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Abstract—Uncertainty is inherent property of all real life 

control systems, and this is due to that there is nothing constant 

practically; all parameters are going to change under some 

environmental circumstances, therefore control engineers  must 

not ignore this changing since it can affect the behavior and the 

performance of the system. 

In this paper a critical research method for modeling 

uncertain systems is demonstrated with the utilization of built in 

robust control Mat-lab Toolbox®3 functions. Good results were 

obtained for testing the stability of interval linear time invariant 

systems. 

Finally mechanical and electrical uncertain systems were 

implemented as practical example to validate the uncertainty. 
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I. INTRODUCTION 

Robustness is of crucial importance in control-system 
design because real engineering systems are vulnerable to 
external disturbance and measurement noise and there are 
always differences between mathematical models used for 
design and the actual system. Typically, a control engineer is 
required to design a controller that will stabilize a plant, if it is 
not stable originally, and satisfy certain performance levels in 
the presence of disturbance signals, noise interference, 
unmodeled plant dynamics and plant-parameter variations. 

In general, there are two categories of control systems, the 
open-loop systems and closed-loop systems. An open-loop 
system uses a controller or control actuator to obtain the 
design response. 

A closed-loop control system uses sensors to measure the 
actual output to adjust the input in order to achieve desired 
output. 

In this paper building uncertain system models using the 
functions of Robust Control Toolbox®3 is presented. 
Modeling and analyzing such systems is an important and 
essential step towards robust control system design. The 
corresponding functions of Robust Control Toolbox®3 allow 
to facilitate the process of building different uncertainty 
models and to analyze easily the properties of such models. 
First the description of building models of open-loop and 

closed-loop linear time-invariant systems (LTI models) is 
introduced along with their basic properties. 

Then various functions of Robust Control Toolbox®3 
were used to allow creating models of systems with structured 
(real) uncertainties. The usage of these functions is illustrated 
for the simple case of a second order mass–damper–spring 
system and the RLC electrical circuit. It is shown how to 
investigate several properties of uncertain models in the time 
domain and frequency domain. 

A. LTI Models 

This section is dealing with developing and manipulating 
models of linear time invariant systems (LTI models) in 
MATLAB®. 

Creation of LTI models of multivariable systems is done 
by the following commands: 

• ss—State-space models (SS objects) 

• tf—Transfer function matrices (TF objects) 

• zpk—Zero-pole-gain models (ZPK objects) 

• frd—Frequency response data models (FRD objects) 

B. Literature Review 

The problem  of an interval matrices was first presented in 
1966  by Ramon E. Moore, who defined an interval number to 
be an ordered pair of real numbers [a,b], with a ≤ b  [1]-[2]. 

This research is an extension and continuation to the 
previous publications and ongoing research of the author [3]-
[7]. 

An interval number [a, b] is defined to be the setof x such 
that a <= x >= b. The arithmetic operations on intervals are 
defined as follows: 

[a, b] + [c, d] = [a + c, b + 4] 

[a, b] x [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]; 

[a, b] - [c, d] = [a - d, b - c]; 
[a, b] ÷ [c, d]= [a, b ] x[1/c, 1/d ] 

The above four interval  equations are  programmed as Matlab  
functions as shown below, these are intadd ,intsub,intmul and 
intdiv 

Intadd: 
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function [ c ] = intadd( a,b ) 
%UNTITLED2 Summary of this function goes 

here 
%   Detailed explanation goes here 
c=[a(1,1)+b(1,1),a(1,2)+b(1,2)] 

end 

intsub: 

function [ c ] = intsub( a,b ) 
%UNTITLED2 Summary of this function goes 

here 
%   Detailed explanation goes here 
c=[a(1,1)-b(1,2),a(1,2)-b(1,1)] 

  
end 

intmul: 

function [ c ] = intmul( a,b ) 
%UNTITLED2 Summary of this function goes 

here 
%   Detailed explanation goes here 

a=[(((a(1,1))*(b(1,1)))),(((a(1,1))*(b(1,

2)))),(((a(1,2))*(b(1,1)))),(((a(1,2))*(b

(1,2))))]; 
c=[min(a),max(a)]; 

 end 

intdiv: 

function [ c ] = intdiv( a,b ) 
%UNTITLED2 Summary of this function goes 

here 
%   Detailed explanation goes here 

c=intmul([(a(1,1)),(a(1,2))],[(1/(b(1,2))

),(1/(b(1,1)))]); 
end 

II. METHODOLGY AND SIMMULATION 

In this research the design and evaluate the robust stability 
for three dynamic electrical and mechanical systems were 
presented. 

Based on Moore famous four interval arithmetic,   all 
possible matrices of the interval (uncertain) state matrix A of 
system state space model are computed, also plotting step 
response and bode diagram for each new matrix which result 
in an envelope with its upper and lower bounds, find all 
polynomials of the family matrix in order to compute and plot 
the convex hull of the system and finally plotting Nyquist and 
the roots bounds of the interval system. 

Mat-lab 2013 software is used with some of its robust 
functions and commands to design and analysis the system 
stability and to get the convex Hull and eigenvalues bounds 

plots. Therefore this paper is a continuation and extension 
efforts of the author previous work dealing with the robust 
stability of an interval or uncertain system, as an efficient and 
helpful tool for control systems engineers [8-15]. The 
following three different unique engineering examples will be 
used to validate and demonstrate the methodology and used 
technique. 

III. EXAMPLE 1: MASS- SPRING- DAMPER SYSTEM 

The following example that is shown in figure 1 presents a 
mass- spring Damper as a mechanical system whose 
parameters are suffering from uncertainty and hence 
deviations from the nominal values, due to several conditions 
such as ageing, temperature or other  disturbances. 

 
Fig. 1. Mass- Spring-Damper system 

The free body diagram for this system is illustrated below 
in Fig. 2.  

   ̇ 

 
Fig. 2. Free body diagram 

Applying Newton’s second law by summing the forces as 
shown in the equation below: 

     ( )    ̇       ̈     
To determine the state-space representation of the mass-

spring-damper system, from the system differential equations 
the state space representation is derived by selecting the 
position and velocity as system state variables. Also system 
parameters are shown below in table I. 
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TABLE I.  THE PHYSICAL PARAMETERS FOR MASS SPRING-DAMPER 

SYSTEM 

M Mass 1.0 kg 

K spring constant                     1.0 N/m 

B damping constant                 0.2 Ns/m 

F input force                            1.0 N 

With 10% variation in mass and spring constant of 
physical system and constant damping parameter, the interval 
parameters are as follows: 

m=[0.9  1.1]                             k=[0.9  1.1]                                    

b=0.2 

 
The system state interval matrix A with these 
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specifications is shown below: 

 

 

0                                            1 

[-11/9   -9/11]      [-0.2/0.9   0.2/1.1] 
 

Using Mat-Lab, 2
2
= 4 sub-matrices can be generated from 

the above interval A- matrix as shown below 

 

 

 

 

 

 

 

 

 

 
And its corresponding four (4) polynomials were 

computed (using mat-lab) as follows: 

po1 =1.0000    0.2222    1.2222 

po2 =1.0000    0.1818    1.2222 
po3 =1.0000    0.2222    0.8182 
po4 =1.0000    0.1818    0.8182 

The analysis of open and closed step responses for the 
spring damper system is shown below in Fig. 3 and 4 
respectively. 

 
Fig. 3. Open loop system response 

 
Fig. 4. Closed loop system response 

Bode diagram (open loop Vs. closed loop) is shown  
below in Fig. 5. 

 
Fig. 5. Bode diagram (open loop Vs. closed loop) 

The Nyquist diagram (open loop Vs. closed loop) is shown 
below in Fig. 6. 

 
Fig. 6. Nyquist diagram (open loop Vs. closed loop). 

In Fig. 7, the convex hull is presented and hence used to 
find the roots bounds on interval matrix as shown in Fig. 8, 
and using convex hull is reducing the level of computations 
that is involved in such problems as many points can be 
ignored as long as it is located inside the convex hull. Also it 
can be noticed that the system is stable since the symmetric 
bounds of eigenvalues are located on the left half of x- axis. 

 

Fig. 7. Convex Hull 

m1 = 
         0    1.0000 

   -1.2222   -0.2222 

m2 = 
         0    1.0000 

   -1.2222   -0.1818 

m3 = 
         0    1.0000 

   -0.8182   -0.2222 

m4 = 
         0    1.0000 

   -0.8182   -0.1818 
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Fig. 8. Roots bounds of interval matrix 

IV. EXAMPLE 2: RLC CIRCUIT 

RLC circuit is an electrical circuit consisting of a resistor, 
an inductor, and a capacitor, connected in series or in parallel. 
The RLC part of the name is due to those letters being the 
usual electrical symbols for resistance, inductance and 
capacitance respectively. The circuit forms a harmonic 
oscillator for current and will resonate in a similar way as an 
LC circuit will. The main difference that the presence of the 
resistor makes is that any oscillation induced in the circuit will 
die away over time if it is not kept going by a source. This 
effect of the resistor is called damping. The presence of the 
resistance also reduces the peak resonant frequency somewhat. 

The three circuit elements can be combined in a number of 
different topologies and our case is as shown in Fig. 9 

 
Fig. 9. RLC Circuit 

By applying Kirchhoff’s current and voltage derive the 
system differential equations as iL and   vC are system state 
variables  
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From the above equations the state space representation of 
this circuit is obtained as follows 
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Also the systems parameters are presented below in table II 

TABLE II.  THE PHYSICAL PARAMETERS FOR RLC CIRCUIT 

R Resistance 1.000 Ω 

L Inductance                          0.002 H 

C Capacitance 0.005 F 

With 10% variation in Inductance and Capacitance with 
constant Resistance, the interval parameters are as follows: 

 

L=[0.001  0.003]                      C=[0.004  0.006]                             

R=1.0 
 

Using the Mat-lab the  2
3
= 8 sum matrices were generated 

from the uncertain  system A  matrix new matrices as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
And its corresponding eight (8) polynomials were 

computed (by matlab) are as follows: 

po1 = 1.0e+05 * 
    0.0000    0.0025    1.6667 

po2 = 1.0e+04 * 
    0.0001    0.0250    5.5556 

po3 = 1.0e+05 * 
    0.0000    0.0025    2.5000 

po4 =1.0e+04 * 
    0.0001    0.0250    8.3333 

po5 =1.0e+05 * 
    0.0000    0.0017    1.6667 

po6 =1.0e+04 * 
    0.0001    0.0167    5.5556 

po7 =1.0e+05 * 
 0.0000    0.0017    2.5000 

po8 =1.0e+04 * 
    0.0001    0.0167    8.3333 

 

And step responses for open and closed loop are shown in 
figures 10 and 11 respectively. 

m1 = 
   -250.0    166.7 
   -1000.0         0 

m2 = 
 -250.0000  166.6667 

 -333.3333         0 

m3 = 

        -250         250 
       -1000           0 

m4 = 
 -250.0000   
250.0000 

 -333.3333         0 

m5 = 
   -166.7    166.7 

   -1000.0         0 

m6 = 
 -166.6667  166.6667 

 -333.3333         0 

m7 = 
   -166.7    250.0 
   -1000.0         0 

m8 = 
 -166.6667   250.0000 

 -333.3333         0 

http://en.wikipedia.org/wiki/Electrical_circuit
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Inductor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Electrical_resistance
http://en.wikipedia.org/wiki/Inductance
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/LC_circuit
http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Topology_%28electronics%29
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Fig. 10. Open Loop system step response 

 
Fig. 11. Closed loop system step response 

While the system Bode diagram (open loop Vs. closed 
loop) is shown in Fig. 12. 

 
Fig. 12. Bode diagram (open loop Vs. closed loop) 

Also the Nyquist Diagram (open and Closed loop) is 
illustrated in Fig. 13. 

 

Fig. 13. Nyquist Diagram(open and Closed loop) is 

Finally the electrical circuit convex hull demonstrated in 
Fig. 14 which was used to locate the roots bounds as plotted in  

 
Fig. 14. Convex hull 

 

Fig. 15. Root bounds of interval matrix 

As these symmetrical bounds clearly confirm the stability 
of the electrical interval circuit system. 
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V. CONCLUSION AND FUTURE WORK 

In this paper the stability behavior of mechanical and 
electrical systems with uncertain parameters were molded 
with robust control Matlab Toolbox®3. A good result was 
obtained as demonstrated in the uncertain mechanical and 
electrical examples. The computational time and efforts for 
determining the stability  for interval  problems (uncertain 
parameters) is very excessive, therefore as future work  
parallel algorithms  and supercomputers are highly 
recommended in handling such problems, also this paper 
hoped to extended and  be used as ground foundation  to other 
applications such solar, thermal and wind as they suffer from 
disturbances and uncertain circumstances. 
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