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Abstract—The graphs appear in many applications such as 

computer networks, data networks, and PERT networks, when 

the network includes a small number of devices, it can be drawn 

easily by hand, as the number of devices increases, drawing 

becomes a very difficult task. For this problem we will develop a 

new method for automatic graph drawing based on two steps, the 

first is applying the topology –shape –metric that is approaching 

to orthogonal drawings for the grid and the second step is 

applying the fuzzy genetic algorithm that is directed, in the 

topology –shape –metric the final drawing is achieved through 

three sequential steps: planarization, orthogonalization, and 

compaction. Each of these steps is responsible for the quality of 

the final drawing. Then the genetic algorithm applied at the 

planarization step of the topology-shape-metric to find the 

geometric position of each vertex to minimize bending in the 

graph. The developed technique generates a greater number of 

planar embedding by varying the order of edges’ insertion. This 

is achieved clearly in the Results given in the paper. 

Keywords—graph drawing; hierarchical graphs; topology-

shape-metric; fuzzy genetic algorithms 

I. INTRODUCTION 

The expanding use of computers into business, science and 
the home, making scientists tend to draw diagrams to 
understand computer software. Graph drawing is a 
visualization of objects and relations between those objects. 
The effectiveness of the visualization of a graph is dependent 
on how efficiently the associated diagram conveys 
information to the users. The Specific requirements in this 
application are: Initially we will apply the topology- shape- 
metric that is divided into three main steps. The first step is 
the planarization step in this step reduces the number of edge 
crossings as much as possible. 

The second step is the Orthogonalization: The goal of this 
step is to minimize the number of bends without changing the 
topology. The third step is the compaction in this step the goal 
is to minimize the drawing area. The problem of drawing 
graph was first studied in 1983 by M.R Garey, and D.S. 
Johnson [1] studied the problem of minimizing the number of 
edge-crossing. Then, in 1994, Di Battista [2] presented study 
to produce esthetically pleasing drawings of graphs based on 
main-cost-flow for both vertical and horizontal edge groups. 
Later, in 1999 Klau, Petra Mutzel [3] presented an approach 
based on a branch – and – cut algorithm which computes 

optimally labeled orthogonal drawings for compaction and 
labeling problem. In 2001, Maurizio patrignani [4] presented 
study for the complexity of orthogonal compaction based on 
three problems consist  of providing an orthogonal grid 
drawing, while minimizing the area , the total edge length, or 
the maximum edge length. In 2002 Markus Eiglsperger, 
Michael Kaufman [5] present a new compaction algorithm for 
orthogonal graph drawing with vertices of prescribed size. 

Finally, applied the fuzzy genetic algorithm at the 
planarization step of the TSM. The use of fuzzy logic based 
techniques for either improving genetic algorithm behavior 
and modeling genetic algorithm components, the results 
obtained have been called a Fuzzy genetic algorithm. A FGA 
may be defined as an ordering sequence of instruction in 
which some of the instructions or algorithm components may 
be designed with fuzzy logic- based tools. In 1960[6], the 
Genetic Algorithms were first described by John Holland and 
further developed by Holland and his students and colleagues 
at the University of Michigan in the 1960 and 1970.In 1997, 
J.Branke, F.Bucher, H.Schmeck [7] use genetic algorithm for 
undirected graphs. In 1999, D.K.Pratihar, K.Deb, A.Ghosh [8] 
uses a fuzzy logic and a fuzzy genetic algorithm for the 
problems with mobile robots. In 2001, I.G. Damousis, K.J. 
Satsio's, D.P. Labridis, P.S. Dokopoulos [9], combined fuzzy 
logic and genetic algorithm techniques—application to an 
electromagnetic field problem. In 2006, P.Kuntz, B.Pinaud, 
A.Ghosh [10] used a hybrid genetic algorithm to minimizing 
crossing in hierarchical graphs. In 2007, D.Vrajitoru [11] 
applied a hybrid genetic algorithm to solve graph drawing 
problems. In 2011, Bernadette M.M, Gustavo H.D, Frederico 
G. Guimar, Renato C. M, Petr Ya. E [12] using a fuzzy 
genetic algorithm for automatic orthogonal graph drawing. In 
this chapter we will use TSM to minimize the crossing in the 
graph and then apply the FGA in the second step of TSM to 
find the geometric position of each vertex to minimize the 
bends in the graph to produce a graph with good esthetic 
criteria. 

II. THE TOPOLOGY – SHAPE – METRIC TECHNIQUE 

The topology-shape-metric was widely discussed and 
improved in 1998 by I.G. Toll's, G. Di Battista, P. Eades, and 
R. Tamassia [13]. When applying the topology-shape-metric, 
the final drawing is produced by applying three consecutive 
steps: planarization, orthogonalization, and compaction. 
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A. Planarization 

this step determine the topology of the graph , which test if 
the graph is planar or no. therefore, the goal of this step is to 
minimize the number of edge crossing as much as possible  
because the number  of crossing affects the understanding of 
the graph. In 1998, I.G. Toll's, G. Di Battista, P. Eades, R. 
Tamassia [13] present algorithms that are used to build planar 
graph. 

 
Fig. 1. Block diagram for the topology-shape-metric algorithm [14, 15] 

Algorithm (Planarize). 

Input: graph G; 

Output: planarization G_ of G; 

1) Compute a maximal planar subgraph S of the input 

graph G, and partition the edges into “planar” and “non-

planar”, as follows: 

a) Start with subgraph G_ consisting only of the vertices 

of G, but no edges; 

b) For each edge e of G, if the graph obtained by 

adding e to G_ is planar, then add e to G_ and classify e as 

“planar”, else reject e and classify it as “non planar”. 

2) Construct a planar embedding of the planar subgraph 

G_, and the dual graph of S. 

3) Add to G_ the non planar edges, one at a time, each 

time minimizing the number of crossings. This is done as 

follows for a non planar edge (u, v): 

a) Find a shortest (least number of edges) path in the 

dual graph of the current embedding G_ from the faces 

incident to u to the faces incident to v; 

b) Add the nonplanar edge and update G_ as well as its 

dual graph. 

We will apply the planarization step on the graph in 
Figure2, we will get different planar graph by varying edge 
insertion to minimize edge crossing. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of nonplanar hierarchical graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Nonplanar hierarchical graph with one bend. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Planar hierarchical graph with three bends. 
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The graph in Figure4 is planar but contains three bends, to 
solve this problem we will apply fuzzy genetic algorithm. 

B. Orthogonalization 

This step is performed to reshape the drawing to cancel the 
bends from the graph and the edge become straight line. We 
will use the Tamassia algorithm [14] computes an orthogonal 
shape of a planar graph with respect to an input embedding 
with a minimal number of bends the result of the 
orthogonalization on the Figure2 is shown in Figure5. 

Algorithm. ORTHOGONAL  

Input. A biconnected graph G.         

Output. An orthogonal drawing of G. 

1) Compute a st-numbering of G 

2) Produce a reduced graph G I and modify the st-

numbering so that there are no gaps in the st sequence. 

3) Run Form _pairs on the reduced graph G. 

4) Place vertices vl and v2 in the same row, if v2 does not 

belong to a pair in which it shares a row with another vertex. 

If Vl and/or v2 have degree less than 4, then the placement of 

vl and v2 might require one or two rows.  

5) REPEAT 

a) Consider the next vertex vi according to Unmarked. 

The st-numbering of G. 

b) If v has already been placed, then go to Step 6. 

c) If vertex vi is unassigned, then place v, i in a new 

row. Connect vi with each vertex vj (j < i) such that (vj, vi) is 

a directed edge of G. Add as many uncompleted edges as 

required, depending on vi's out degree. 

d) If vertex vi is assigned to a pair, then place vi 

together with the other vertex in the same pair following the 

placement rules described above for the specific type of pair. 

6) UNTIL the only remaining vertex is vn, 

7) Insert vn, in a new row. If vn, is of degree 4, then there 

is an incoming edge that enters vn, from the top and bends 

twice. This edge is chosen to be the one that connects to vn, _l. 

8) Restore the degree 2 vertices of G that were absorbed 

in Step 2. 

9) End. 

 
Fig. 5. Orthogonal representation of Figure2 

C. Compaction 

In this section we will minimize the area of the given 
orthogonal drawing. The result of this step is shown in 
Figure6. 

Algorithm .planar graph compaction. 

Input. √n x. √n bitmap planar graph layout. 

Output. √n x. √n bitmap planar graph layout compacted 
one point to the east. 

1) identify all points on layout that may possible move to 

the east. Mark these points to be movable. 

2) umark movable points that can cause connectivity 

violation to be stationary. 

3) repeat step 2 until no further points is unmarked. 

4) compact movable points to one point to the east 

maintaining connectivity.  

 
Fig. 6. The result of compaction  Figure5 

III. PROPOSED FUZZY GENETIC ALGORITHM 

We will solve the problem of bending in the graphs by 
using the FGA to find the geometric position of each vertex. 
We will applying the FGA at the planarization step to obtain a 
lot of planar graphs then submit this to orthogonalization and 
compaction step .The aesthetic criteria takes into 
consideration: 

1) The number of crossings FX in the graph. 

2) The number of bends fB in the graph. 

3) The total sum of the edges’ length fL. 
By minimizing all of them we will obtain the optimal 

graph. 

The fitness function ф(st,i) = α1fX + α2fB + α3fL      
where i ∈ [0, 1] 

We develop the diagram of TSM by adding FGA [15]. 

Algorithm (TSM-Fuzzy-GA). 

Input: graph G; 

Output: an optimized planar drawing; 

1) Generation of the initial population: 
N = number of individuals; 

a) Generate at random the ordering of edge’s insertion 

from G (represented by an integer permutation); 
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2) Fitness computation: i = 0; 
While (i < N) do 

a) Submit solution si to the planarization step to obtain 

a planar embedding (Γ i) and the number of crossings FX (si); 

b) Submit the planar embedding (Γ i) to the 

orthogonalization step to obtain the orthogonal representation 

H, and the number of bends fB (si); 

c) Submit the orthogonal representation H to the 

compaction step to obtain the final drawing and the total sum 

of the edges length fL (si); 

d) Calculate the value of the fuzzy membership's µFX, 

µFB, and µFL; 

e) Calculate the fuzzy-max-min aggregation µD; 

f) i = i +1; 

3) Record the best individual according to the fitness 

function; 

4) Application of the genetic operators for generating the 

new population. Each crossover operator (PMX or OX) for 

producing each offspring is selected with equal probability 

(0.50). The mutation operator to be used (scramble, swap, 

insert, and invert) for each offspring is also selected at 

random with equal chance (0.25); 

5) Application of generational survival selection; 

6) Go to step 2 until the stop criterion is met; 
The results of applying FGA on the Figure2. 

First step:  in Figure7 we replaced v2 by v3 to cancel the 
bend between v2 and v7. 

Second step:  in Figure8 we replaced v8 by v9 to cancel 
the bend between v5 and v8. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Planar graph result from applying FGA 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Best planar graph produced from applying FGA 

IV. A GENETIC OPERATOR 

in this paper we attempt to solve the problem of bends in 
the graph by using FGA, the  operator used in genetic 
algorithms to maintain genetic diversity, known 
as mutation and to combine existing solutions into 
others, crossover. The main difference between them is that 
the mutation operators operate on one chromosome, that is, 
they are unary, while the crossover operators are binary 
operators .Genetic variation is a necessity for the process 
of evolution. Genetic operators used in genetic algorithms are 
analogous to those in the natural world: survival of the fittest, 
or selection, reproduction (crossover, also called 
recombination), and mutation. 

A. Selection 

The Selection operator decides which of the individuals in 
the population will go into the next generation. This is decided 
by the fitness value of an individual as calculated by the Fuzzy 
Fitness Function. At this point the assumption is that a fitness 
value pertaining to each individual is available. 

B. Crossover 

Crossover is the most widely used recombination operator. 
Uniform 1-point crossover has been used. In general, 1-point 
crossover selects a random cut point and combines the first 
portion of one parent with the second portion of the other and 
vice versa to produce two offspring. The individual here 
consists of an array of cluster numbers. Hence, the main issue 
in recombination is the renumbering of clusters in the 
resulting offspring. 
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Fig. 9. A Visualization of Crossover 

C. Mutation 

Mutation is needed to counteract the loss of some 
potentially useful genetic material during selection and 
crossover. In an artificial chromosome, this is affected by an 
Occasional random alteration of the value of a string position. 
In a binary implementation, a bit value is toggled. In an 
integer or floating point implementation, a value is changed 
within an allowed range. This definition cannot be directly 
applied to the present scenario .A mutation operator that 
works at the boundaries of clusters has been worked out. For 
this, the pair-wise fitness between two consecutive data points 
is found for the whole data set. This has been calculated using 
the Fuzzy Fitness Function. 

1) In each, select randomly, points in the range (1, mi) 

where mi is the number of clusters in the ith individual. The 

number of clusters to be selected is equal to n mutation as 

worked out in the previous paragraph. Mutation is applied on 

the left as well as on the right border of each selected cluster 

which amounts to 2*n mutation borders. 

2) for a border point 
Two cut-off values (in %) are to be fixed, one below which 

the pair-wise fitness will be classified as insignificant (lower 
value (lval)) and the other above which the pair-wise fitness 
will be significant (high value) hval). The actual values will be 
implementation dependent. 

a) Mutation Rule1: if it's pair-wise fitness with the data 

point in the neighboring cluster is greater than hval and its 

pair-wise fitness with the neighboring data point within the 

same cluster is less than lval, and then reallocates the data 

item to the neighboring cluster. 

b) Mutation Rule 2: if it's pair-wise fitness with the data 

point in the neighboring cluster is greater than hval and also 

its pair-wise fitness with the neighboring data point within the 

same cluster is greater than hval, then the two clusters can be 

merged. 

c) Mutation Rule 3: if it's pair-wise fitness with the data 

point in the neighboring cluster is less than lval and its pair-

wise fitness with the neighboring data point within the same 

cluster is also less than lval, then the border point can be 

made a single-point cluster to which zero fitness value is 

assigned. 

d) Mutation Rule 4: if none of the above conditions 

apply, then the border is left undisturbed. 

 

Fig. 10. A Visualization of Mutation 

V. RESULTS 

In this paper, we tested many values for the number of 
vertices v in the graph, to generate an optimal graph by 
following the procedure shown in the diagram [16]: 

1) We generated graphs by varying the number of vertices 

V, from 10 to 600 vertices. 

2) For each graph in the test set, when we applying the 

TSM on the graph in Figure2, at the planarization step the 

final graph contain three bends shown in Figure5, but when 

we applying FGA at the planarization step on the Figure2, the 

final graph contains one bend shown in Figure7. 
Table 1 shows the results obtained with the classical 

topology shape-metric approach. 

Table 2 presents the results obtained by the fuzzy genetic 
algorithm. 

TABLE I.  RESULTS OBTAINED BY THE CLASSICAL APPROACH TSM 

F fl fB fx v 

41 16 3 0 10 

87 38 2 1 20 

148 64 5 1 30 

232 92 6 6 40 

441 132 19 24 50 

1398 328 49 119 100 

2126 632 59 137 150 

2757 781 75 194 180 

4769 854 172 509 200 

5969 1144 197 618 250 

9055 2748 173 608 500 

9500 2800 198 620 520 

10000 3000 200 630 550 

10100 3200 195 616 600 
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Fig. 11. Block diagram for the TSM-Fuzzy-GA algorithm 

TABLE II.  RESULTS OBTAINED BY THE FUZZY GENETIC 

ALGORITHM 

Fuzzy genetic algorithm Test cases 

V-N stats fx fl fB µD 

10-30 
Best 

Average 
StdDev 

0 

0 

0.00 

14 
14 

0.52 

3 

3 

0.00 

1.000 

0.800 
0.26 

20-30 
Best 

Average 
StdDev 

1 
1 

0.00 

29 

30 
0.95 

1 
1 

0.00 

1.000 
0.675 
0.24 

30-30 
Best 

Average 
StdDev 

1 
1 

0.00 

48 
50 

1.69 

5 
5 

0.00 

1.000 
0.714 
0.25 

40-30 
Best 

Average 
StdDev 

5 
5 

0.52 

71 
76 

4.37 

5 
6 

0.71 

0.857 
0.433 
0.26 

50-30 
Best 

Average 
StdDev 

12 
14 

1.69 

95 
100 
7.66 

10 
12 

1.96 

0.769 
0.446 
0.23 

100-30 
Best 

Average 
StdDev 

62 
70 

7.89 

250 
264 
8.29 

31 
36 

3.30 

0.917 
0.330 
0.31 

150-30 
Best 

Average 
StdDev 

86 
89 

5.56 

393 
403 

25.33 

36 
38 

3.08 

1.000 
0.237 
0.29 

180-30 
Best 

Average 
StdDev 

95 
110 

10.27 

531 
536 

35.14 

51 
52 

2.17 

0.696 
0.321 
0.26 

200-30 
Best 

Average 
StdDev 

334 
342 

18.57 

687 
688 

34.21 

120 
130 
5.91 

0.698 
0.198 
0.26 

250-30 
Best 

Average 
StdDev 

427 
429 

12.77 

910 
999 

77.81 

145 
152 
4.47 

0.848 
0.279 
0.35 

500-30 
Best 

Average 
StdDev 

319 
321 
2.67 

1351 
1356 
6.86 

103 
108 
6.98 

1.000 
0.697 
0.41 

520-30 
Best 

Average 
StdDev 

310 
303 
1.90 

1387 
1493 
6.92 

95 
87 

5.00 

1.100 
0.699 
0.50 

550-30 
Best 

Average 
StdDev 

367 
332 

20.23 

1400 
1525 
50.72 

163 
145 
7.10 

0.900 
0.770 
0.40 

600-30 
Best 

Average 
StdDev 

358 
290 
2.29 

1520 
1526 
7.67 

150 
110 
7.80 
 

1.900 
0.800 
0.56 
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VI. CONCLUSIONS 

In this paper, we present a new method for automatic 
orthogonal graph drawing by using fuzzy genetic algorithm at 
the planarization step of the topology-shape-metric to find the 
geometric position of each vertex to obtain optimal graphs 
without crossing and bends. 

 

 
Fig. 12. V = 100: (a) drawing obtained with topology-shape-metric (b) 

drawing obtained with the fuzzy genetic algorithm 
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