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Abstract—This research paper presents dynamic modeling of 

inertial sensor based one degree of freedom (1-DoF) stabilizing 

platform. Plant is a ball on a pivoted beam. Nonlinear modeling 

of the plant is done. Ball position on beam is actuated by DC 

motor using two arms and one beam structure. Arms and beam 

are linked by pivoted joints. Nonlinear geometrical relations for 

mechanical structure are derived followed by physically 

realizable approximations. These relations are used in system 

dynamic equations followed by linearization, resulting in a linear 

continuous time differential equation model. State space 

conversion is done. Final model is simulation and system 

dynamics are elaborated by analysis of the simulation responses 

Keywords—stabilizing platform; ball on beam; nonlinear 

dynamics; inertial sensors 

I. INTRODUCTION 

Stabilizing platforms are among challenging control 
systems. Their applications are immense, especially in defense 
such as camera stabilizations for drones and automatic gun 
pointing angle control. Such plate forms have been benchmarks 
to practice various control techniques. Owing to such 
significance a lot of research work has been dedicated to these 
systems. One of such systems is single degree of freedom (1-
DoF) ball on beam mechanism. Plant of this control problem 
consists of a ball capable of rolling on a beam under the action 
of gravity due to inclination of beam. Control objective is to 
stabilize the positions of the ball on the beam in the presence of 
external disturbances and to achieve ball position reference 
tracking. System is open loop unstable so feedback is 
inevitable [1]. 

This research is presented in two parts. Part-I presents 
modeling of the system. Dynamics of this plant has been 
derived and discussed in literature. Reduced order linear 
transfer function based model is used in [1], [2] and [4]. 
Similar technique has been employed in [3]. Variational 
techniques have been employed in [5].  However full order 
model without neglecting actuator dynamics and structural 
nonlinearities is not studied.  

Our work presents geometrically accurate, nonlinear and 
detailed modeling which has not been presented in literature. 
Moreover concept of using inertial sensors i.e. rate gyro and 
accelerometer to measure systems states, is novel and it makes 
our system much closer to real stabilizing platforms in sea 
ships and aircraft. In this paper a nonlinear system model is 
developed followed by linearization and state space 
conversion. Various systems parameters are identified and their 
effects on systems dynamics are elucidated. Linear and 
nonlinear relations are compared and error due to linearization 
has been analyzed. Open loop linearized dynamics are 
simulated and discussed. 

Organization of the paper is as follows, section-II describes 
the design and construction of physical hardware. Section-III 
comprises of derivation of system dynamics, nonlinear 
geometric relations governing the physical hardware, 
linearization and state-space conversion. Section-IV presents 
simulation results followed by section-V describing 
conclusions and future work. 

II. HARDWARE DESIGN 

Hardware platform is shown in Figure 1. Functional 
description for this plant is described diagrammatically in 
Figure 2. Plant consists of a beam of length 2b  hinged at its 

centre at the pivot point
2

O . A ball is placed on this beam. Ball 

is capable of rolling freely. Its distance D from edge of the 
beam is to be controlled. Position of the ball changes under the 
action of gravity if the beam is inclines at some angle , which 

may be positive or negative. Inclination of beam is actuated by 
a DC gear motor which is connected to the beam by a servo 
arm and a link arm. DC gear motor is bidirectional and actuates 

the servo arm at an angle . Servo arm rotates about point
1

O , 

which is also taken to be the origin of rectangular coordinate 
system used to model the system. Link arm is pivoted at points

2
P and

1
P , these pivot points track a circular trajectory in 

response to angle   as shown by dashed circular trajectories in 

the Figure 2. 
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Fig. 1. Hardware platform 

 
Fig. 2. Functional description of the hardware platform 

Control objective is to stabilize the ball at any desired 
position D  or to make it track a commanded position trajectory

(t)D by adjusting bounded servo angle   in the presence of 

disturbances. 

III. SYSTEM DYNAMICS 

It can be seen in Figure 2 that trajectories of the servo arm 
and the beam are circular so mathematical relations will be 
nonlinear. In the following sub sections various geometrical 
relations for the system hardware are developed step by step to 
be used in the final system dynamic model. 

A. DC motor dynamics 

The servo arm in Figure 2 is actuated to an angle by a DC 

gear motor. Model of a permanent magnet (PM) DC motor is 
shown in Figure 3.  

 
Fig. 3. Electrical and mechanical modeling diagram of PMDC motor 

It has two parts namely electrical and mechanical. 
Armature part of PMDC motor is modelled by a series RL 

circuit with back emf 
m

e as shown in Figure 3. Input to the 

motor is voltage signal
a

e .

 a

a m a a a

di
e e R i L

dt
    


m m

d
e k

dt


  

Substituting equation (2) in equation (1) we get: 

 a

a m a a a

did
e k R i L

dt dt


    

Mechanical part of the motor consists of the rotating 
armature with its end coupled to the servo arm and the link 
arm. Armature is modelled by a cylindrical moment of inertia 

R
J experiencing a friction 

R
B  as shown in Figure 3. Since 

motor output shaft is coupled to servo arm and link arm so net 

moment of inertia is
1

J  given by equation (4), 


1 R S L

J J J J    

In Equation (4), 
S

J and 
L

J are moment of inertia of the 

servo arm and the link arm respectively.  Using Euler’s 
equations for mechanical rotation part of motor we obtain, 



2

1 12 R

d d
J B

dt dt

 
   

Electromechanical coupling equation is given by: 


1 a

k i


   

B. Expressions for moment of inertia 

Armature is modelled by a cylinder of diameter r and mass

Rm . The Servo arm, link arm and the beam are modelled by 

rectangular parallelepiped with dimensions shown in Figure 4. 
Their moment of inertia are given by following equations, 
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Fig. 4. Moment of inertia for the servo arm, link arm and the beam 


21

2
R R

J m r  


2 21 1

12 3
S S S

J m l m a   


2 2 21 1

12 3
L L L L

J m l m L m a    

  2 2

2

1
(2 )

12
B S

J m b m p   

C. Relation Between servo arm angle ϕ and beam angle θ 

Position of the ball is actuated by beam angle θ as shown in 
Figure 2. Beam angle is itself result of servo arm angle ϕ, so a 
relationship is developed between these two angles. To develop 
this relation we select a xy-coordinate system with origin 

1
(0, 0)O as shown in Figure 5. If 

1 1
O P a and

2 2
O P b then 

beam rotates about
2
( , )O a b L . Link arm end points become

1
(a cos , sin )P a  and

2
( cos , sin )P b b a b L    . 

 
Fig. 5. Geometrical description of the hardware platform 

It is clear that
1 2

PP L  which remain constant irrespective of 

position of link arm. We may also write it as 
2

2

1 2
PP L or

2
2

1 2 1 1
O P O P L  . From Figure 5 we can expand this relation 

using distance formula as:  



2 2 2

2 2 2

     ( cos a cos ) ( sin sin ) ,

( cos a cos ) ( sin sin )

( , , , , ) 0

0

b b a b L a L

b b a b L a L

f a b L

   

   

 

      

      

 

  

Equation (11) can easily be verified by checking physically 

realizable trivial solution of ( , , , 0, )f a b L  or
2

cos sinb bL    

which comes out to be θ=0 as expected. Equation (11) is 
tedious to be solved to find an explicit relation between θ and 

ϕ. However if we put constrain  0.1 , 0.1    we may 

approximate sin  and cos 1   , so equation (11) results in, 



  

 

 

2 2

2 22

1 2

2

      , , , , 0.1 , 0.1 0

[ ]cos [ ( 1)]sin

( 1)

( 1)
cos tan

f a b L

a ab a bL

a ab

ab
a bL

a

   

   




 



  

    

  


  

  

 
  

 

At this point we can get the following explicit relation 
between θ and ϕ: 


2

1 1

2

1

cos tan ( 1)

1 ( 1)

b
L

ba

ab

a



 



 



  

 

 
 

  
      

   

 

Putting 2b a  in equation (13) we get, 

  1 1

2

1 (2 / )
cos tan 2( 1)

1 4( 1)

L a
 



 
  

 

 
 
  

 

Furthermore if L a  then Equation (14) becomes: 



 
 1 1

2

2( 1) 1
cos tan 2( 1)

1 2( 1)


 



  
  

 

 
 
 
 

 

An approximate linear relation can be found between θ and 

ϕ if we restrain both θ and ϕ in range 0.1 , 0.1  . In this case 

Equation (11) becomes: 



    
2 2

, , , 0.1 , 0.1 , 0.1 , 0.1

[ ( 1)] 0,

.

f a b L

a ab a bL

a

L

     

  

 

    

    

 

 
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For θ =  0.1 , 0.1  , %error between ϕ calculated from 

nonlinear relation of equation (13) and linear relation of 
equation (16) have been plotted for various values of L in 
figure 6. It is evident that linear relation of equation (16) is 

valid for ϕ  0.1 , 0.1  and θ  0.035 , 0.05  if L a , 

with a maximum of 5% error. 

 

Fig. 6. % error between linear and nonlinear relation for ϕ 

D. Torque and force decomposition for the Servo-arm and the 

link-arm 

PMDC motor generates a torque 
1
 and angle ϕ which is 

applied to servo arm at point
1

O as shown in Figure 7.Since 

length of the servo arm is ‘a’ so force
S

F normal to arm at point 

1
P is produces. Amplitude of this force is given by

1
/

S
F a . 

However we are interested in finding the component of force

L
F which is parallel to the link arm so we decompose

S
F  along 

L -axis which comes out to be, 

 cos
2

L S
F F


 

 
 
 

 

In equation (17) the unknown angle η needs to be expressed 

in terms of known angle ϕ. Using law of sine in right 
1 2 2

PA P

in Figure 5 we get, 

1 (1 cos )
sin

a

L




 
  

In right 
1 1 1

O B P in Figure 5 we have, 

2


      

 

 

 
Fig. 7. Electrical and mechanical modeling diagram of PMDC motor 

 

 
Using Equation (18) in Equation (19) we get: 


1 (1 cos )

sin
2

a

L

 
 

 
    

Using Equation (20) in Equation (17) we get the desired 

expression for
L

F as: 


11

(1 cos )
cos sin

L

a
F

a L

 


 
 

 
 
 

 

E. Torque and force decomposition for the Link-arm and the 

beam 

The force 
L

F is transmitted from link arm to the beam. 

Figure 8 shows that this force is incident on the beam at an 

angle of λ from beam axis. Component of this force 
L

F


perpendicular to beam axis is responsible for producing torque 

about point
2

O . This torque is given by, 


2

sin( )
L L

bF bF 


   

The unknown angle λ needs to be expressed in terms of 
input angle ϕ. From Figure 8 we have, 

2


      

Using equations (16)-(20) in equation (23) we get, 


1 (1 cos )

sin
2

a a

L L

 
 

 
    

Substituting equation (24) in (22) we get, 


1

2

(1 cos )
sin sin

2
L

a a
bF

L L

 
 

 
  

 
 
 

 
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Fig. 8. Torque and force decomposition for the Link-arm and the beam 

Using equation (21) in equation (25) we get, 



11

2

1

(1 cos )
cos sin

(1 cos )
       sin sin

2

a
b

a L

a a

L L

 
 

 







  


 

 
 
 

 
 
 

 

It is also worth noting that for small ϕ and a=L equation 
(26) becomes: 


 2 10.1 ,0.1 ,a L

b

a
  

 
  

  

F. Dynamics of motion of the ball and the beam 

Beam experiences a torque 
2

  given by equations (26) and 

(27).  

Using Euler’s Law we get beam dynamics from Figure 8 
as, 



2

2 2 22

d d
J B

dt dt

 
   

Dynamics of the ball are given by Newton’s Law, 



2

2 g f

d D
m F F

dt
   

Substituting the values of frictional force 
f

F and component 

of gravitational force parallel to beam
g

F in equation (29) we 

get, 



2

2
sin

d D dD
m mg B

dt dt
   

For θ and ϕ in range[ 0.1 , 0.1 ]  equation (30) becomes, 



2

2

d D dD
m mg B

dt dt
   

G. State space description of the system 

Four differential equations (32) describe the overall system 
dynamics. Using Equation (3) and (31) we get: 


2

2

1
a a m

a a

a a a

di R k d
i e

dt L L dt L

d D B dD
g

dt m dt





   

 

 

Using equations (27) and equation (6) in (28) and (5) we 
get: 



2

2

1 1

2

2

2

2 2

R

a

a

k Bd d
i

dt J J dt

k b Bd d
i

dt aJ J dt





 

 

 

 

 

Table 1 describes state variable assignment for equation (32
 , 32  ). Using these definitions we get following state 

space equations (33 , 32  ). 



1 2

2 3 2

3 4

x D x

B
x D gx x

m

x x

 

  

 

 



2

4 7 4

2 2

5 6

6 7 6

1 1

7 7 6

1

R

a m

a a

a a a

k b B
x x x

aJ J

x x

k B
x x x

J J

R k
x i x x e

L L L











  

 

  

    

 

Although we are primarily interested in stabilizing the 

position of the ball
1

x  but to get a good control of stabilizing 

platform i.e. beam in this case, others state variables are also 
measures and designated as outputs. From table 1 we have 
defined following output variables, 



1 1

2 3

3 5

4 7

D

i

y k x

y k x

y k x

y k x













 

The state space equations (33)-(34) can be put into matrix 
form resulting in the state space quadruple given by, 
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

 

2 2 2

1 1

/

0 1 0 0 0 0 0

0 / 0 0 0 0

0 0 0 1 0 0 0

,0 0 0 B / J 0 0 2 /

0 0 0 0 0 1 0

0 0 0 0 0 / /

0 0 0 0 0 / /

[0 0 0 0 0 0 1] ,

0 0 0 0 0 0

0 0 0 0 0 0

,0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

R

m a a a

T

D

d dt

i

T

B m g

A k J

B J k J

k L R L

B

k

k

C k

k

k

D













 



 







 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  





Using table 2 for values of various parameters of the 
system in equation (35) we obtain following final state space 
model of equation (36). 

IV. SIMULATION RESULTS 

System described by equation (35) is a single input multiple 
output (SIMO) system. Response of the system to unit step 
input voltage is shown in figure 9-13. It is evident that ball’s 
position D in figure 9 is unstable. 



0 1 0 0 0 0 0

0 0.82 9.8 0 0 0 0

0 0 0 1 0 0 0

0 0 0 341.3e3 0 0 54.6 3

0 0 0 0 0 1 0

0 0 0 0 0 13.65 1.36

0 0 0 0 0 61.2 3 3.26

5 0 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 2.5 0 0 0

0 0 0 0 3.5 0 0

0 0 0 0 0 0 4.5

A e

e

C

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 



  



 

Instability in the position of the ball is due to the fact that 
ball accelerates under the effect of gravity on inclined beam so 
its velocity increases linearly and distance covered increases in 
a quadratic fashion. In figure 10 and 12, the beam angle θ and 
servo arm angle ϕ keep on increasing as motor starts rotating 
however as motor current stabilizes due to back emf so does 
the velocity of the motor. This is evident from figure 11 and 
13. Hence responses of D, θ and ϕ are bounded input bounded 

output (BIBO) unstable while armature current 
a

i and beams 

angular velocity dθ/dt are BIBO stable. 

  
Fig. 9. Unit step response of ball position D 

  
Fig. 10. Unit step response of beam angle θ 

  
Fig. 11. Unit step response of beam angular velocity dθ/dt 
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Fig. 12. Unit step response of servo arm angle ϕ 

V. CONCLUSIONS AND FUTURE WORK 

The detailed geometric analysis of the system shows that 
equations governing the system behavior are highly non-linear 
and relations are mostly implicit. Linearization of system 
dynamic is valid in very narrow operating range. Analysis of 
the system equations and response indicate that the system has 
overall unstable response and it is challenging to be controlled. 
Feedback is inevitable owing to the unstable nature of the 
system and model inaccuracies caused by linearization of 
dynamic. In part-II of this research work control of this system 
would be developed. 

 
Fig. 13. Unit step response of armature current i

a
(t) 
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TABLE I.  STATE VARIABLE ASSIGNMENT 

State 

variable 

Physical 

variable 
Variable description Measured Un-measured Sensing mechanism 

1
x  D  Distance covered by the ball on the beam X  Wound type Linear POT 

2
x  dD dt  Velocity of the ball  X -- 

3
x    Beam angle X  Analogue Accelerometer 

4
x  d dt  Beam angular velocity X  Analogue Rate Gyro 

5
x    Servo arm angle X  Angular POT 

6
x  d dt  Servo arm angular velocity  X -- 

7
x  

a
i  Armature current X  Hall effect Sensor 
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TABLE II.  VALUES OF THE SYSTEM PARAMETERS 

Parameter Description Symbol Numerical Value 

Acceleration due to Gravity g  9.8m/sec2 

Mass of the ball m  0.022Kg 

PMDC motor rotor mass Rm  0.050Kg 

Servo arm mass sm  0.010kg 

Link arm mass Lm  0.010kg 

Beam mass Bm  0.025kg 

Radius of PMDC motor rotor r  0.02m 

Length of link arm L  0.375m 

Width of the servo Arm l  0.010m 

Length of servo arm a  0.1875m 

Half beam length b  0.375m 

Beam width p  0.025m 

Rolling friction constant for ball B  0.018 N.m/rad/sec 

Rotational friction constant PMDC motor rotor RB  0.08 N.m/rad/sec 

Rotational friction constant for beam about 
2

O  2B  0.1 N.m/rad/sec 

Torque constant for PMDC motor k  0.008 N.m/Amp 

Back EMF constant for PMDC motor mk  0.015V/rad/sec 

Ball position sensing linear potentiometer constant Dk  5V/m 

Beam angle sensing accelerometer constant k  4V/rad 

Beam angular velocity gyroscopic constant /d dtk   2.5V/rad/sec 

Servo arm angular potentiometer constant
 

k

 
3.5V/rad

 
Armature current hall effect  constant ik  4.5V/A 

Moment of inertia for rotor-servo-link arm assembly 1J  5.863e-3 Kg.m2 

Moment of inertia for servo arm SJ  4.68e-4 Kg.m2 

Moment of inertia for link arm LJ  1.8721-3 Kg.m2 

Moment of inertia for motor rotor RJ  3.52e-3 Kg.m2 

Moment of inertia for beam 2J  2.93e-7 Kg.m2 

Armature resistance aR  0.8Ohm 

Armature inductance aL  0.245H 

 


