
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

64 | P a g e

www.ijacsa.thesai.org

Building a Robust Client-Side Protection Against

Cross Site Request Forgery

Abdalla AlAmeen

College of Art and Science- Prince Sattam bin Abdulaziz University

Abstract—In recent years, the web has been an indispensable

part of business all over the world and web browsers have

become the backbones of today's systems and applications.

Unfortunately, the number of web application attacks has

increased a great deal, so the matter of concern is securing web

applications. One of the most serious cyber-attacks has been by

cross site request forgery (CSRF). CSRF has been recognized

among the major threats to web applications and among the top

ten worst vulnerabilities for web applications. In a CSRF attack,

an attacker takes liberty be authorized to take a sensitive action

on a target website on behalf of a user without his knowledge.

This paper, providing an overview about CSRF attack, describes

the various possible attacks, the developed solutions, and the

risks in the current preventive techniques. This paper comes up

with a highly perfect protection mechanism against reflected

CSRF called RCSR. RCSR is a tool gives computer users with

full control on the attack. RCSR tool relies on specifying HTTP

request source, whether it comes from different tab or from the

same one of a valid user, it observes and intercepts every request

that is passed through the user’s browser and extracts session

information, post the extracted information to the Server, then

the server create a token for user's session. We checked the

working of RCSR extension, our evaluation results show that it is

working well and it successfully protects web applications against

reflected CSRF.

Keywords—Security; Reflected CSRF; client-side protection;

tab ID; token

I. INTRODUCTION

In recent years, the web has been an indispensable part of
business all over the world and web browsers have become the
backbones of today's systems and applications. Unfortunately,
the number of cyber-attacks has increased a great deal, so the
matter of concern is securing web applications. One of the
most serious attacks has been called cross site request forgery
(CSRF). CSRF is also known as XSRF, Session Riding, One-
Click-Attack, and Confused Deputy [3]. In a CSRF attack, an
attacker takes liberty be authorized to perform a sensitive
action on a target website on behalf of a user without his
knowledge.

CSRF attacker takes advantages of implicit authentication
mechanisms of HTTP protocol and cached credentials in the
browser to inject web applications with malicious script [17].
The malicious script may destroy the privacy of the user's
session with a web application. CSRF attack tricks user's
browser into performing requests into a target web site that is
vulnerable to CSRF [4]. A website is vulnerable to CSRF
attack when it has inadequate mechanism to check whether a
valid request has been sent intentionally or unintentionally by a

logged in user [15]. A CSRF attack involves three actors as
shown in Fig 1, a user, a trusted website, and a malicious
website. To perform a CSRF attack, the user must hold an
active session with the target site [13]. Suppose the victim user
is authenticated (a logged in user), the attacker can upload
HTML element or JavaScript code on a third-party website,
subsequently the victim user visits an attacker controlled third-
party website or he/she clicks on a link in the same web
browser (without logging out form the trusted website). Thus,
the attacker malicious script will be executed without the
victim user being aware of it. Attacker uses illegal strategies to
deceive the victim to send unintended request [2]. For instance,
an attacker may attract browser's user into clicking on a
malicious link or image, which is hosted on untrusted third
party server or he/she can post a message in a social website,
this message may contain malicious image tag as shown in
Listing 1.

<img src="http://mybank.com/withdraw?

account=Sender&amount= amount-&for= reciever ">

Listing 1. Image tag containing a malicious Code snippet

As shown in Listing 1, the attacker may send an image tag
a third-party website, that contains a request to perform a
sensitive action (withdraw money) on a trusted-website of an
authenticated user (mybank.com), probably without their
knowledge.

In the early appearance of World Wide Web (WWW) in
1989 [12], it only contains a set of static pages interconnected
via hyperlinks. But when images were added to web pages in
1993 [12], a request to a web page could cascade a set of
requests to multiple other web pages. Thus, cross-site or cross-
origin requests triggered without explicit user interaction. With
the coming of interactive web thought Java scripts and Web
forms in 1995 [10], cross-site interactions become a real
security threat to web applications.

Typically, today’s websites implement cookies to identify
authenticated users [1]. After the user is successfully
authenticated by the Web server, the browser will get an
identity login cookie to remember the logged-in status [10].
Later, when the user is visiting the Web pages of the target
website, the browser will automatically attach the identity login
cookie in the HTTP request [10]. This cookie will not be
removed until the browser is closed or the user is logged out.
The attacker is able to abuse this duration to make some user’s
browser perform authenticated requests probably without their
knowledge, and that is what is called cross site request forgery
CSRF.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

65 | P a g e

www.ijacsa.thesai.org

Fig. 1. Simple CSRF attack scenario

A number of serious CSRF vulnerabilities in some websites
were documented [7], which allowed an attacker to transfer
funds from victim's account to an account chosen by the
attacker [7] as shown in listing 1. What makes detection or
prevention of CSRF attack so difficult is the fact that web
applications look to all requests triggered from an authenticated
user's browser just like another. Since the requests are being
made directly to the real Web application (no man-in-the
middle) therefore the unintended malicious requests are
considered legitimate in server perspective: “The only problem
is the victim did not intend to make the request, but the Web
server does not know that” [12]. The majority of web
application are vulnerable with users having very little ability
to defend themselves against CSRF” [12].

One of the primary causes of CSRF attacks is the misuse of
cached credentials in cross-domain requests [7]. The attacker
can easily send some requests to web applications in another
trusted web site without the user involvement and knowledge.
This makes web browser send cross-site requests, while
implicitly using cached credentials in web browser [7].

CSRF attacks are as powerful as a user. Whatever action
that the user can do can also be done by an attacker using a
CSRF attack. Thus, the more rights a site gives to a user, the
more dangerous are the possible CSRF attacks. The seriousness
of CSRF attack comes from the fact of malicious request
arriving from authenticated user. For instance, if the account of
the target has full rights, this can destroy the overall web
application. However, if we can understand all the steps in
which Web applications are attacked via CSRF attacks, we can
design countermeasures to thwart it. Moreover, if we know
who the attackers are, and what they want, their goals,

motivations and abilities we will have to educate users to
protect themselves from CSRF attacks.

The main aim of this paper is to follow preventive
techniques in order to make web application more secure than
it is at present .This paper, however, provides an overview
about CSRF attack, the various possible attacks, the developed
solutions, and the risks in the current preventive techniques.
This paper comes up with a highly perfect protection
mechanism against reflected CSRF. RCSR is a tool that gives
computer users full control on the attack. RCSR tool relies on
specifying HTTP request source whether coming from different
tab or from the same one of a valid user. RCSR observes and
intercepts every request that is passes through the user’s
browser. RCSR extracts the session information such as tab ID,
IP address, then post the extracted information to the web
server, the server creates a token for user's session to validate
the legitimacy of the request before changing any sensitive data
in the server database. We have checked the functioning of
RCSR extension, our evaluation results shows that it is working
well and it successfully protects web applications against
reflected CSRF.

The remainder of this paper is structured as follows:
Section 2 describes the main concepts of CSRF and the
processes involved in the attacks. Section 3 describes the
existing protection and prevention techniques against CSRF.
Section 4 focuses entirely on the development of tokens
concepts as a standard defence mechanism against CSRF.
Section 5 summarizes some existing defence's techniques and
their attributes. Section 6 presents RCSR, our proposed
scheme, section 7 describes the implementation of RCSR. In
section 8, we extensively validate the efficiency and the

er

Trusted website Browse

r

Attacker

1- Login
2- Login

3- success
4- success

…. continue session …..

5- open page
6- open page

8- page

10- hidden request

9- hidden request

7- page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

66 | P a g e

www.ijacsa.thesai.org

capability of the RCSR tool against reflected CSRF attack and
finally in Section 9 we conclude this paper.

II. CROSS SITE REQUEST FORGERY

The launching of CSRF attack may be carried out in
different steps depending on the type of CSRF attack. CSRF
can mainly be classified into two types: reflected and stored
[14] . First of all, the attacker should know the structure of the
website request forms, then check the main functionality of
targeted web site. A professional attacker may perform that
manually or by searching the web using specific software tools.
Toolkits such as seobook, webconfs and web spider are the
software available on the web for free .They can be used for
displaying the contents of a web-page and its functionality.
Secondly, the attacker will specify specific functionality in the
web-page that it can be used to perform malicious actions on
behalf of a victim user. Then, the attacker will send a
parameterized request. Some network protocol analyser such as
Wireshark, Cain & Abel and Tcpdump can be used to examine
data from a live network and browse the captured data that may
contain buttons or links that can perform actions. The following
step is to create a malicious link that can send this legitimate
HTTP request to the website and will execute some interesting
functionality on the server such as transferring money,
changing a password, etc. Finally, the attacker needs to
convince a logged in user into the target website to click on the
malicious link to execute the CSRF attack successfully.

For launching reflected CSRF attacks, the attacker needs to
include the malicious link on the attacker’s controlled website
and trick the user to click on the link, or where an
XMLHTTPRequest object may automatically execute the
attack when a user visits the website [14].

For stored CSRF attacks, the attacker needs to create some
posts that embed the malicious link in the target website, or
execute a stored XSS attack on a website where an
XMLHTTPRequest object will automatically execute the
attack as soon as a user visits the page [14]. This removes the
step of convincing a user to click on a link.

III. EXISTING COUNTERMEASURES

To overcome CSRF attacks, a variety of techniques are
available to protect server applications and the end-users from
CSRF attack [7]. CSRF protection and prevention techniques
can be classified into two main categories:

1) Client side protection techniques

2) Server side protection techniques
Client side protection techniques can be used to protect

users from CSRF attacks by monitoring outgoing requests and
incoming responses. Client side protection techniques can be
implemented as a browser proxy (plug-in or extension) to web
browsers [19]. Browser extension is the technique that we have
adopted in this paper as shown in section (6).

The basic idea behind the Server side protection techniques
is that server can strip authentication credential and session
information from suspected requests, or it can refuse such
requests. Using validation of secret token and checking HTTP
Referrer header are the most applied Server side protection
techniques [7]. Unfortunately, not any of the proposed

mechanisms is fully capable of carrying out this task, in other
words the existing solutions are time-consuming, error-prone,
and not immune to avoid CSRF attacks.

IV. CSRF TOKENS CONCEPT

In the early appearance of World Wide Web in 1989 [12], it
only contained a set of static pages interconnected via
hyperlinks. But when images were added to web pages in 1993
[12], a request to a web page could cascade a set of requests for
other multiple web pages. Thus, cross-site or cross- origin
requests triggered without explicit user interaction. With the
coming of interactive web thought Java scripts and Web forms
in 1995 [10], cross-site interactions has become a real security
threat to web applications.

Typically, today’s websites implement cookies to identify
authenticated users [1]. After the user is successfully
authenticated by the Web server, the browser will get an
identity login cookie to remember the logged-in status [a10].
Later, when the user is visiting the web pages of the target
website, the browser will automatically put the identity login
cookies in the request [a10]. This will not be removed until the
browser is closed or the user logged out.

CSRF vulnerabilities arise because the browsers send the
cookies back to the Web server automatically with each
subsequent request. If Web applications relied solely on
cookies as a mechanism to keep track of user sessions, they
will be at risk for this type of attack [12].

The attacker is able to abuse this duration to make the
user’s browser perform authenticated requests probably without
their knowledge, and that causes what is called CSRF.

To create a standard defence mechanism against CSRF
attack, we must support cookie-based and HTTP authentication
with additional means to keep track of sessions. These
additional means may be as additional tokens that are
transmitted through hidden fields with any request to the server
[12].

When the server receives a request, in addition to the
process of verifying the validity of session cookies, it also
verifies that the received token is valid for the current user, else
the request will be rejected. If we assume that the attacker does
not have the ability to know the value of this token, so he won’t
be able to put the right token in its submissions, therefore he
does not have the ability to launch a successful CSRF attack.
When we use CSRF tokens in this way, they must be subject to
adequate protection because they are considered as sensitive
data [12]. If the attacker can predict the value of CSRF tokens
that have been sent to another user, so he can obtain a valuable
data to perform malicious action on behalf of the user.

V. LITERATURE REVIEW

To overcome CSRF attacks, a variety of defense techniques
exist, these protections and prevention schemes propose to
make forgery requests harder for adversaries, or to confirm the
origin of page requests. By assuring the integrity of requests’
origins, defense techniques can ignore page requests coming
from the cross site domains because web transactions are
usually intended for the requests initiated from the same

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

67 | P a g e

www.ijacsa.thesai.org

domain, not the cross sites. Most defense schemes can be
classified into two main types, Client side techniques and
Server side techniques. Client-side defense protects users even
if web application doesn't prompt in fixing their vulnerabilities.
Moreover, they have accurate information about the requests
sources, whether they result from clicking on a link, or a
bookmark on a trusted web page. There are several Client- side
protection and prevention schemes (Secret Validation Token,
RequestRodeo, CsFire etc.) to prevent CSRF attack.

A. Secret validation token

Secret Validation Token is a well-known client- side
protection scheme against CSRF attacks. Not like other
verification, token approach does not require user intervention,
so the users will not know that something has been used to
protect them. This scheme sends additional information with
each HTTP request to determine whether the request came
from an authorized user. To apply token, web applications must
first create a “presession,”, and then proceed forward a real
session after successful authentication [18]. Validation token
should be hard to guess for attacker who does not already have
access to the user’s account. If a request is missing a token or
the token does not match the expected value, the web
application should reject the request and prompt the user [18].

One disadvantage of using the Secret Validation Token is
that, occasionally, some users disclose the contents of web
pages they view to third parties, for instance via email . If the
page contains the user’s Validation Token, anyone who views
the contents of the page can impersonate the user to the web
application until the session expires [19].

B. Requestrodeo

Johns and Winter proposed RequestRodeo as a client-side
protection proxy against CSRF [11]. RequestRodeo lies, next to
cookie-based HTTP authentication. This technique offers
protection via detecting cross-domain requests and then
removal of cookie values from these requests (stripping of
implicit authentication) [11]. A request is authenticated when it
satisfies the Same Origin Policy (SOP) and it initiated as a
result of an interaction with the currently viewed browser' tab.
RequestRodeo is limited to only certain HTTP requests and no
HTTPS requests, so it does not scale well to web 2.0
applications. RequestRodeo fails to detect all JavaScript
dynamic links in the responses, since this dynamic content has
come after passing through the proxy. Also, RequestRodeo
does not differentiate between malicious and genuine cross
origin requests, so it provides very poor protection against
CSRF [16].

C. CSFIRE

CsFire [8] is integrated extension into Mozilla browser to
mitigate CSRF attacks, it extends the work of Maes et al. [8],
CsFire is the only system that provides formal validation

through bounded model checking to defend against CSRF in
the formal model of the web developed by Akhawe et al. [8].
CsFire strips cookies and HTTP authorization headers from a
cross-origin request. The advantage of stripping cookies and
HTTP authorization headers is that there are no side-effects for
cross-origin requests that do not require credentials in the first
place.

Additionally, CsFire supports users for creating custom
policy rules, which use user-supplied whitelist and blacklist to
certain traffic patterns. Furthermore, CSFire utilizes a
sophisticated heuristic to identify legitimate cross-domain
requests which are allowed to carry authentication credentials
[8]. The disadvantage of CsFire approach is that without the
server supplied or user supplied whitelist, it will not be able to
handle complex, genuine cross origin scenarios and the
whitelists need to be updated frequently.

According to the defensive techniques discussed above,
none of them is able to provide full protection. So it seems
necessary to overcome the drawbacks of present defensive
measures. We propose to develop a new client side defensive
approach, in the form of a Firefox extension, to prevent
Reflected CSRF attacks effectively as explained in section 6.

VI. THE PROPOSED SCHEME

The web browser is the right place to apply appropriate
protection mechanism for web application because it is the first
place to detect CSRF attack symptoms. So the proposed
defense mechanism against reflected CSRF attacks should be
applied on the client side in order to reduce the overtime efforts
of web developers. Client side protection techniques can be
implemented as a proxy or as plug-in (extension) to web
browsers.

Mozilla is an extensible architecture, open source, and the
second most popular browser, also Mozilla browser behaviour
can be modified by creating appropriate XPCOM (Cross
Platform Component Object Model) objects and implementing
a set of APIs. Mozilla supports the global browser object called
(gBrowser) to access the active tab windows and examine its
ID through GetSelectedTab function. We propose to provide a
robust client side defense mechanism against CSRF, hence
named as "Robust Client Side Request‟ (RCSR). Once
implemented on the browser, RCSR can be the best solution
over other techniques to protect web applications against
reflected CSRF. RCSR is a technology independent tool and
does not depend on user input, so it solves the drawbacks of
current protection techniques.

We designed the plug-in using JavaScript, which can be
installed in Mozilla browser to protect users against reflected
CSRF attacks. A user needs to enable CSRF from the tools
menu of a browser after loading a page that needs to be
monitored for attack detection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

68 | P a g e

www.ijacsa.thesai.org

Fig. 2. The proposed scheme diagram

VII. IMPLEMENTATION

Our solution, RCSR tool a simple policy, is implemented in
the form of a client-side plug-in to protect web applications
against reflected CSRF. In general, RCSR allow the web
application developer to plug in new functionalities to web
browser.

The general mechanism of RCSR functions as follows:

To specify HTTP request source, whether coming from
different tab or from the same one of a valid user, RCSR
observes every request that is passes through the user’s
browser, intercepts HTTP requests and extracts session
information. Listing 1 below show snippet code to extract the
tab ID from web browser.

function RCSRObserver()

{

 this.register();

 this.windowIds = new Object();

}

RCSRObserver.prototype =

{

 observe : function(subject, topic, data)

 {

 var tabId = this.getTabIDfromDOM(httpChannel, subject);

 if (tabId)

 {

 var windowId = this.windowIds[tabId];

 if (! windowId)

 {

 this.registerTab(tabId);

 windowId = this.windowIds[tabId];

 }

 httpChannel.setRequestHeader("Window-Id", windowId,

false);

 }

 }

 getTabIDfromDOM : function(aChannel, aSubject)

 {

 registerTab : function(tabId)

 {

window.addEventListener("load",

function(e)

{

 observer = new RCSRObserver();

 var num = gBrowser.browsers.length;

 for (var i = 0; i < num; i ++)

 {

 var b = gBrowser.getBrowserAtIndex(i);

 observer.registerTab(b.parentNode.id, i);

 }

Listing 2. Extracting tab ID Code snippet

Reject Request

hash Token

ValidUs

NO

NO

Second Request

Send Request +Token + (tab ID, IP address, window ID

hash Token

Check Token

 NO

Send request

NO

User

Login Page

Send Request +Token + (tab ID, IP address, window ID

Authenticated

Create Token

Database

Check Tab

ID

U
ser b

ro
w

se
r

W
eb

 serv
er

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

69 | P a g e

www.ijacsa.thesai.org

To create a new token for the current user session, RCSR
post the extracted information (tab ID, IP address, window ID)
to the web Server.

The system will store the session information on the server
database to map token with user’s session or identity. The web
server will send to the client with a unique token. After
hashing the information by a cryptographic hash algorithm
based on SHA-1 the web server will define the tab ID value.
Then store the hashed value in database table. The web
application can repeatedly validate the legitimacy of the
attached tokens before changing any sensitive data in the server
database.

Sever verifies if the request is generated from the same tab
of the browser. This verification is performed by comparing the
stored hash information with the hashing information that is
sent with each request. The request will be executed if the
comparison result is true, otherwise the session will be
destroyed. Fig. 2 shows all steps of the RCSR detection tool.

VIII. EVALUATION

We conducted some tests to evaluate the efficiency and the
capability of the RCSR tool against reflected CSRF attack, to
make sure that its results match with what is predetermined, to
discover the problem and try to fix before the deployment.

PhpBB 3 is an open source discussion forum software. IT
includes all the features in today's top of the line software
written in PHP, and MySQL [9]. PhpBB 3 uses cookies to
authenticate user's requests which are an important element in
CSRF attack. Despite the fact that phpBB3 is popular
application and well-maintained, but easily we discovered
some CSRF vulnerabilities [9].

By exploiting CSRF attacks, we modified some important
information through abusing of an authenticated user
privileges. Through malicious link we could access the user
cookies and valid session on the victim's browser, so we were
able to send and delete some messages from the forum or even
change user name and password on behalf of the victim user.

To evaluate the ability of RCSR to protect vulnerable
applications, we installed RCSR tool as an extension to Mozilla
browser. When we repeated the previous attacks, RCSR tool
detected and rejected all CSRF attempt correctly.

While testing, that RCSR doesn't interfere with the normal
application behaviour. We observed and compared phpBB3
application behaviour without the RCSR tool protection to the
behaviour with enabled CSRF protection. The results were
identical and the RCSR tool succeeded in performing its task
transparently.

We tested some functionalities of the Mozilla browser after
installing RCSR tool. For instance, we observed the correct
behaviour of the Mozilla's “Back” and "Forward" button,
which is a widely used convenience feature that must not be
broken by CSRF protection.

To test RCSR performance, we observed no noticeable
delay when interacting with the applications protected by
RCSR.

IX. CONCLUSION

One of the most serious cyber-attacks has been by cross site
request forgery (CSRF). CSRF has been recognized among the
major threats to web applications and among the top ten worst
vulnerabilities for web applications. In a CSRF attack, an
attacker takes liberty be authorized to take a sensitive action on
a target website on behalf of a user without his knowledge. To
conclude this paper, we have discussed CSRF in different
domains, the severity of the attack on the current web
applications, the various possible CSRF attack and risks in the
current preventive techniques. To overcome the drawbacks of
present defensive protection, this paper proposed a new client
side defensive tool (RCSR). RCSR is a Firefox extension,
which can prevent Reflected CSRF attacks effectively. RCSR
is a tool gives computer users with full control on the attack.
RCSR tool relies on specifying HTTP request source, whether
it comes from different tab or from the same one of a valid
user, it observes and intercepts every request that is passed
through the user’s browser and extracts session information,
post the extracted information to the Server, then the server
create a token for user's session.

In a practical evaluation, the working of this extension was
checked against reflected CSRF, the evaluation results show
that it is working well. It successfully protects web applications
against reflected CSRF. In future work we plan to extend the
RCSR functionality against stored CSRF attacks and evaluate
its performance to make it more powerful and accurate. Finally,
we hope that RCSR tool will prove useful in protecting web
applications.

ACKNOWLEDGMENT

This project was supported by the Deanship of Scientific
Research at Prince Sattam Bin AbdulAziz University under the
research project 2014/01/1660

REFERENCES

[1] Barth, Adam, Collin Jackson, and John C. Mitchell. "Robust defenses for
cross-site request forgery." In Proceedings of the 15th ACM conference
on Computer and communications security, ACM, 2008, pp. 75-88.

[2] Batarfi, Omar A., Aisha M. Alshiky, Alaa A. Almarzuki, and Nora A.
Farraj. "CSRFDtool: Automated Detection and Prevention of a Reflected
Cross-Site Request Forgery." (2014).

[3] Calafato, Andrew, and Kostantinos Markantonakis. "An analysis of the
vulnerabilities introduced with the java card 3 connected edition." PhD
diss., Msc thesis, Royal Holloway, University of London, 2012.

[4] Chen, Eric Y., Sergey Gorbaty, Astha Singhal, and Collin Jackson.
"Self-exfiltration: The dangers of browser-enforced information flow
control." InProceedings of the Workshop of Web, vol. 2. 2012.

[5] Chin, Erika, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
"Analyzing inter-application communication in Android."
In Proceedings of the 9th international conference on Mobile systems,
applications, and services, ACM, 2011, pp. 239-252.

[6] Czeskis, Alexei, Michael Dietz, Tadayoshi Kohno, Dan Wallach, and
Dirk Balfanz. "Strengthening user authentication through opportunistic
cryptographic identity assertions." In Proceedings of the 2012 ACM
conference on Computer and communications security, ACM, 2012, pp.
404-414.

[7] De Ryck, Philippe, Lieven Desmet, Thomas Heyman, Frank Piessens,
and Wouter Joosen. "CsFire: Transparent client-side mitigation of
malicious cross-domain requests." In Engineering Secure Software and
Systems, Springer Berlin Heidelberg, 2010, pp. 18-34.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 6, 2015

70 | P a g e

www.ijacsa.thesai.org

[8] De Ryck, Philippe, Lieven Desmet, Wouter Joosen, and Frank Piessens.
"Automatic and precise client-side protection against CSRF attacks."
InComputer Security–ESORICS 2011, Springer Berlin Heidelberg,
2011, pp. 100-116.

[9] Fong, Matthew, Herman Lee, Chih-Hao Lin, and David Yue. "Security
Analysis of phpBB3 Bulletin Board Software." (2010).

[10] Hall, Marty, and Larry Brown. Core Web Programming. Prentice Hall
PTR, 2001.

[11] Johns, Martin, and Justus Winter. "RequestRodeo: Client side protection
against session riding." In Proceedings of the OWASP Europe 2006
Conference. 2006.

[12] Kappel, Gerti, Birgit Pröll, Siegfried Reich, and Werner
Retschitzegger. Web engineering. John Wiley & Sons, 2006.

[13] Poyar, Ryan L. "Cross-site request forgery attacks against Linksys
wireless routers." (2010).

[14] Shahriar, Hossain, and Mohammad Zulkernine. "Client-side detection of
cross-site request forgery attacks." In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, IEEE, 2010, pp.
358-367.

[15] Singh, Nanhay, Achin Jain, Ram Shringar Raw, and Rahul Raman.
"Detection of Web-Based Attacks by Analyzing Web Server Log Files."
In Intelligent Computing, Networking, and Informatics, Springer India,
2014, pp. 101-109.

[16] Telikicherla, Krishna Chaitanya, Venkatesh Choppella, and
Bruhadeshwar Bezawada. "CORP: A Browser Policy to Mitigate Web
Infiltration Attacks." InInformation Systems Security, Springer
International Publishing, 2014, pp. 277-297.

[17] Wedman, Shellie, Annette Tetmeyer, and Hossein Saiedian. "An
analytical study of web application session management mechanisms
and HTTP session hijacking attacks." Information Security Journal: A
Global Perspective 22, no. 2 (2013), 55-67.

[18] Xing, Xinyu, Elhadi Shakshuki, Darcy Benoit, and Tarek Sheltami.
"Security analysis and authentication improvement for ieee 802.11 i
specification." InGlobal Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, 2008, IEEE, pp. 1-5.

[19] Zeller, William, and Edward W. Felten. "Cross-site request forgeries:
Exploitation and prevention." The New York Times (2008): 1-13.

