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Abstract—A novel approach for segmenting the MRI brain 

image based on Finite Truncated Skew Gaussian Mixture Model 

using Fuzzy C-Means algorithm is proposed. The methodology is 

presented evaluated on bench mark images. The obtained results 

are compared with various other techniques and the 

performance evaluation is performed using Image quality 

metrics and Segmentation metrics. 
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I. INTRODUCTION 

MRI segmentation plays a vital role in medical research 
and applications. MRI has wide range of advantages over other 
conventional imaging techniques since magnetization and radio 
waves are used instead of X-rays in making the detailed and 
cross-sectional images of the brain [1]. Various operations 
based on image processing were defined earlier on MR images.  
Among these, segmentation of brain images into sub-regions 
has enormous research and medical applications.  These sub-
regions are utilized in visualizing and analyzing the anatomical 
structures in the brain which help in neuro-surgical planning 
[2]. 

There are various conventional methods for MRI 
segmentation which require human interaction in terms of 
mentioning number of classes for obtaining accurate and 
reliable segmentation.  Thus, it is necessary to derive new 
techniques for effective segmentation.  Much of the emphasis 
has been given to the segmentation algorithm based on finite 
normal mixture models where each image is assumed to be a 
mixture of Gaussian distributions.  But actually it is observed 
that the pixels are quantized through the brightness or contrast 
in the gray scale level (Z) at that point.  It is also observed that 
the image regions have finite range of pixel intensities (-∞, +∞) 
and may not be symmetric and Meso kurtic [3]. In this paper, 
to have an accurate modeling of the feature vector, finite 
truncated skew Gaussian  is considered by assuming that the 
pixel intensities in the entire image follow a Finite Truncated 
Skew Gaussian distribution [4][5][6][7][8]. 

Hence, in order to segment more accurately Fuzzy C-
Means algorithm is preferred because of the additional 
flexibility that allows the pixel to belong to multiple classes 
with varying degree of membership [9]. 

Thus, in this paper Fuzzy C-Means (FCM) clustering 
algorithm is considered for segmenting the image into number 
of regions and derive the model parameters.  The obtained 
parameters are thus refined further using the EM algorithm. 

The rest of the paper is organized as follows: section-2 
explains about the FCM algorithm, section-3 deals with the 
concept of Finite Truncated Skew Gaussian distribution and 
section-4 handles the initialization of parameters. Section-5 
shows the updating of parameters and section-6 demonstrates 
the proposed segmentation algorithm. In section-7 the 
experimental results are discussed, section-8 concludes the 
paper, the scope for further enhancement is proposed in section 
9 of the paper. 

II. FUZZY C-MEANS CLUSTERING ALGORITHM 

The first step in any segmentation algorithm is to divide 
image into different image regions. Many segmentation 
algorithms are presented in literature [10],[11],[12],[13],[14]. 
Among these techniques, medical image segmentation based 
on K-Means is mostly utilized [4]. But, the main disadvantage 
with K-Means is that, K-Means are slow in convergence and 
pseudo unsupervised learning that requires the initial value of 
K. Apart from K-Means, hierarchical clustering algorithm[5] is 
also used but even this algorithm shares similar arguments as 
the case of K-Means algorithm. Fuzzy C-Means clustering 
algorithm in considered, in order to identify the initial clusters. 
The algorithm for Fuzzy C-means clustering is presented 
below. 

The FCM employs fuzzy partitioning such that a data point 
can belong to all groups with different membership grades 
between 0 and 1 and it is an iterative algorithm. The aim of 
FCM is to find cluster centers (centroids) that minimize a 
dissimilarity function. To accommodate the introduction of 
fuzzy partitioning, the membership matrix (U) is randomly 
initialized according to Equation (1).
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The dissimilarity function which is used in FCM is given 
Equation (2) 
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Where, uij is between 0 and 1; 

ci is the centroid of cluster i; 

dij is the Euclidian distance between i
th

 centroid(ci) and j
th
 

data point; 

m є [1,∞] is a weighting exponent. 

To reach a minimum of dissimilarity function there are two 
conditions. These are given in Equation (3) and Equation (4). 
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This algorithm determines the following steps. 

Step-1:Randomly initialize the membership matrix (U) that 
has constraints in Equation (1). 

Step-2: Calculate centroids (ci) by using Equation (3). 

Step-3:Compute dissimilarity between centroids and data 
points using equation (2). Stop if itsimprovement over previous 
iteration is below a threshold. 

Step-4: Compute a new U using Equation (4). Go to Step 2. 

By iteratively updating the cluster centers and the 
membership grades for each data point, FCM iteratively moves 
the cluster centers to the "right" location within a data set. 
FCM does not ensure that it converges to an optimal solution. 
Because of cluster centers (centroids) are initialized using U 
that randomly initialized (Equation (3)). 

Performance depends on initial centroids. For a robust 
approach there are two ways which is described below. 

1) Using an algorithm to determine all of the centroids 

(for example: arithmetic means of all data points). 

2) Run FCM several times each starting with different 

initial centroids. 

III. FINITE TRUNCATED SKEW GAUSSIAN DISTRIBUTION 

In any medical image, pixel is used as a measure of 
quantification and the entire medical image is assumed as a 
heterogeneous collection of pixels and each pixel is influenced 
by various factors such as brightness, contrast, saturation etc. 
For effectual analysis and classification of the brain tissues, it 
is obligatory to uphold good contrast between white matter and 
grey matter, but in general the grey matter structure consists of 
tissues with varying intensities compared to that of white 
matter, thereby making it a challenging task for effective 
classification of tissues in these regions. 

A further issue associated is the problem of partial volume, 
many models assume that the pixels inside a particular tissue 
have homogenous properties, and follow a symmetric pattern 

and with this very assumption, the classification process is 
carried out.  But in reality, white matter regions contain certain 
portion of grey matter at the boundaries and the tissues within 
these regions are assumed to contain the pixels having the 
probabilities which may be both symmetric and non-symmetric 
[5].  The problem gets multifold in case of abnormal brains, 
since registering these images with prior probabilities is 
difficult, as each pixel inside a region may belongs to a 
different class. 

The effect of partial volume is due to the assumption of 
considering the distribution of the pixels inside the image 
regions as normal.  Hence it is necessary to consider 
asymmetric distributions as the brain can diverge from the 
symmetric population, in order for it to be segmented 
satisfactorily. 

The crucial information regarding the deformities in the 
brain can be available from the segmented regions, which may 
be skewed. In most of the brain related data, the information 
about the damaged tissues may be located at the boundaries 
(outliers) and the pixels inside these regions may exhibit non 
homogenous features, which include asymmetry, 
multimodality exhibiting long tails. 

Hence to have an effective analysis about the damaged 
tissues, one need to consider mixture models which can 
accommodate data having non-normal features.  Notable 
distribution among such models include the skew normal 
mixture model [15][16], the skew t -mixture model 
[17][18][19], the skew t –normal mixture model [20], and some 
other non-elliptical approaches [21][22][23]. The log-Normal, 
the Burr, the Weibull the Gamma and the Generalized Pareto 
distribution are also considered in the literature for analyzing 
asymmetric data.  Among these models, to model the data 
having long tails efficiently Skew Gaussian Mixture models 
are more appropriate [24][25][26]. 

Skew symmetric distributions are mainly used for the set of 
images where the shape of image regions are not symmetric or 
bell shaped distribution and these distributions can be well 
utilized for the medical images where the bone structure of the 
humans are asymmetric in nature. To have a more accurate 
analysis of the medical images, it is customary to consider that 
in any image, the range of the pixels is finite in nature. Among 
the pixels generated from the brain images, to extract the 
features effectively only finite ranges of pixels are very much 
useful. Hence, to have a more closure and deeper 
approximation of the medical data, truncated skew normal 
distribution are well suited 

The probability density function of the truncated skew 
normal distribution is given by 
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where, µ ϵ R, σ  >  0 and λ ϵ R represents the location, scale 
and shape parameters respectively. Where   and 𝜱 denote the 
probability density function and the cumulative density 
function of the standard normal distribution. 

The limits and of the truncated normal distribution are Zl 
=a and Zm = b. Where Zl and Zm denotes the truncation limits. 
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Truncating equation (1) between these limits, the following 
equations  are obtained 
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where, 

fµ, σ, λ (x) is as given in equation (1)  
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IV. INITIALIZATION OF PARAMETERS 

In order to initialize the parameters, it is needed to obtain 
the initial values of the model distribution. The estimates of the 
Mixture model µi, σi and αi where i=1, 2.., k are estimated 
using Fuzzy C-Means Clustering algorithm as proposed in 
section-II. It is assumed that the pixel intensities of the entire 
image is segmented into a K component model πi, i=1, 2...K 
with the assumption that πi = 1/K where K is the value 
obtained from Fuzzy C-Means Clustering algorithm discussed 
in section-2. 

V. UPDATING INITIAL ESTIMATES THROUGH EM 

ALGORITHM 

The initial estimates of µi, σi and αi that are obtained from 
section – 4 are to be refined to obtain the final estimates. For 
this purpose EM algorithm is utilized. The EM algorithm 
consists of 2 steps E-step and M-Step. In the E-Step, the initial 
estimates obtained in section – 4 are taken as input and the 
final updated equations are obtained in the M-Step. The 
updated equations for the model parameters µ, σ and α are 
given below. 
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VI. SEGMENTATION ALGORITHM 

After refining the estimates, the important step is to convert 
the heterogeneous data into homogenous data or group the 
related pixels. This process is carried out by performing the 
segmentation. The image segmentation is done in 3 steps: 

Step-1: Obtain the initial estimates of the finite truncated 
skew Gaussian mixture model using Fuzzy C-Means 
Clustering algorithm. 

Step-2: Using the initial estimates obtained from step-1, the 
EM algorithm is iteratively carried out. 

Step-3: The image segmentation is carried out by assigning 
each pixel into a proper region (Segment) according to 
maximum likelihood estimates of the jth element Lj according 
to the following equation 
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VII. EXPERIMENTAL RESULTS & PERFORMANCE 

EVALUATION 

In order to evaluate the performance of the developed 
algorithm, T1 weighted images were used. The input medical 
images are obtained from brain web images. It is assumed that 
the intensities of the pixels in medical images are asymmetric 
in nature. Hence, follow a skew Gaussian distribution and as 
the limits are finite and within the specified range of values are 
only necessary in medical image segmentation process 
Truncated skew Gaussian distribution. Is used The 
initialization of parameters for each segment is achieved by 
using Fuzzy C-Means Clustering algorithm and the estimates 
are updated using the EM algorithm. The experimentation is 
carried out by using the segmentation algorithm depicted in 
section-6 and the obtained results are evaluated using 
segmentation quality metrics[27] such as Jacquard Coefficient 
(JC), Volumetric Similarity (VS), Variation of Information 
(VOI), Probabilistic Rand Index (PRI) and Global Consistency 
Error (GCE) and the formulas for calculating these metrics are 
given as follows: 
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Where, LRE = 
| (    )  (     )|

| (    )|
 S and S’ are segment classes 

and xi is the pixel. 

VOI (X,Y)= H(X) = H (Y) – 2I(X;Y)       (16) 
Where, X and Y are two clusters 

PRI(St,{S})=
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values range from 0 to 1. The value 1 denotes the segments are 
identical.
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TABLE I.  SEGMENTATION QUALITY METRICS 

Image 
Quality 

Metric 
GMM 

Skew 

GMM 
with K-

Means-

EM 

Truncated 

SGMM 

with K-
Means 

Skew 

GMM 

with 
HC-EM 

Truncated 
SGMM with 

HC 

Skew 

GMM 

with FCM 
-EM 

Truncated 
SGMM 

with FCM 

Standard 

Limits 

Standard 

Criteria 

B0S1 

JC 
VS 

VOI 

GCE 
PRI 

0.089 
0.432 

2.3665 

0.2802 
0.504 

0.689 
0.733 

5.3173 

0.5964 
0.6396 

0.711 
0.781 

5.2323 

0.6088 
0.6697 

0.703 
0.8799 

5.142 

0.561 
0.619 

0.736 
0.887 

5.381 

0.626 
0.663 

0.795 
0.891 

5.232 

0.4223 
0.7958 

0.832 
0.923 

4.7099 

0.5025 
0.6009 

0 to 1 
0 to 1 

-∞ to ∞ 

0 to 1 
0 to 1 

Close to 1 

Close to 1 

Possible 
Big 

Close to 1 

Close to 1 

B0S2 

JC 
VS 

VOI 

GCE 
PRI 

0.0677 
0.3212 

1.9724 

0.2443 
0.416 

0.7656 
0.8767 

3.924 

0.4741 
0.5016 

0.7921 
0.8801 

0 

0 
1 

0.7921 
0.8814 

4.35 

0.419 
0.514 

0.812 
0.892 

4.63 

0.5013 
0.542 

0.819 
0.8914 

6.2894 

0.4664 
0.6847 

0.851 
0.923 

4.9823 

0.5125 
0.6506 

0 to 1 
0 to 1 

-∞ to ∞ 

0 to 1 
0 to 1 

Close to 1 
Close to 1 

Possible 
Big 

Close to 1 

Close to 1 

B0S3 

JC 

VS 
VOI 

GCE 

PRI 

0.0434 

0.123 
0.7684 

0.089 

0.576 

0.6567 

0.812 
0.2916 

0.031 

0.5853 

0.689 

0.849 
0 

0 

1 

0.7143 

0.916 
1.659 

0.107 

0.632 

0.722 

0.932 
2.956 

0.02 

0.661 

0.784 

0.926 
5.5318 

0.4001 

0.706 

0.818 

0.947 
4.3623 

0.3943 

0.7111 

0 to 1 

0 to 1 
-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 
Close to 1 

Possible 

Big 
Close to 1 

Close to 1 

B0S4 

JC 

VS 
VOI 

GCE 

PRI 

0.0456 

0.2233 
1.268 

0.056 

0.189 

0.7878 

0.3232 
1.569 

0.091 

0.191 

0.7891 

0.465 
0 

0 

1 

0.874 

0.54 
3.354 

0.157 

0.496 

0.896 

0.621 
3.693 

0.199 

0.519 

0.911 

0.643 
4.1619 

0.2949 

0.5628 

0.933 

0.722 
2.9053 

0.2554 

0.6987 

0 to 1 

0 to 1 
-∞ to ∞ 

0 to 1 

0 to 1 

Close to 1 
Close to 1 

Possible 

Big 
Close to 1 

Close to 1 

B1S1 

JC 

VS 

VOI 
GCE 

PRI 

0.141 

0.313 

1.6499 
0.1874 

0.9256 

0.776 

0.397 

4.0874 
0.4487 

0.6678 

0.779 

0.452 

3.9136 
0.4651 

0.7578 

0.791 

0.784 

3.951 
0.418 

0.6258 

0.8123 

0.797 

4.13 
0.4468 

0.6692 

0.826 

0.7910 

4.4115 
0.2752 

0.686 

0.861 

0.811 

3.5797 
0.4103 

0.8044 

0 to 1 

0 to 1 

-∞ to ∞ 
0 to 1 

0 to 1 

Close to 1 

Close to 1 
Possible 

Big  

Close to 1 

Close to 1 

B1S2 

JC 

VS 

VOI 
GCE 

PRI 

0.098 

0.0433 

2.3215 
0.2838 

0.3807 

0.7892 

0.878 

2.8047 
0.3407 

0.369 

0.7902 

0.898 

2.921 
0.348 

0.429 

0.877 

0.881 

3.91 
0.339 

0.485 

0.908 

0.896 

5.122 
0.3695 

0.561 

0.896 

0.918 

6.6411 
0.4661 

0.6322 

0.912 

0.931 

2.8047 
0.3407 

0.8690 

0 to 1 

0 to 1 

-∞ to ∞ 
0 to 1 

0 to 1 

Close to 1 

Close to 1 
Possible 

Big  

Close to 1 
Close to 1 

B1S3 

JC 

VS 

VOI 
GCE 

PRI 

0.0222 

0.3223 

1.2411 
0.1466 

0.9576 

0.8926 

0.3429 

0.9988 
0.1157 

0.9662 

0.899 

0.425 

1.252 
0.227 

0.856 

0.9124 

0.3543 

2.665 
0.398 

0.652 

0.9236 

0.359 

3.6351 
0.424 

0.698 

0.946 

0.3869 

6.7129 
0.4559 

0.7202 

0.969 

0.441 

0.9988 
0.1157 

0.9675 

0 to 1 

0 to 1 

-∞ to ∞ 
0 to 1 

0 to 1 

Close to 1 

Close to 1 
Possible 

Big  

Close to 1 
Close to 1 

B1S4 

JC 
VS 

VOI 

GCE 
PRI 

0.455 

0.329 

-8.8e-

16 

0.119 

0.065 

0.762 
0.7001 

0.201 

0.112 
0.1001 

0.797 
0.779 

1.332 

0.176 
0.129 

0.815 
0.7158 

0.19 

0.212 
0.27 

0.826 
0.754 

2.35 

0.265 
0.353 

0.854 
0.786 

5.0898 

0.3062 
0.5573 

0.889 
0.895 

5.561 

0.5214 
0.691 

0 to 1 
0 to 1 

-∞ to ∞ 

0 to 1 
0 to 1 

Close to 1 

Close to 1 

Possible 

Big  

Close to 1 

Close to 1 
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a) Jacquard Coefficient 

 
b) Volume Similarity 

 
c) Variation of Information 

 
d) Global Consistency Error 

 
e) Probabilistic Rand Index 

Fig. 1. Segmentation Quality Metrics 

The reconstruction process is carried out by positioning 
each pixel into its appropriate location. The performance 
evaluation [27] of the obtained output is done using the image 
quality metrics such as Average difference, Maximum 
distance, Image Fidelity, Means Squared Error and Peak 
Signal-to-Noise ratio. 

The developed algorithm is compared with Skew Gaussian 
mixture model with K-Means, Hierarchical Clustering, Fuzzy 
C-Means, Truncated Skew Gaussian mixture model with K-
Means and Hierarchical Clustering algorithms and the results 
obtained are tabulated in Table-1, Table-2 and fig.-1 & fig-2. 

TABLE II.  SEGMENTATION QUALITY METRICS 

Image 
Quality 

Metric 
GMM 

Skew 

GMM 
with 

K-

Means 

Truncated 

SGMM 
with K-

Means 

Skew 

GMM 
with HC 

Truncated 
SGMM with 

HC 

SGMM 
with Fuzzy 

CMean 

Truncated 
SGMM 

with FCM 

Standard 

Limits 

Standard 

Criteria 

B0S1 

AD 

MD 

IF 
MSE 

SNR 

0.573 

0.422 

0.416 
0.04 

17.41 

0.773 

0.922 

0.875 
0.134 

29.23 

0.792 

0.941 

0.428 
2.19e-005 

72.15 

0.812 

0.9325 

0.923 
0.094 

33.89 

0.835 

0.939 

0.941 
2.92E-005 

87.39 

0.8451 

0.945 

0.9756 
9.3E-07 

108.42 

0.899 

0.973 

0.9805 
3.03e-005 

93.324 

-1 to 1 

-1 to 1 

0 to 1 
0 to 1 

-∞  to ∞ 

Closer to 1 

Closer to 1 

Closer to 1 
Closer to 0 

Possible Big 
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c) Image Fidelity 

 
d) Mean Square Error 

 
e) Signal to Noise Ratio 

Fig. 2. Image Quality Metrics 

The proposed method is compared to the methods based on 
Finite Gaussian Mixture Model, Finite Skew Gaussian Mixture 
Model with K – Means algorithms, Finite Skew Gaussian 
Mixture Model with Hierarchical Clustering algorithms and 
Finite Truncated Skew Gaussian Mixture Model with K – 
Means and Hierarchical Clustering algorithms. The 
segmentation algorithm so developed is applied to 8 sub-
images as White Matter (WM), Gray Matter (GM), Cerebro 
Spinal Fluid (CSF) and Background of 2 brain images namely 
B0S1, B0S2, B0S3, B0S4, B1S1, B1S2, B1S3 and B1S4. The 
segmentation algorithm is developed and the performance of 
the segmentation algorithm is evaluated through segmentation 
quality metric such as jacquard Coefficient (JC), Volumetric 
Similarity (VS), Variation of Information (VOI), Global 
Consistency Error (GCE) and Probabilistic Random Index 
(PRI). The values after segmentation by using above quality 
metric are presented in Table-1. From the above table, for the 
medical image B0S1, the values of the JC and VS, the values 
of the developed method are close to 1 which implies that the 
segmentation methodology that is developed outperforming the 
segmentation model developed by using Gaussian Mixture 
Model and Finite Skew Gaussian Mixture model using K-
Means algorithm. The other metrics such as VOI, GCE and 
PRI also are superior in the developed model when compared 
to the existing model for medical image segmentation based on 
medical image segmentation using Finite Truncated Skew 
Gaussian Mixture Models. 

From the above tables-1 & 2 and the fig.-1 and fig.-2, it is 
observed that the performance of medical image segmentation 
based on Finite Truncated Skew Gaussian Mixture Model 
using Fuzzy C-Means algorithm, the Average Difference (AD) 
for the image B0S1 is closure to 1 when compared to that of 
Gaussian Mixture Model, Skew Gaussian Mixture Model with 
K-Means, Hierarchical Clustering & Fuzzy C-Means and 
Finite Truncated Skew Gaussian Mixture Model with K-Means 
& Hierarchical Clustering algorithms. Similarly, the other 
quality metrics such as Maximum Distance (MD), Image 
Fidelity (IF), Mean Squared Error (MSE) and Signal to Noise 
Ratio (SNR) are more superior for the developed method than 
that of the model based on Gaussian Mixture Model. This can 
be clearly seen from the output images given in Graph-6.3. The 
same phenomenon is observed for the other medical images 
B0S1, B0S2, B0S3, B0S4, B1S1, B1S2, B1S3 and B0S4. 

In all these images there is a drastic improvement in Image 
Quality metrics, the edges in medical image are more clearly 
visible. In the developed method, when compared to GMM, 
Skew GMM with K-Means, Hierarchical Clustering & Fuzzy 
C-Means and Truncated Skew GMM with K-Means & 
Hierarchical Clustering algorithms, the signal to noise ratio has 
increased and the Average Difference & Image Fidelity are 
close to 1 and Mean Squared Error is close to 0 which implies 
that in the developed method, the edges are more closely 
visible and since MSE is much closure to 0, the output image is 
more closure to input image. Thus, the developed algorithm 
has the advantage that since the edges are much clearer, it gives 
a very comprehensive idea regarding the details of the medical 
images. The developed model helps to analyze the medical 
images in a better contrast than that of the existing models. 
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VIII. CONCLUSION 

This proposed article is focused towards MRI Brain Image 
Segmentation. A new approach based on Finite Truncated 
Skew Gaussian Mixture Model is introduced. The performance 
evaluation of the developed model is investigated by using 
Image quality metrics which depict that the developed 
algorithm outperforms the other existing algorithms based on 
Skew Gaussian mixture model using K-Means, Skew Gaussian 
mixture model Hierarchical Clustering, Skew Gaussian mixture 
model Fuzzy C-Means, Truncated Skew Gaussian mixture 
model with K-Means and Hierarchical Clustering algorithms 
and the results obtained showcase that the developed model has 
better segmentation accuracy. Effective segmentation helps in 
efficient identification of the damaged tissues much more 
effectively Therefore, the proposed method will be very much 
useful in diagnosing the diseases like acoustic neuroma, 
Alzheimer’s, Parkinson’s etc. more accurately. 

IX. FUTURE SCOPE 

A methodology is presented for analyzing the brain images 
based on Truncated Gaussian Mixture models.  However, to 
have a more precise segmentation, it is needed to consider the 
other features of the images also, which may include the shape, 
size, orientation and texture.  Therefore, multivariate features 
should be considered to have a more detailed and effective 
analysis, further work is to be projected in this direction. 
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