 and 2.5 GHz and uses Direct Sequence
Spread Spectrum (DSSS) to avoid interference.

From the graphs, only microwave interference appears to
have an effect on rtt and an increasing effect for larger data
payload sizes. There is a consistent jitter of 3-4 mS regardless
of interference source or no interference which is to be
expected from unprotected wireless transmission through the
air.

However inconsistencies appear in the graph with wi-fi
performing better than the interference free case in the rtt test
which is unexpected. Further inconsistencies are apparent in
the jitter graph where surprisingly wi-fi and microwave have
more consistent round-trip-times than the interference free
test.Interference by its nature is non-homogenous and
inconsistent. Furthermore the interference free test is free of
obvious sources of electromagnetic interference but it is not
free of background radiation in the air. Therefore bluetooth‟s
performance will be inconsistent and unpredictable dependent
on the conditions of the environment in which it is operating.

Fig. 12. Effect of interference on jitter at a range of 9 metres

The previous results in the interference tests were
inconclusive due to the inconsistent nature of interference and
bluetooth‟s adaptation to the transmitting environment and so
further analysis of the data from the microwave oven test was
carried out. Fig.13 shows the effects of microwave interference
on rtt and jitter. Rtt is largely unaffected by distance from a
microwave source. Previous results in Fig.10 had shown that
distance alone had no effect on rtt. The jitter graph shows that
microwave increases jitter when both smartphones are within
1-3 metres of the source.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

19 | P a g e

www.ijacsa.thesai.org

Fig. 13. Effect of microwave interference on round-trip-time and jitter at

various distances

VII. CONCLUSION

This paper has determined that Android bluetooth is geared
towards sending single large data files such as music or video
or document sharing rather than high frequency small discrete
pieces of data such as sensor readings. Bluetooth can transmit
sensor readings of up to 64 bytes at 100 Hz round-trip, or 200
Hz one way. Distance has no effect on transmission time for a
class 2 device within the 10 metre range. Transmission time
increases non-linearly with increasing data size. Bluetooth is
resilient to microwave and wi-fi interference.

The on-board accelerometers can only be consistently
sampled at 14.3 Hz. The maximum mean sampling frequency
is 200 Hz but with a standard deviation of 80%. The Android
accelerometers are geared towards screen orientation and game
play with low system priority given to the on-board sensors.

In terms of utilising Android smartphones‟ onboard sensor
and bluetooth technology for real-time control applications,
from the results of testing in this paper, it is estimated that the
sensors reliable sampling limit is 14 Hz and that the sensors‟
output can be transmitted via bluetooth to another device
within 5 mS over a range of 10 metres. The effects of distance
and interference can be neglected.

The Android system sets up its bluetooth radio and
accelerometers for the functionality it has deemed most useful
for its users, file sharing and game play. Although Android‟s
sensors and bluetooth radio are not suitable for most real-time
control applications, quantification of the performance of
Android in this paper may prove useful to readers in their own
projects.

REFERENCES

[1] [Online], “Developer Economics Q3 2013 analyst report”,
http://www.visionmobile.com/DevEcon3Q13, accessed December 2014

[2] [Online], “Android API”,
http://developer.android.com/guide/topics/sensors/sensors_overview.ht
ml, accessed December 2

[3] Andersson M., Bluetooth For Industry, The Industrial Ethernet Book, 11
(September 2002), pp. 5-11.

[4] [Online], “The Bluetooth Special Interest Group,”
http://www.bluetooth.com, accessed November 3013

[5] [Online], Garcia Pique, J., Lozano Almazan, I., Sanchez Garcia, D.,
web.udl.es/usuaris/carlesm/docencia/xc1/Treballs/Bluetooth.Treball.pdf,
accessed March 2014

[6] Pudaruth, S., Ramdolin, H.K., Bissoonee, A., “An assessment of the
performance of bluetooth as a broadcasting channel”, Proceedings of the
World Congress on Engineering 2010 Vol IWCE 2010, June 30 - July 2,
2010, London, U.K.

[7] Rashid, R.A., Yusoff, R., “Bluetooth performance analysis in personal
area network”, Proceedings of the 2006 International RF and Microwave
Conference, September 12 - 14, 2006, Putrajaya, Malaysia

[8] Bartolomeu, P., Fonseca, J.A., Duarte, P., Rodrigues, P.M., Girao, L.M.,
“MIDI over Bluetooth”, Proceedings of the Conference on Emerging
Technologies and Factory Automation, 2005. ETFA 2005. 10th IEEE,
Volume: 1

