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Abstract—The purpose of this paper is to describe an 

predictable CPU architecture, based on the five stage pipeline 

assembly line and a hardware scheduler engine. We aim at 

developing a fine-grained multithreading implementation, named 

nMPRA-MT. The new proposed architecture uses replication 

and remapping techniques for the program counter, the register 

file, and the pipeline registers and is implemented with a FPGA 

device. An original implementation of a MIPS processor with 

thread interleaved pipeline is obtained, using dynamic scheduling 

of hard real-time tasks and interrupts. In terms of interrupts 

handling, the architecture uses a particular method consisting of 

assigning interrupts to tasks, which insures an efficient control 

for both the context switch, and the system real-time behavior. 

The originality of the approach resides in the predictability and 

spatial isolation of the hard real-time tasks, executed every two 

clock cycles. The nMPRA-MT architecture is enabled by an 

innovative scheme of predictable scheduling algorithm, without 

stalling the pipeline assembly line. 
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I. INTRODUCTION 

The spectacular development of the embedded systems in 
the past few years confirm their importance and major impact 
on the present-day scientific, technological, and socioeconomic 
areas. Their importance is rendered by the   extensive 
applicability area (including real-time and low-power 
applications) of the present research in fields like automotive, 
robotics, and industrial control. The difficulties encountered 
while developing this approach are generated by the design 
process aimed at obtaining a predictable architecture. 

Real-time systems (RTS) are those systems which provide 
a correct response within a predetermined time [1]. This 
predetermined time, considered a deadline, generates a 
classification of the embedded RTS in: 

 Soft RTS – missing the deadline does not cause a 
critical effect; 

 Hard RTS - missing the deadline causes a hazard 
situation. 

The application always requires the properties that define 
the RTS, even if the system does not. The main feature of the 
embedded RTS is to ensure deterministic and predictable 

control of a process. In critical applications, obtaining a correct 
answer after the deadline is insufficient and cannot be taken 
into consideration. Depending on the consequences of missing 
a deadline, real-time tasks are classified into three categories 
[1]: 

 Hard: if the missing of a deadline results in catastrophic 
effects, the task can be called hard real-time task;  

 Firm: a task can be considered firm if the results 
produced after the deadline are not  used within the 
system and  do not involve damage; 

 Soft: real-time tasks can be considered soft, if the 
results produced after the deadline may be used within 
the system, even if they degrade the system 
performance. 

The limitations of the current Real-Time Operating System 
(RTOS) are rendered by the complex approach of the design 
level of the CPU, the memory, the I/O subsystem, and the high 
level languages and compilers. The time varying behavior of 
the RTOS implemented in software implies an unpredictable 
response for interrupts. For the most commercial RTOS, the 
execution of the same instructions in a variable number of 
cycles is generated by hazards. In order to eliminate this 
impediment, CPU architectures have developed deeper 
pipelines with out of order speculative execution and dynamic 
scheduling, while memories have been organized hierarchically 
by using cache memories on multiple levels. 

In real-time systems, a single processor must execute 
multiple tasks with different priorities using an appropriate 
scheduling model. As a consequence, the system must meet 
safety and certification requirements, which are specified using 
standards for real-time kernels. Based on these constraints, in 
recent years, there has been intensive research on hardware 
scheduling of real-time systems.  Among the many approaches 
regarding software and hardware scheduled [2][3][4][5][6], the 
actual implementations must provide hardware based isolation 
by means of a real-time operating system. While the 
commercial RTOS reduce significantly the hardware costs, 
these new approaches must be verified and certified, a process 
which is not simple since the system introduces overhead for 
task switching and execution time monitoring. Although using 
sophisticated mechanisms, in a real time system, it is difficult 
to determine the task’s Worst Case Execution Time (WCET). 
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The predictability of the current CPU implementations depends 
on the task scheduler, the pipeline ordering, the branch 
prediction, memories and caches.  

Some fine-grained multithreaded CPU implementations can 
preserve spatial isolation, having inadequate thread scheduling 
algorithms.  

The XMOS X1 project can fully utilize the processor, 
activating simultaneously four threads; still, a dynamic 
scheduling may reduce temporal isolation of active threads [5].  

In the PTARM implementation [7], the authors isolate each 
hard thread; the disadvantage is that these exactly four threads 
can be constantly active in the five stage pipeline architecture.  

The FlexPRET, presented in [8], is a fine-grained 
multithreaded processor designed for mixed-criticality systems. 
This implementation stalls the pipeline assembly line, when the 
scheduler executes instructions, every clock cycle, from same 
thread. 

By incorporating RTOS functionality into hardware, we 
obtain a performance improvement of the entire system, 
guaranteed by the appropriate benchmark programs.  

As a consequence, field-programmable gate array (FPGA) 
devices, with a high capacity of the logic gates and efficient 
prices [2], represent a hardware support for embedded RTOS. 
For this reason we propose a hardware implementation for 
RTOS functionalities, using the FPGA systems [6]. 

This paper is structured as follows: in section I is presented 
an introduction, the fine-grained architecture nMPRA-MT is 
presented in section II and the dynamic scheduler is described 
in section III. Similar works are described in section IV and 
final conclusions, including future work, are inserted in section 
V. 

II. THE FINE-GRAINED NMPRA-MT ARCHITECTURE 

In order to obtain an innovative implementation with 
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Fig. 1. Five stage fine-grained nMPRA-MT architecture with resource replication (PC, register file, pipeline registers) 

predictable behavior, we propose a fine-grained multithreading 
processor, with spatial and temporal isolation between tasks. 
This architecture implemented for n tasks, called Fine-grained 
Multithreading - Multi Pipeline Register Architecture 
(nMPRA-MT), extends the Multi Pipeline Register 
Architecture (MPRA) project presented in [3] and [4]. This 
concept replaces the stack saving classical method with a 
remapping algorithm, which uses the replication of resources 
such as program counter, register file and pipeline registers, for 
n threads, τn, as shown in Fig. 1. Our CPU architecture uses the 
basic idea of the FlexPRET project presented in [8]. To ensure 
predictability, we propose a new scheduler architecture, which 
executes hard real-time tasks every two clock cycles. 
Implementing a new forwarding unit, our architecture is able to 
eliminate stalls from pipeline assembly line.   

The proposed architecture nMPRA-MT is designed to 
implement the MIPS instruction set, adding new instructions, 

required for tasks scheduling operation. This original 
architecture enables the execution of the new scheduled task, 
starting with the next clock cycle. In order to implement the 
nMPRA-MT project, we use a hardware scheduler engine for n 
threads (nHSE), with dynamic scheduling algorithms for tasks, 
interrupts, and events. The aim of the nHSE is to interleave 
instructions from different threads in the pipeline assembly 
line. The scheduler dynamically controls an arbitrary number 
of threads within the pipeline levels. 

The concept of the fine-grained multithreading can be 
defined as the technique to fetch, each clock cycle, instructions 
from different hardware threads, allowing instructions from 
multiple threads to be interleaved dynamically in the pipeline. 

The nMPRA-MT is a fine-grained multithreaded 
architecture, designed for the hard real-time system 
requirements. In order to preserve the performance of the 
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classical pipeline implementation, we use a new innovative 
pipelined assembly line containing five stages. This allows the 
simultaneous execution, within the pipeline levels, of four 
instructions from different threads, thus the final execution 
report is an instruction per clock cycle. Being a fine-grained 
thread-interleaved pipeline implementation, the nMPRA-MT is 
able to execute the instruction from different threads at any 
given time.  If the instruction is fetched from different threads, 
no hazard situations are possible, but if the scheduler fetches 
instructions from the same thread every two clock cycles, it is 
possible to meet hazard situations resolved by the Forward 
Unit. As can be seen in Fig. 1, a dedicated Hazard Detection 
Unit was designed in order to detect any structural hazards, 
data hazards or control hazards. With the Forward Unit, it is no 
longer possible to stall an instruction from a thread which has 
already been fetched, if it depends on data which has not been 
calculated yet, as presented in the next chapter. 

Hard RTS have a critical behavior in terms of real time, 
where the hardware-based isolation and the predictability of the 
threads are very important characteristics. In this scope, our 
implementation classifies the high priority tasks as hard 
threads–HT. Soft real-time tasks–ST, are tasks for which the 
results produced after the deadline do not cause a critical 
effect. By scheduling an arbitrary set of tasks with nHSE, our 
architecture supports hardware-based isolation for HTs, and 
offers STs the unused CPU cycles. 

 The nMPRA-MT architecture has the interrupt system 
presented in [3]. This interrupt handling is completely 
distributed and flexible in the system, allowing us to prevent 
the unpredictable situations generated by the interrupt service 
routines (ISRs). In order to obtain a minor jitter, the interrupts 
are attached to a HT or a ST task, inheriting the type and 
scheduling method used by nHSE. This represents an important 
feature of the embedded systems, because it is not necessary to 
flush the pipeline on their appearance. If the interrupt is 
assigned to an HT having the highest priority, the execution 
starts without affecting the pipeline assembly line. 
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Fig. 2. Instructions execution by fine-grained nMPRA-MT pipeline 

architecture. IF-Instruction Fetch stage, ID-Instruction Decode stage, EX-

EXecute stage, MEM-Memory stage, WB- Write Back stage 

In order to minimize the number of clocks per instruction 
execution, a data path pipelined scheme with five stages was 
designed. As can be seen in Fig. 1, the multiplexor which 
selects the data to be written in the Register file, through the 
MEM/WB pipeline register, is placed immediately after the 
data memory. Because the data is stored on the rising edge of 
the CPU clock in the Memory pipeline stage, while the reading 
operation of the instruction is made on the falling edge of the 
clock, situation hazards can be avoided when the CPU executes 
multiple instructions from the same thread every two cycles.  

Gaitan et al. present in [9] the basics of the nMPRA 
architecture for n tasks using the remapping algorithm with the 
replication of resources. Thus, each task scheduled by the 
nHSE has a distinct program counter (PC), a separated bank in 
the Register file, and a distinct set of pipeline registers (IF/ID - 
Instruction Fetch-Instruction Decode stage, ID/EX - Instruction 
Decode-Execute stage, EX/MEM - Execute-Memory stage, 
and MEM/WB - Memory-Write Back stage). When a new task 
is placed on the pipeline, the context switch can be 
accomplished in only one clock cycle. An instance of the 
processor represents a semi CPU (sCPUi for task i); all the 
resources of the processor are shared by every sCPUi, except 
the sCPU0. The sCPU0 instance is the only one active after 
power-on or reset, being able to access the scheduler 
configuration and task registers. The IDLE, SLEEP, and RUN 
state for each thread scheduled by the nHSE, is stored in a 
special STATE register. Along with the ID priority register 
assigned for each thread, an appropriate scheduling algorithm 
is implemented and executed for all HT or ST threads. In the 
nHSE scheduling scheme, every τn has its own ID and STATE 
register. The τ0 thread, with an ID equal to 0, has the highest 
priority, and the lowest priority thread, τn-1, corresponds to an 
ID equal to n-1. As can be remarked in Fig. 1, the replication of 
the program counter, register file and a set of pipeline registers 
is made for τn threads. The threads filled in blue (τ0, τ1 and τ2) 
are in the RUN state and share the resources of the processor 
pipeline, but the threads left blank (τn-1) are in the IDLE or 
SLEEP state. 

III. DYNAMIC SCHEDULING IMPLEMENTED BY NHSE 

The nMPRA-MT architecture is equipped with a dynamic 
scheduler built into an FPGA device. The preemptive 
scheduling algorithm, implemented by the nHSE, is able to 
perform fast task switching, without flushing or stalling the 
pipeline assembly line. 

The nHSE is a finite state machine (FSM) implemented 
into the hardware, having an independent execution handling 
of the input events, such as interrupts or timers [4]. As can be 
noted in Fig. 1, the presence of the Inhibit signal from the 
IF/ID pipeline register to the nHSE block, signals the presence 
of the load and store instructions. This mechanism is 
implemented to guarantee that memory access is atomic. 

Our CPU is structured to be a five stage MIPS pipelined 
processor, (IF - Instruction Fetch, ID - Instruction Decode, 
EXE - Execute and MEM - Memory, WB - Write Back), 
maintaining the performance of pipeline computing.  
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In Fig. 2, the τ0 thread depicted in red, is introduced for 
execution in pipeline levels I and III.  

Through this scheduling, at the expense of an execution 
latency of two clock cycles for τ0, the worst cases of pipeline 
stagnation are avoided.  

In levels II and IV, three ST threads (τ1, τ2 and τ3) have 
been introduced by using the round-robin scheduling 
algorithm, achieving a full charge of the CPU pipeline. Thus, 
the nHSE manages all the HT and ST threads, depending on 
the type and state of each owner. For an optimal use of the 
CPU cycles, the τ1, τ2, and τ3 are scheduled when the HT 
threads are in the IDLE or SLEEP state. 

 The Hazard detection unit and Forward unit blocks, 
depicted in Fig. 1, detects if there are hazard situations and 
forward data when is necessary. In the example presented in 
Fig. 2, it is possible to solve all hazard situations, because the 
τ0 is scheduled every two cycles.  

A data hazard which stalls the pipeline is not possible in 
nMPRA-MT, because the new nHSE does not schedule in a 
continuous manner the instructions from a particular thread τi. 
In other CPU implementations, it is possible to waste clock 
cycles, when the pipeline must be stalled in order to wait for 
the data processed by the previous instruction of the same 
thread.  If data hazards appear when different τi are interleaved 
in the pipeline, the forwarding unit redirects the data from the 
memory directly to the executing stage, avoiding the stagnation 
of the pipeline.  

In the example outlined in Fig. 2, the nMPRA-MT executes 
10 instructions from τ0, τ1, τ2 and τ3 in the same number of 
clock cycles. Having an arbitrary number of hard and soft 
threads, the calculation of a WCET is a simpler action if the 
scheduled algorithm is the appropriate one. If τi proves to be 
schedulable after the feasibility analysis, the nMPRA-MT 
becomes a predictable architecture, providing, as well, 
hardware-based isolation for the HT threads. 

 In order to obtain a minimal jitter accepted by the real-time 
application, each thread maintains its own program counter, 
general-purpose registers, and pipeline registers. The nHSE 
decides which thread to fetch the next instruction from, 
according to schedule algorithm and deadlines.  

Because the number of threads scheduled exceeds the 
number of pipeline levels, it is necessary to know which thread 
will meet its deadline earlier. Based on the ID and STATE 
registers, it is possible to execute without penalties a new 
instruction from a different τi.  

The processor must include a solid support when working 
with critical resources. For this reason, the hardware support 
dedicated to the mutex and simple semaphores, represents an 
improvement on the predictability of the system. 

In order to guarantee the timing predictability of each HT, a 
constant scheduling frequency is required in order to meet an 
individual deadline. This scheduling constraint is not required 
for ST because the results produced after the deadline of the 
threads may still be used. For the HT tasks in real-time 
systems, the upper bound is fixed at compile time, considering 

also the time spent with the interrupts execution. Based on the 
feasibility study of a set of tasks, the WCET analysis must 
confirm the safe upper bounds for the HT.  

The development of a new application was necessary 
because the present architecture extends the instruction set of 
the traditional MIPS processor, adding specific instructions for 
the dynamic scheduling of the fine-grained multithreading 
architecture. In order to implement all the modules of the CPU 
in VERILOG, the logic structures which operate concurrently 
must be synchronized so as to obtain the right behavior of the 
system. For this reason, the external clock must control the 
correct blocks at the right time. To validate the correct 
functionalities of the real-time nMPRA-MT architecture, the 
traditional MIPS compilation tools can be used, without many 
changes. 

IV. RELATED WORK 

This chapter provides a brief description of a few similar 
architecture and scheduler implementations, regarding the 
development of the real-time kernel primitives in hardware. 

We start with the XMOS project, proposed by May, in [10]. 
The author has implemented an XMOS processor which can 
use the entire CPU even if the number of active tasks is less 
than four. A variation in the number of active tasks reduces the 
temporal isolation and produces difficulties in calculating 
WCET. The new XMOS architecture, presented in [11], allows 
the architects to build systems with multiple Xcore, providing a 
communication mechanism based on messages between all the 
Xcores within the kernel. Implementing a communication 
protocol between multiple cores via links, XMOS can be 
successfully used in multicore systems, dedicated boards or 
distributed systems.  

The PTARM project presented in [7], guarantees spatial 
isolation for each thread. This is possible if there are at least 
four threads constantly active to fully utilize the processor. The 
PTARM has five stages of pipeline, requiring at least four 
threads to keep the processor completely occupied. The tasks 
are scheduled in the pipeline using the round-robin algorithm. 
PTARM is recommended for hard real-time systems because it 
has a constant frequency, but cycles are lost if less than four 
threads are executed. 

The new CPU architecture presented in [8], is a fine-
grained multithreaded processor designed to support the 
architectural techniques for mixed-criticality systems. 
FlexPRET supports an arbitrary number of interlacing threads 
controlled by a new scheduler.  

Threads are classified as hard (hard real-time thread - 
HRTT) or soft (soft real-time thread - SRTT). FlexPRET 
supports hardware isolation for HRTT, while allowing the 
SRTT to efficiently use the CPU. 

In [12], the authors proposed a new processor called JOP-
Plus. This processor may be used for embedded systems, even 
in real-time applications. This is because, most of the code is 
written in SystemJ, the programming language used for 
designing the concurrent distributed software systems. The 
main reasons why the Java language has not been introduced in 
real-time applications are: 
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 Code execution needs a Java Virtual Machine (JVM) as 
an additional layer between the processor and the Java 
code; 

 The mechanism’s automatic garbage collection makes 
the response of Java programs to be unpredictable; 

 The structure of Java concurrent programs is 
completely non-deterministic. 

Register file (RF) 16x16 is used for temporary storage of 
the operands used by the Concurrency and Reactivity Control 
Flow (CRCF) code. Unlike GALS-JOP, the data memory is in 
the 16 bit format and stores the CRCF memory data structures. 
The JOP-Plus architecture has improved memory organization 
compared to the GALS-JOP basic project, eliminating the 
instruction jump-table. The new developed processor 
outperforms the SystemJ execution platform while having the 
most efficient use of the FPGA, being optimal in embedded 
real-time applications. 

Al-Zawawi et al., in [13], propose an architecture which 
can be divided into a set of virtual processors. The execution 
time of these processors has a separate context, providing a 
composite time for the tasks which run on a virtual processors. 
The architecture allows us to partition it into a few processors 
with higher performance or more processors with lower 
performance or a combination of the two extremes. 

Rochange and Sainrat, in [14], propose changes in the 
dynamic superscalar processor pipeline lines by slowing 
(stalling) the instructions between blocks. They realized that 
the time consumed by the basic blocks is independent from one 
block to another, by stalling the instruction extraction in a basic 
block until the instructions from the previous block are 
executed. 

V. CONCLUSION AND FUTURE WORK 

The current paper extends the processor architecture 
presented in [3] and [4], implementing original new solution 
for the nMPRA and nHSE real-time behavior. The scheduler 
architecture has been implemented with a dynamic algorithm, 
providing predictability and hardware based isolation for the 
HT. The necessities for implementing RTOS in hardware are: 
jitter reduction, improved response time for external events, 
reduction of CPU, memory footprint and eliminating as much 
of the execution overhead given by the scheduler as possible. 

The nMPRA-MT project is a powerful architecture based 
on its proprieties: 

 The nMPRA-MT architecture is a predictable one 
because the nHSE eliminates stalls from the pipeline 
assembly line while executing the HT every two clock 
cycles; 

 The pipeline is not reset because it is not necessary to 
restore/save the context due to the replication of 
resources (PC, file registers and pipeline registers);  

 It uses a strong statement that a task can wait for 
different types of events (time, mutex, private event, 
interrupts timers for deadlines, etc.); 

 Switching between tasks is usually accomplished in a 
single machine cycle, maximum three machine cycles 
when working with global memory;  

 It comes with a distributed controller which inherits the 
priority interrupts of that interrupt task;  

 It supports dynamic scheduling algorithms. 

However, the architecture is susceptible to improvements 
such as: 

 The implementation of nHSE as a coprocessor to use 
the existent professional compiler facilities, such as 
MIPS and ARM Cortex-Mx; 

 Improving predictability in case of data hazards which 
can provide different times for the same instruction 
execution; 

 Increase the parallelization of the instructions’ 
execution through optimal scheduling algorithms; 

 Improved response time to simultaneous multiple 
events and multiple interrupts by using priority 
encoding and transferring them directly to the event 
handlers; 

 The explicit definition of a memory and peripherals 
model. 

 The implementation of a wide variety of possible 
configurations for the processor in FPGA. 
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