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Abstract—In this paper we present a graph-based semi-
supervised method for solving regression problem. In our method,
we first build an adjacent graph on all labeled and unlabeled
data, and then incorporate the graph prior with the standard
Gaussian process prior to infer the training model and prediction
distribution for semi-supervised Gaussian process regression.
Additionally, to further boost the learning performance, we
employ a feedback algorithm to pick up the helpful prediction
of unlabeled data for feeding back and re-training the model
iteratively. Furthermore, we extend our semi-supervised method
to a clustering regression framework to solve the computational
problem of Gaussian process. Experimental results show that our
work achieves encouraging results.
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I. INTRODUCTION

Regression is a fundamental task in data mining and
statistical analysis. A regression task aims to analyze and
model the relationship between variables so that the value of
a given variable can be predicted from one or more other
labeled variables. By using enough labeled training data,
supervised regression algorithm can learn reasonably accurate
model. However, in many machine learning domains, such
as bioinformatics and text processing, labeled data is often
difficult, expensive and time consuming to obtain. Meanwhile
unlabeled data may be relatively easy to collect in practice.
For this reason, in recent years, semi-supervised regression
has received considerable attention in the machine learning
literature due to its potential in utilizing unlabeled data to
improve the predictive accuracy [6] [28].

An early semi-supervised regression method is iterative
labeling [9], such as co-training algorithm [4][27], which
employs supervised regressors as the base learners, then labels
and selects unlabeled data in an iterative process. Similarly [5]
performed another co-training style semi-supervised regression
algorithm by employing multiple learners. Although these
methods achieved considerable improvements, they didn’t take
full advantage of the inherent structure between labeled and
unlabeled data. Indeed, they just kept the supervised learning
algorithm and changed the form of the labels of data, i.e., they
label and relabel the unlabeled data iteratively. Unfortunately,
the iterative process causes computational problems for large
datasets.

Besides co-training, regularization based method has also

been widely employed in the semi-supervised regression
[11][15][23][3]. This method combines a regularization term
of all labeled and unlabeled data, with the predictive error of
labeled data into a criterion. In such a criterion, the unlabeled
data can help to get a better knowledge for what parts of the
input space that the predictive function varies smoothly in. A
variety of approaches using the regularization term have been
proposed. Some well-known regularization terms are graph
Laplacian regularizer [29], Hessian regularizer [10], parallel
field regularizer [14], and so on. These methods have enjoyed
a great success. However, they are transductive, which means
they only work on the observed labeled and unlabeled training
data and can’t handle the unseen data.

In this paper, we propose an inductive semi-supervised
regression model through incorporating graph prior informa-
tion into the standard Gaussian process (GP) regression. Our
method firstly builds an adjacent graph over all the labeled
and unlabeled data. Then we consider the adjacent graph as a
prior and incorporate it with the standard GP prior to generate
a new GP prior condition on the graph and a graph-based
covariance function. From the new conditional prior and the
graph-based covariance function, the marginal likelihood and
the prediction distribution of semi-supervised GP regression
are derived. Since the prediction from the GP model takes the
form of a full predictive distribution, the unseen data can also
be predicted easily.

Additionally, to further boost the learning performance,
we also extend our semi-supervised method to a feedback
framework. The early semi-supervised learning methods, such
as self-learning [19] and co-training [27], usually make use of
a supervised learning algorithm to label and select unlabeled
data in an iterative process. And these methods have been
proved to be effective in improving the prediction accuracy.
Thus, the predictions of the learning process must contain
some valuable information, and under some metrics, they can
help to construct more accurate model. In other words, when
a learning process is performed repeatedly, we gain extra
information from a new source: past unlabeled examples and
their predictions, which can be viewed as a kind of experience.
This kind of experience serves as a new source of knowledge
related to the prediction model. The new knowledge provides
the possibility of improving the performance of our semi-
supervised GP regression. In this paper, to take advantage of
such extra information, we also employ a feedback algorithm
to pick up the helpful prediction of unlabeled data for feeding
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back and re-training the model iteratively.

Furthermore, we empirically demonstrate a further exten-
sion of the semi-supervised GPr. GP has the computational
problem due to an unfavorable cube scaling (O(N3)) dur-
ing training, where, N is the number of training data. In
recent years, many methods have been proposed to address
this problem: sparse GP approximation [24][20][12], localized
regression [7][17]. In our work, we describe a clustering
regression framework in order to bring the scaling down.
Specifically, a clustering algorithm is employed as the first
step in the process for identifying regions that have similar
characteristics. Then for each cluster, a local semi-supervised
regression model is built to describe the relationship between
inputs and outputs. By partitioning the dataset and learning
models locally, the computational cost for each local model is
cubic only in the numbers of data points in each cluster, rather
than in the entire dataset. As a result, even for large dataset,
it can lead to a more favorable training scaling.

This paper is organized as follows: In Section 2, we discuss
some related work. In Section 3 we give some preliminaries
and a brief overview of the Gaussian process regression. The
problem statement and our main theorem, as well as the key
models are detailed in Section 4. In Section 5, we lay out an
extension algorithm that detects usefull predictions and feeds
them into the training set. In Section 6 we experimentally
compare our method with the state-of-art approaches and make
a detailed discussion. According to the results, we find out
a problem of our method, and also describe a clustering
regression framework to fixing it. Finally, section 7 concludes
our work.

II. RELATED WORK

Our work is closely related to several semi-supervised
learning methods. One is the semi-supervised classification
method proposed by [21]. We both define a prior for the
graph variables and attempt to incorporate it into the standard
GP probability framework to derive a posterior distribution
of latent variables condition on the graph. However, all their
derivations are focused on semi-supervised classification prob-
lem but not the regression problem. Thus, we will not discuss
in more detail.

Additionally, our work is also similar to Zhang’s method of
semi-supervised multi-task regression (SSMTR)[26]. It seems
that we both construct an adjacent graph and incorporate the
prior of this graph with the GP prior to generate a semi-
supervised data dependent kernel function that defines over
the entire data space. But there are several differences in
deed. In Zhang’s paper, they proposed a new GP likelihood∏m

i=1 p(yi|Xi)p(θi) for the supervised multi-tasks regression
(named SMTR), and then changed the kernel function of
the model to the semi-supervised kernel function, to extend
their model to the semi-supervised setting. Here the semi-
supervised kernel function has also been used in classification
task before [22]. Actually, the prediction formulation of SMTR
p(yi
∗|xi
∗, X

i, yi) is the same as standard GP but with different
kernel functions. In our paper, we don’t simply change the
kernel function in a supervised GP, but take advantage of
the prior of the adjacency graph to derive a new likelihood
condition on the graph p(y|X,G) and a conditional prediction

distribution p(y∗|x∗, X, y,G), which is the training model and
prediction model for the semi-supervised regression. In other
words, the major difference between our method and SSMTR
is that the training and prediction models are totally different.
Moreover, in Zhang’s method, because of the large number
of parameters, it is difficult to estimate the optimal values
simultaneously. So the parameters are optimized through an
alternating optimization algorithm. However, the parameters in
our work are estimated by using the gradient descent method
to minimize the negative log conditional likelihood p(y|X,G),
which means that the training processes of two methods are
different.

III. AN OVERVIEW OF GAUSSIAN PROCESS REGRESSION

GP has been proved to be a powerful tool for the purpose
of regression. The important advantage of GP is the explicit
probabilistic formulation. This not only provides probabilistic
predictions but also gives the ability to infer model param-
eters. Here, we offers a brief summary of GP for super-
vised regression, see [18] for more details. We assume that
the input training data is given as XD = {XL, XU} =
{x1, . . . , x`, x`+1, . . . , xN}, where xi ∈ Rd, N is the total
number of input data and ` is the number of labeled data.
XL and XU denote the inputs of labeled and unlabeled
dataset respectively. We use y = {y1, . . . , y`} to represent the
corresponding outputs of labeled data XL.

In supervised GP regression, the corresponding output label
y is assumed relating to an latent function f(x) through a
Gaussian noise model: y = f(x) + N (0, σ2), where N (m, c)
is a Gaussian distribution with mean m and covariance c. The
regression task is to learn a specific mapping function f(x),
which maps an input vector to a label value. Usually, a zero-
mean multivariate Gaussian prior distribution is placed over f .
That is:

p(f |XL) = N (0,KL) (1)

= (2π)−
`
2 |KL|−

1
2 exp

(
−1

2
fT K−1

L f

)
where KL is an ` × ` covariance matrix. In particular, the
element of KL is built by means of a covariance function
(kernel) k(x, x′). A simple example is the standard Gaussian
covariance defined as:

k (x, x′) = c · exp

−1
2

d∑
j=1

bj

(
xj − x′j

)2 , θ = {c, b} (2)

where b = {bj}d
j=1 plays the role of characteristic length-

scales. c is the kernel over scale. The parameters b and c are
initially unknown and are added to a parameter set θ, which
is defined as containing all such hyper-parameters.

For a GP model, the marginal likelihood is equal to the
integral over the product of likelihood p(y|f) = N (f, σ2I)
and the prior p(f |XL), given as:

p (y|XL) =
∫

p(y|f) p(f |XL) df = N (0,KL + σ2I) (3)

which is typically thought as the training model of GP. Given
some observations and a covariance function, we want to find
out the most appropriate θ and σ, and make a prediction on

www.ijacsa.thesai.org 261 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 6, 2015

the test data. There are various methods for determining the
parameters. A general one is the gradient ascent, which seeks
the optimal parameters by maximizing the marginal likelihood.

Given the observations and optimal θ and σ, the prediction
distribution of the target value f∗ for a test input x∗ can be
expressed as [18]:

p (f∗ | x∗, XL, y) = N (m∗, c∗) (4)

where the predictive mean and variance are:

m∗ = kT
∗
(
KL + σ2I

)−1
y (5)

c∗ = k∗∗ − kT
∗
(
KL + σ2I

)−1
k∗

where k∗ is a matrix of covariances between the training data
and test data. The matrix k∗∗ consists of the covariance of the
test data.

IV. SEMI-SUPERVISED GAUSSIAN PROCESS REGRESSION

As we can see in standard GPr, neither the prior of latent
function f (Eq.(1)) nor the predictive distribution (Eq.(4))
contains any information of the unlabeled data. Evidently,
to train a accurate GP model, we need to get sufficient
training data (labeled data). However, the training data is often
difficult and expensive to obtain, while the unlabeled data is
relatively easy to collect. Therefore, it appears necessary to
modify the standard GP model to make it capable of learning
from unlabeled data, and thereby improve the performance of
prediction. In this section we present how to effectively use
the information of unlabeled data to extend the standard GP
model into the semi-supervised framework.

According to semi-supervised smoothness assumption, if
two points are close, then so should be the corresponding
outputs. Based on this assumption, the unlabeled data should
be helpful in regression problem. They can help explore the
nearness or similarity between outputs. And the output should
vary smoothly with this distance. So, to utilize the unlabeled
data, we consider building an adjacent graph to define the
nearness between labeled and unlabeled data. Then we attempt
to incorporate the graph information into the standard GP
probabilistic framework to generate a new probability model
for semi-supervised GPr.

A. Prior Condition On Graph

In order to take advantage of the information of unlabeled
data, we build an adjacent graph G = (V, E) on all observed
data points XD = {XL, XU}, to find the adjacent relationship
between labeled and unlabeled data, where V is the set of
nodes composed by all data points, E is the set of edges
between nodes. The graph can be represented by a weight
matrix W = {wij}N

i,j=1, where wij = exp
(
−‖xi−xj‖2

2η

)
is

the edge weight between nodes i and j, with wij = 0 if there
is no edge.

From the previous section, we can see that regression by
GP is a probabilistic approach. Probabilistic approaches to
regression attempt to model p(y|XD). In this case, in order to
make the unlabeled data affect our predictions, we must make
some assumptions on the underlying distribution of input data.
In our work, we attempt to combine the graph information with

the GP. Thus, we focus on incorporating a prior of p(G|f)
with the prior of p(f |XD) to infer a posterior distribution of
f condition on the graph G.

Here, we consider the graph G itself as a random variable.
There are many ways to define an appropriate likelihood of
the variable G. [21] provides a simple likelihood of observing
the graph:

p (G|f) ∝ exp
(
−1

2
fT ∆f

)
(6)

where ∆ is a graph regularization matrix, which is defined as
the graph Laplacian here. We can derive ∆ in the following
way: let ∆ = λLυ , where λ is a weighting factor, υ is an
integer, and L denotes the combinatorial Laplacian of the graph
G. Let Dii =

∑
j wij , the combinatorial Laplacian is defined

as L = D − W .

Combining the Gaussian process prior p(f |XD) with the
likelihood function Eq.(6), we can obtain the posterior distri-
bution of f on the graph G as follows:

p(f |XD,G) =
1

p(G)
p(G|f)p(f |XD) (7)

Observably, the posterior distribution Eq.(7) is proportional
to p(G|f)p(f |XD), which is a multivariate Gaussian as fol-
lows:

p(f |XD,G) = N
(
0, (K−1

DD + ∆)−1
)

(8)

The posterior distribution Eq.(8) will be used as the prior
distribution for the following derivation. To proceed further,
we have to derive the posterior of fX independent of graph
G. Here X denotes the more general dataset, which contains
observed dataset XD and a set of unseen test data XT , i.e.,
X = {XD, XT }. In standard GP, the joint Gaussian prior
distribution of fX can be expressed as follows:

p (fX |X) = N
([

0
0

]
,

[
KDD KDT

KT
DT KTT

])
(9)

Then the same as above, the posterior distribution of fX

conditioned on G is proportional to p(G|fX)p(fX |X), and it
is explicitly given by a modified covariance function defined
in the following:

p (fX |X,G) = N
(
0, K̃XX

)
(10)

where

K̃−1
XX =

[
KDD KDT

KT
DT KTT

]−1

+
[

∆ 0
0 0

]
(11)

Eq.(10) gives a general description that for any finite col-
lection of data X , the latent random variable fX conditioned
on graph G has a multivariate normal distribution N (0, K̃X),
where K̃X is the covariance matrix, whose elements are given
by evaluating the following kernel function:

k̃ (x, z) = k (x, z) − kT
x (I + ∆K)−1 ∆kz (12)

in this equation, K is a N × N matrix of k (·, ·), and kx and
kz denote the column vector (k (x1, x) , . . . , k (xl+u, x))T .
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We notice that by incorporating the graph information ∆
with the standard GP prior p(f |X), we infer a new prior con-
dition on the graph G and a graph-based covariance function k̃.
In fact this semi-supervised kernel (covariance function) was
first proposed by [22] from the Reproducing Kernel Hilbert
Space view, and is used for the semi-supervised classification
task. In our work, we mainly focus on how to utilize the new
prior and the graph-based covariance function to derive the
training and predicting distributions for semi-supervised GPr.

B. Objective Functions

Our objective training function for semi-supervised GPr is
the marginal likelihood p(y|XD,G), which is the integral of
the likelihood times the prior:

p (y|XD,G) =
∫

p(y|f) p(f |XD,G) df (13)

Similar with standard GP, the term marginal likelihood
refers to the marginalization over the latent function value f .
But the difference is that the prior of semi-supervised GP is
the posterior obtained by conditioning the original GP with
respect to graph G.

According to Eq. 8 and the likelihood p(y|f) = N (f, σ2I),
the marginal likelihood of the observed target values y is:

p (y|XD,G) = N (0, Σ) (14)

where Σ =
(
K−1

DD + ∆
)−1

+σ2I . This formula can be seen as
the training model of our proposed method. We can select the
appropriate values of hyper-parameters Θ = {θ, σ} by maxi-
mizing the log marginal likelihood log p(y|XD,G). The goal
is to solve Θ̂ =arg max log p(y|XD,G). In learning process
we seek the partial derivatives of the marginal likelihood, and
use them for the gradient ascent to maximize the marginal
likelihood with respect to all hyper-parameters.

After learning the model parameters, we are now con-
fronted with the prediction problem. In the prediction process,
given a test data x∗, we are going to infer f∗ based on the
observed vector y. According to the prior Eq.(10) and Eq.(14),
the joint distribution of the training output y and the test output
f∗ is [

y
f∗

]
∼ N

([
0
0

]
,

[
Σ k̃∗
k̃T
∗ k̃∗∗

])
(15)

Then we can use this joint probability and Eq.(14) to
compute the Gaussian conditional distribution over f∗:

p (f∗|x∗, XD, y,G)

∝ exp

(
−1

2
[y, f∗]

[
Σ k̃∗
k̃T
∗ k̃∗∗

]−1 [
y
f∗

])
(16)

By using the partitioned inverse equations, we can derive
the Gaussian conditional distribution of f∗ at x∗:

p (f∗|x∗, XD, y,G) = N (µ̂, C) (17)

where

µ̂ = k̃T
∗ Σ−1y (18)

C = k̃∗∗ − k̃T
∗ Σ−1k̃∗

This is the key predictive distribution for our proposed
semi-supervised GPr method. µ̂ is the mean prediction at the
new point and C is the standard deviation of the prediction.
For fixed data and fixed hyper-parameters of the covariance
function, we can predict the test data from the labeled data
and a large amount of unlabeled data.

Note that the graph G contains the adjacent information of
labeled and unlabeled data, and it is helpful for regression ac-
cording to the smoothness assumption of supervised learning.
Then, the knowledge on p(G|f) that we gain through the un-
labeled data carries information that is useful in the inference
of p(y|XD,G) and p(f∗|x∗, XD, y,G), which is the training
probability and predictive distribution for semi-supervised GP
regression. Thus, our semi-supervised GPr method can be
expected to yield an improvement over supervised one.

V. REGRESSION WITH FEEDBACK

In the semi-supervised regression, we learn a predictive
model from labeled and unlabeled data. Then the output
of the unlabeled data can be predicted through the model.
In this process, predictive output can be viewed as a kind
of experience. Such experience provides the possibility of
improving the performance of semi-supervised GPr. Therefore,
in this paper, we describe a feedback algorithm, which can pick
up the useful prediction of unlabeled data for feeding back into
the labeled dataset and re-train the model iteratively.

In a predictive system, we can not affirm that all the
predictions of unlabeled data could be correctly predicted. For
this reason, not all the predictions are helpful for re-training
and we need to pick up the useful ones from them. Here we
call one useful prediction a confident prediction. Now we have
a problem that what the confident prediction is. Intuitively,
if a labeled example can help to decrease the error of the
regressor on the labeled data set, it should be the confident
labeled data. Therefore, in each learning iteration of feedback,
the confidence of unlabeled data point xu can be evaluated
using a criterion of:

Exu =
∑

xi∈XL

(
(yi − M(xi))

2 − (yi − M ′(xi))
2
)

(19)

here, M is the original semi-supervised regressor trained
by the labeled dataset (XL, yL) and unlabeled dataset XU ,
while M ′ is the one re-trained by the new labeled dataset
{(XL, yL)∪ (xu, ŷu} and unlabeled dataset {XU −xu′}. Here
xu is an unlabeled data point while ŷu is the real-valued output
predicted by the original regressor M , i.e. ŷu = M(xu). The
first term of Eq.(19) denotes the mean squared error (MSE) of
the original semi-supervised regressor on labeled dataset, and
the second term is expressed the MSE of the regressor utilizing
the information provided by (xu, ŷu) on the labeled dataset.
Thus, (xu, ŷu) associated with the biggest positive Exu can be
regarded as the most confident labeled data. In other words,
If the value of Exu is positive, it means utilizing (xu, ŷu) is
beneficial. So we can use this unlabeled data paired with its
prediction as labeled data in the next round of model training.
Otherwise, (xu, ŷu) is not helpful to train models, and will be
omitted. Then the xu should remain in the unlabeled dataset
XU .
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TABLE I. ALGORITHM OF FEEDBACK

Input: Labeled dataset(XL, yL), Unlabeled dataset XU ,
Learning iterations T , Initial parameters set InitPara

Output: Prediction model M
Step1: Training model
M ← Semitrain(XL, yL, XU , InitPara)
Step2: Choosing and feedback
for t = 1 : T do

Create pool XU′ by randomly selecting data points from XU

for each xu ∈ XU′ do
ŷu ←M(xu)
M ′ ← Semitrain ((XL, yL) ∪ (xu, ŷu), {XU − xu}, InitPara)

Exu ←
∑

xi∈XL
((yi −M(xi))

2 − (yi −M ′(xi))
2)

end for
for each Exu > 0 do

(XL, yL)← (XL, yL) ∪ (xu, ŷu)
XU ← {XU − xu}
M ←M ′

end for
M ← Semitrain(XL, yL, XU , InitPara)

end

The pseudo code of our feedback framework is shown
in Table I, where the function Semitrain returns a semi-
supervised GP regressor. The learning process stops when the
maximum number of learning iterations, T, is reached, or there
is no unlabeled data.

VI. EXPERIMENTS

In this section, we firstly evaluate the performance of the
proposed semi-supervised GPr (SemiGPr) on some regression
datasets, and make a direct comparison to its standard version
(GPr). Then we show the experimental results of SemiGPr with
the feedback algorithm (named FdGPr). Finally, we introduce
the clustering framework, and empirically demonstrate the
exclusion time and accuracy of the local SemiGPr extension
by this framework.

There are d + 4 hyper-parameters in SemiGPr: kernel
length-scales b = {bi}d

i=1, where d is the dimension of input
x, kernel over scale c, noise σ and edge weight length-scale
η. In our experiment, we select the appropriate values of
{b, c, σ} by maximizing the marginal likelihood. To reduce
the computing complexity, we fix η = 10 for all datasets. 4-
fold cross validation is performed on each dataset and all the
results are averaged over 40 runs of the algorithm.

The datasets used to evaluate the performance of our
method are summarized in Table II. The examples contained
in the artificial dataset Friedman is generated from the func-
tion: y = tan−1 (x2x3 − 1/x2x4) /x1. The constraint on the
attribute is: x1 ∼ U [0, 100], x2 ∼ U [40π, 560π], x3 ∼ U [0, 1],
x4 ∼ U [1, 11]. Gaussian noise term is added to the function.
The real-world datasets are from the UCI machine learning
repository and StatLib.

In our experiment, for each dataset, we randomly choose
25% of the examples as test data, while the remaining are
training data. We take 10% of the training data as labeled
examples, and the remaining is used as the set of unlabeled
examples. Note that all the datasets are normalized to the range
[0, 1].

A. Algorithmic Convergency

In this paper, we estimate hyper-parameters by using
the gradient descent method to minimize the following log

TABLE II. DATASETS USED FOR SEMIGPR. D IS THE FEATURE; N
DENOTES THE SIZE OF THE DATA.

Dataset Friedman wine chscase no2
D 4 11 6 7
N 3000 1599 400 500
Source Artificial UCI Statlib Statlib
Dataset kin8nm triazines pyrim bodyfat
D 8 60 27 14
N 2000 186 74 252
Source UCI UCI UCI Statlib

marginal likelihood.

− log p (y|X,G) =
1
2
yT Σ−1y +

1
2

log |Σ| + N

2
log 2π (20)

Firstly, we discuss the convergence of the above training
objective function. In Figure 1, we show how the objective
function value decreases as a function of the iterations on
triazines (left) dataset and no2 (right) dataset. The result of
triazines shows a typical convergence process. As the number
of iterations is increasing, the objective function value is
decreasing smoothly. Meanwhile, the objective function value
of no2 is converged in two stages. From the results, we can see
that the objective function value decreases with the increase of
the number of iterations and the iterative procedure guarantees
a local optimum solution for the objective function in Eq.(20).
According to our offline experiments, generally, the objective
function converges after about 30-40 iterations for the datasets
in Table II.

B. Efficiency of Unlabeled Data

To verify the SemiGPr model can take advantage of unla-
beled data, for a fixed number of labeled data, we vary the
number of unlabeled examples, and plot the mean squared
error (MSE) for dataset triazines and no2. The corresponding
curves are shown in Figure 2, where the dotted line and
solid line indicate the predictive errors on unlabeled dataset
and test dataset respectively. Note that when the proportion
of unlabeled data is 0%, the result denotes the MSE of
standard GPr. The figure shows that the proposed semiGPr
algorithm has lower MSE compared to the standard GPr both
on unlabeled and test dataset. Moreover, as the proportion
of unlabeled examples increases, the advantage of semiGPr
increases further. From this result, we can conclude that
SemiGPr may bring extra advantage by utilizing the unlabeled
data for model training. In other words, the unlabeled data
provides some useful information, and our semi-supervised
algorithm can make use of this information to improve the
predictive accuracy.

While we observe a significant performance improvement
of the proposed algorithm by using unlabeled examples, the
unlabeled examples are not always helpful. For example, for
data no2 (right figure of Figure 2), when the proportion of
unlabeled data goes from 30% to 50%, the error rates are
increased instead of reduced. The same happens to triazines
when the size of unlabeled dataset goes from 90% to 100%.
It is of interest to find out the cause of the negative effect of
the unlabeled data experimentally in the future.
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Fig. 1. log likelihood decreases along with the increase of the iteration No. for the triazines (left) and the no2 (right).
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Fig. 2. Performance of SemiGPr as a function of number of unlabeled examples.

C. Evaluation of Regression Accuracy

To further clarify the effect of the proposed method, we
compare the MSE between SemiGPr and GPr. The comparative
results are summarized in Table III. The above value is the
performance on unlabeled dataset, and the following value is
on test dataset. In this experiment, we consider GPr as the
baseline and compare the performance of SemiGPr with it.
The improvements are also listed in the table. In addition to
the average MSE, we test the significance of the performance
difference between SemiGPr and GPr using a paired t-test
on the MSE values. The differences are significant with a
paired t-test at the 0.05 level, and the results with significant
improvement in the table are bold-faced.

The result in Table III shows that our method SemiGPr
performs as well as or better than the standard GPr in terms
of the regression accuracy. We can observe that SemiGPr
leads to improvements in most of the datasets, and the dif-
ferences are significant in about half of the datasets. From
the comparison, we can conclude that using the unlabeled
training data with our semi-supervised regression framework,
the GP regression accuracy can be improved. On some of the
datasets like chscase, the precision of SemiGPr did not have
a significant improvement over the standard one. There are
two possible reasons for this result. One is the poor hyper-
parameter choices made in optimization process. The other

one is the negative effect of the unlabeled data as shown in
the previous experiment.

D. Comparison with other methods

To further evaluate the performance of SemiGPr, we
compare our results with other semi-supervised regres-
sion methods. In the first experiment, the co-training
method (COREG) presented in [?] is compared. The code
and documentation of COREG are available at http :
//lamda.nju.edu.cn/code/ COREG.ashx. All the exper-
imental setting of COREG is the same as that of SemiGPr,
i.e., the same splitting of the training and testing sets and
preprocessing methods, and 40 randomly runs of the algorithm
for each dataset. The obtained results are summarized in
Table IV. We perform a paired t-test at the 5% significance
level, and the results with obvious improvement in the table are
bold-faced. In general, we observe that our method achieves a
smaller error on all of the datasets compared to COREG. In
particular, on Wine and kin8nm datasets, we observe a signif-
icant performance improvement of the MSE over COREG. It
confirms the conclusion that our semi-supervised method can
take advantage of the unlabeled data and it is effective even
when only a limited amount of labeled data is available.

In the second experiment, in order to illustrate the dif-
ference between our method and the one proposed in [26],
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TABLE III. COMPARISON OF SEMIGPR WITH THE STANDARD GPR ON DIFFERENT DATASETS.

Dataset Friedman Wine chscase no2 kin8nm bodyfat pyrim triazines

GPr 0.0113 0.0196 0.0273 0.0180 0.0136 0.0026 0.0524 0.1215

0.0114 0.0205 0.0268 0.0183 0.0134 0.0061 0.0544 0.1205

SemiGPr 0.0101 0.0190 0.0264 0.0161 0.0131 0.0026 0.0359 0.0843

0.0102 0.0199 0.0265 0.0164 0.0132 0.0027 0.0495 0.0925

Improv. 10.62% 3.06% 3.30% 10.56% 3.68% 0% 31.49% 30.62%
10.53% 2.93% 1.12% 10.38% 1.49% 55.74% 9.01% 23.24%

TABLE IV. COMPARISON OF SEMIGPR WITH CO-TRAINING METHODS.

Dataset Friedman Wine chscase no2 kin8nm

SemiGPr 0.0102 0.0199 0.0265 0.0164 0.0132
COREG 0.0115 0.0214 0.0282 0.0166 0.0190

we run experiments on exactly the same datasets of [26],
following precisely their preprocessing and testing methods,
where in Robot arm dataset, 2000 data points are selected
independently for each task, with 1% as labeled data, 10% as
unlabeled data and the remaining as test data, and in School
dataset, for each task, 2% of the data is selected as labeled
data, 20% as the unlabeled data and the rest as test data.
Here, we use the systematic sampling method as the selection
method. The normalized mean squared error, which is defined
as the mean squared error divided by the variance of the test
output, is calculated as the performance measure. The results
are averaged over 10 runs of the algorithm. In Table V we
report the test normalized mean squared error for two multi-
task regression datasets.

It turns out that Zhang’s method of SSMTR uses a very
similar idea: constructing an adjacency graph and incorporat-
ing the prior of the graph with the GP prior to generate a
semi-supervised data-dependent kernel function. Actually we
derived the marginal likelihood and predictive distribution of
the GP from different routes. As we discussed earlier, the
major difference between two methods is that we have totally
different training and prediction models.

From the results of this experiment in Table V we can
obtain the merits and demerits of these two different models.
The result shows that SSMTR achieves a smaller error on robot
arm dataset compared to our method because Zhang’s method
considers the relevance among tasks. Their model consists of
GP and a common prior on the parameters for all tasks, and
the common prior can model the relevance well. The robot
arm dataset contains 7 tasks which are 7 joint toques of the
robot arm. The 7 joint toques have strong association with each
other, which means the 7 tasks have high relevance. Therefore,
for such a multi-task regression, it’s better to learn a multi-
task model rather than building a single-task model for each
task independently. However, for the second dataset (School
score), although the tasks have some relevance with each other,
our method still performs as well as the multi-task method
SSMTR. In this dataset, the examination scores of students
between different schools are related with the difficulty of the
examination. In Zhang’s paper, to model this latent relevance,
they impose a common Gaussian prior θi ∼ N (mθ,Σθ) on
the kernel parameters for all tasks. On the other hand, our

TABLE V. COMPARISON OF SEMIGPR WITH SSMTR
(SSRT:SUPERVISED SINGLE-TASK REGRESSION WHICH USES ONE GP FOR

EACH TASK).

Method SSTR SSMTR SemiGPr

robot arm 1.0228± 0.1318 0.3810± 0.1080 0.8389
1.0270± 0.1450 0.3905± 0.1123 0.8710

school 1.2914± 0.3146 1.0506± 0.2804 1.3266
1.3240± 0.3274 1.0612± 0.2813 1.0723

method is proposed for single task and can not model this
relevance well. However, the common prior has no effect on a
single task. Because when there is only one task in a dataset,
the common prior becomes a fixed value. Therefore, it may be
interesting in the future to compare which performs better for
single-task.

Another major difference between two methods lies in
hyper-parameter optimization. In Zhang’s method, the number
of parameters to estimate is large, since all the tasks are
modeled in one formulation, and the number of parameters
increases with the tasks. Because of the large number of
parameters, it is difficult to estimate the optimal values si-
multaneously. So the parameters are optimized through an
alternating optimization algorithm. And this could cause a
computational problem for large multi-tasks datasets. How-
ever, in our work, the parameters of each task are estimated
separately by maximizing the log-likelihood. Therefore, our
work can be parallelized easily for a multi-task. It will also be
interesting in the future to compare which performs better for
hyper-parameter optimization and which saves training time.

E. Results of Feedback Algorithm

In this part, two of the datasets used in SemiGPr are
presented to demonstrate the effectiveness of the SemiGPr
extended by the feedback algorithm, which is denoted by
FdGPr. Experimental setting is the same as the previous
subsection.

To clarify unlabeled examples and their predictions really
contain some valuable information and our feedback algorithm
can utilize such information to improve the predictive accuracy,
we plot the MSE of FdGPr for different iteration numbers. The
results are shown in Figure 3. The dot line denotes the MSE
on the unlabeled dataset, and the solid line is the result of the
test dataset. The left figure is the result of dataset no2 and
the right one is that for chscase. Note that when the feedback
iteration is 0, the result denotes the MSE of SemiGPr.

From the figures we can see that when the iteration
number is increased, the feedback algorithm cuts the error
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Fig. 3. The effect of different feedback iterations on unlabeled and test dataset.

rate drastically over SemiGPr. The results show clearly that
the unlabeled examples and their predictions have a beneficial
effect on model learning. From the experiment, larger iteration
number almost always produces better results, while consid-
ering the computational cost, the iteration T should be set to
20. Although FdGPr achieves a comparable performance to
a non-feedback baseline on the unlabeled dataset, it does not
have a significant improvement over the other ones on the
test dataset. Therefore we should point out that the feedback
algorithm makes our work transductive, and we should find
a new metric to select predictions of unlabeled examples to
improve the performance on test dataset in future work. From
this result, we can make a conclusion that by utilizing feedback
information, FdGPr makes performance improvements over the
other methods, especially on unlabeled data.

F. Extension by Clustering Regression Framework

A significant problem with GP is that it’s computation-
ally expensive to carry out the necessary matrix computation
(O(N3)). To address this problem, we give a further extension
of the SemiGPr by a clustering regression framework and dis-
cuss the possibility of improving the efficiency while keeping
the accuracy.

Indeed, some regression methods with similar idea have
already been proposed. For example, [25] proposed a regres-
sion clustering algorithm to solve the complex distribution
regression problem. The proposed algorithm updates the data
in each cluster by using a regression error. Then the clusters
and the corresponding regression functions can be obtained
simultaneously. This method is effective for the dataset that
has multiple tasks within it. In addition, in [13] and [8],
excellent results have been obtained on some specific datasets
by clustering the input data into several parts, and learning
a regression model inside each cluster. In these studies, the
accuracy of combining the clustering and regression has been
discussed for the specific dataset, such as mixture distribu-
tion dataset and multiple spatial dataset, while we focus on
empirically demonstrating the execution time and accuracy on
general regression dataset. Besides, in above studies supervised
approaches have been used for regression, but in our work we
take advantage of the proposed semi-supervised regression.

Our clustering regression framework consists of three

TABLE VI. ALGORITHM OF FUZZY C-MEANS CLUSTERING

Input: X = {XL, XU}, Pinit, Params(m, ε, A)
Output: P, C
Repeat
Step1: Compute the centroid of cluster
for each cluster j, 1 ≤ j ≤ K do

c
(t)
j ←

∑N

i=1
(p

(t−1)
ij )mxi∑N

i=1
(p

(t−1)
ij )m

(a)

Step2: Calculate the distances from data to center
for each data point xi, 1 ≤ i ≤ N do

D2
ij ← (xi − cj)

T A(xi − cj), 1 ≤ j ≤ K (b)
Step3: Update the partition matrix

p
(t)
ij ←

1∑K

k=1
(Dij/Dik)2/(m−1)

(c)

Until ‖ P (t) − P (t−1) ‖< ε

stages: 1) data partition, 2) training models and 3) output
prediction. The pseudo code for the different phases of this
framework is shown in Table VII.. The first step is to partition
the input data into several clusters. General clustering methods,
for example k-means, divide the data into distinct clusters,
where each data point belongs to exactly one cluster. However,
this constraint is prone to cause unsuitable clustering results
in the boundary areas among different clusters. Consequently,
in this paper data partition is performed using a soft clustering
model named fuzzy c-means clustering (FCM) [2].

The FCM algorithm attempts to partition a finite collection
of N elements X = {XL, XU} = {x1, . . . , xN} into a collec-
tion of K fuzzy clusters with respect to some given criterion.
Here, the XL and XU denote the labeled input set and the
unlabeled input set separately. Given a finite set of data X , the
algorithm returns a list of K cluster centers C = {c1, . . . , cK}
and a N ×K partition matrix P = pij ∈ [0, 1], i = 1, . . . , N,
j = 1, . . . , K, where each element pij can be interpreted as
the probability that the element xi belongs to cluster j.

Table VI provides the learning process of FCM. Given X
and the initial partition matrix P , the FCM algorithm first
computes the cluster centroid ci for each cluster, using the
formula Eq.(a) in Table VI. The centroid of a cluster is the
mean of all points, weighted by their degree of belonging to the
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TABLE VII. PSEUDO CODE OF CLUSTERING FRAMEWORK

Input: X , yL, xt, Pinit, Params, hypara
Output: P, C, M
Step1: Data Partition
[P, C] = FuzzyCmeans(X, Pinit, Params)
Step2: Training Model
for each cluster j(j = 1 : K) do

Mj ← Semitrain(Xj , yj
L

, hypara)
end for
Step3: Output Prediction
Compute the partition coefficient pt of xt

wtj ← ptj/
∑

pt>δ
pt

ŷt ←
∑

xt∈j
wtj ∗Mj(xt)

cluster. Then it calculates the distances Dij from data point xi

to the cluster center cj . Finally, for each data point, it updates
the coefficients of being in the clusters. It is repeated until the
convergence condition is satisfied.

Through the algorithm presented in Table VI, we can get
the partition matrix P , where the rows indicate the probabil-
ities that the data point x belongs to each cluster, and the
columns denote the probabilities that all the data points X are
partitioned into cluster j. But the final goal of clustering is to
calculate an indicator matrix Z = zij ∈ {0, 1}, i = 1, . . . , N,
j = 1, . . . ,K. Here, the zij is one if xi is assigned to the
corresponding cluster j, or zero otherwise. The general idea
of obtaining Z from P is that setting the maximum probability
of each row to be 1, and the rest are 0. But it becomes the same
as hard clustering to some extent. To gain fuzzy clusters, in
this paper we exploit a threshold δ to filter the partition matrix.
For example, set δ to be 0.4, then the corresponding zij is one
if pij > 0.4, and zero otherwise. Thus, for a data point, it may
not be assigned to only one cluster but to the clusters that have
probability bigger than δ. Through adjusting the threshold δ,
we can control how much clusters may overlap.

Several clusters with overlaps are obtained by the data
partition step. Then in training step, local semi-supervised
GPr model M (Eq.14) is trained for each cluster. Finally in
predicting step, the prediction of a given data point xt is a
weighted combination of the predictions of the individual local
models given by ŷ(xt) =

∑K
j=1 Pxt(j)∗Mj(xt), where Pxt(j)

denotes the weight of the model j. It effectively equals to
the partition matrix that tells the probability of element xt

belonging to cluster j. And Mj(xt) represents the prediction
of input xt by using the model Mj , the formula of which is
Eq. 18.

TABLE VIII. RESULTS OF CLUSTERING REGRESSION FRAMEWORK.

Dataset Friedman Wine chscase no2

SemiGPr 0.0101 0.0190 0.0264 0.0161
0.0102 0.0199 0.0265 0.0164

CSGPr 0.0106 0.0220 0.0256 0.0154
0.0107 0.0232 0.0261 0.0160

To evaluate the performance of the clustering regression
framework (named FCMGPr), we experiment on the datasets
described in Table II. The parameters chosen for the FCM
algorithm remain unchanged for each dataset, m = 2, ε =
10−6, and A is a diagonal matrix with size d × d, where d
is the dimension of data X . Here, we set the threshold δ to
be 0.4. And if the data points in a dataset are more than one
thousand, then the number of clusters K equals to 4, if not,
K = 2. The experimental setting of regression part is the same
as the evaluation of SemiGPr.

Firstly, we compared the accuracy between SemiGPr and
FCMGPr. The MSE results on the unlabeled and test data
are shown in Table VIII. From the results we can see that
the FCMGPr performs better than the semi-supervised one on
no2 and chscase datasets. One of the reasons is that the local
models are more flexible than a global one. In other words,
constructing model locally can capture the details of data better
than applying a global model across entire dataset. In addition,
making predictions by weighted combination can help to avoid
the inaccurate results due to incorrect clustering. However,
there is a problem with clustering regression framework: if the
amount of labeled data is too small in a cluster, particularly
high-dimensional data, it will be easy to make poor hyper-
parameter choices or occur under-fitting. Then it results in bad
accuracy for FCMGPr. This is an explanation of the results on
wine and Friedman datasets, where the local model did not
have an improvement over the semi-supervised one.

Secondly, we tested the exclusion time of SemiGPr and
FCMGPr. The results are shown in Figure 4, where the left
two figures are the comparison of training time and the right
two figures show the results of predicting time. As we can see
in Figure 4, for all four datasets, both the training time and
the predicting time of FCMGPr are reduced over SemiGPr.
From these results we can conclude that by using the clustering
regression framework, the computational efficiency of the
semi-supervised GPr can be greatly improved and it also has
the possibility for improving the prediction accuracy.
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VII. CONCLUSION

In this paper we presented and evaluated a semi-supervised
GPr by incorporating an adjacent graph within the standard
GP probabilistic framework. Through exploring the standard
GP to semi-supervised setting, we can learn a regression
model from only small number of expensive labeled data
and a large amount easily obtained unlabeled data. More-
over, we presented a feedback algorithm, which can choose
the confident prediction for feedback to further improve the
performance. Furthermore, to solve the computational problem
of GP, we also gave a further extension of the semi-supervised
GPr by a clustering regression framework. The experimental
results indicate that our semi-supervised regression approach
can improve the prediction accuracy. Besides, by choosing
the confident prediction for feedback, it brings a significant
improvement in the prediction accuracy over a non-feedback
baseline. The extension by the clustering regression framework
is successful in reducing the exclusion time.

In the experiments, we compared SemiGPr with some state-
of-art methods. There also exist some other semi-supervised
regression methods, such as regularization regression method
[14], propagable graph method [16]. However, because of
the different experimental settings, we could not compare
the proposed method with them. Future work should include
implementing these methods and empirical comparisons with
them. We will also apply our scheme to harder regression tasks.
Although the results of feedback extension were encouraged, it
is noted that the algorithm has high time complexity due to the
re-training of SemiGPr. Therefore, in the future work a new
feedback criterion would need to be explored in order to obtain
more accurate predictions but spending less computational
cost.
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